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This Lecture is About ...

Image Denoising

W\

Denoiser
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-

Noisy image Denoised image

Removal of noise from images is a heavily studied
problem in image processing

In this talk we expand on recent discoveries and
developments around this seemingly dead topic
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Our Agenda

5. Our Focus Today: Denoising for ...
= Solving general inverse problems
= |mage Synthesis
= High perceptual quality recovery
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Introduction & History
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So, Let’s Talk About ...

Image Denoising
or more accurately

Removal of White Additive Gaussian Noise from an Image

Image

Denoiser

Denoised
image

(clean)
Image
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Image Denoising is Challenging

Image denoising is far from trivial task! Why?

(J Because our goal is to remove noise as much as possible while
preserving the details in the image

(1 Denoising is essentially a highly ill-posed separation task

Original Denoised
(clean) image
Image
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Why Work on Image Denoising?

1. Practical: It is a real-world problem, arising in all cameras,

2. Front-Gate to Image Processing: Being the simplest inverse
problem, it is a platform for assessing new ideas in our field, &

3. Other Uses for the Denoiser Engine: Recent work has shown
that given a denoiser, there are other fascinating uses for it
that go far beyond noise removal

Noisy ¢
image Image

| LACOMOUONE - -

Denoiser

L
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Why Assume Gaussian Noise?

1 The Gaussian case is more common and much more important

1 When considering a Poisson noise,
= High count of photons — The distribution gets closer and closer
to the Gaussian case

= Low-count Poisson-distributed image can be converted to a Gaussian-noisy
one by Anscomb - Variance Stabilizing Transform

5

/‘.
0

1 Many of the developed ideas

for the Gaussian case can be

. G i’
converted to other noise models g@#Etr

3 MMSE denoisers for the Original
Gaussian case are of extreme  (clean)
theoretical value (see later) Image
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Image Denoising: Little bit of History

Roughly speaking, there are ~33,000 papers™ on this subject,
offering algorithms, theoretical analysis and so much more

* Search done on October 26 2023 in WoS, topic: ((image or
video ) and (denoising or (noise and remov) or clean))

= | Michael Elad 9
¥ The Computer-Science Department
The Technion




Image Denoising: Little bit of History

Ciling Artleles! This research comes from all over the globe
China: 92111

France: 46506

Germany: 41808

England: 36459

Canada: 27033

Spain: 25317

Australia: 23502

Israel: 17711

India: 17604

Switz.: 17601

Japan: 17427

Italy: 16393

Nether.: 15609

Korea: 14119

Finland: 11969

Singapore: 9695

Belgium: 8383

Brazil: 7637

Taiwan: 6802

Iran: 5697 L. . .
russia: 4607 | .. and it is heavily cited
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The Classic Era
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Design of Image Denoising Algorithms

How can we design a denoiser?

The classic Bayesian approach (1960-2014):

* Model image content with a prior expression p(x) (e.g., forcing smoothness,
sparsity, low-rank, self-similarity, ... ), and

= Formulate the denoising task as an optimization problem

— P(x) = C- expt—p(x)}

% = min [|x — y||*+p(x)
T ) This is the MAP estimate, which
Likelihood Prior ) ) ]
leads to an iterative or a direct
y : Given noisy image algorithm for getting X fromy

X : Denoised result
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Image Denoising: Evolution

Sparsity Methods
NCSR BM3D Patch-Methods

L,-based Robust PDE-Methods
KSVD Kernel-Regr.

Regularization statistics Anisotropic Diffusion EPLL
Wiener Hubber-Markov Beltrami

c £ § /f £ 8

1970 1975 /1980 1985 1990 1995 2000 / 2005 2010

Heuristic: L Low-Rank
Bilateral  Self-Similarity

Heuristic
Spatiall Wavelet Methods WNNM
patially Thresholding NLM-PCA LR

adaptive Cycle-Spinning NLM
filtering e SURE
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End of an Era?

This evolution of algorithms and the tendency of different methods to
perform very similarly has led to a feeling that “Denoising is Dead”

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 4, APRIL 2010

Is Dxq

Priyam Chatterjee, Student M

Abstract—Image denoising has been a well studied
the field of image processing. Yet researchers continue
tention on it to better the current state-of-the-art. R
posed methods take different approaches to the prob
their denoising performances are comparable. A per
tion then to ask is whether there is a theoretical limit
performance and, more importantly, are we there yet?
manufacturers continue to pack increasing numbers (
unit area, an increase in noise sensitivity manifests itsel{
of a noisier image. We study the performance hounds fi
denoising problem. OQur work in this paper estimates a ]
on the mean squared error of the denoised result and ¢
performance of current state-of-the-art denoising m
this bound. We show that despite the phenomenal recq
in the quality of denoising algorithms, some room fq
ment still remains for a wide class of general images, ar
signal-to-noise levels. Therefore, image denoising is nol

Index Terms—Bayesian Cramér-Rao lower boun
bias, bootstrapping, image denoising, mean squared e

[. INTRODUCTION

MAGE dcnomn" has been a wc]l smdu.d }
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Natural Image Denoising: Optimality and Inherent Bounds

Anat Levin

and Boaz Nadler

Department of Computer Science and Applied Math
The Weizmann Institute of Science

Abstract

The goal of natural image denoising is to estimate a
clean version of a given noisy image, utilizing prior knowl-
edge on the statistics of natural images. The problem has
been studied intensively with considerable progress made
in recent years. However, it seems that image denoising
algorithms are starting to converge and recent algorithms
improve over previous ones by only fractional dB values. It
is thus important to understand how much more can we still
improve natural image denoising algorithms and what are
the inherent limits imposed by the actual statistics of the
data. The challenge in evaluating such limits is that con-
structing proper models of natural image statistics is a long
standing and yet unsolved problem.

To overcome the absence of accurate image priors, this
paper takes a non parametric approach and represents the
distribution of natural images using a huge set of 10'°
patches. We then derive a simple statistical measure which
provides a lower bound on the optimal Bayesian minimum
mean sqz/are error (MM.SE) Tlus tmpose_v a [lml[ on the

ever, it seems that the performance of denoising algorithms
is starting to converge. Recent techniques typically improve
over previous ones by only fractional dB values. In some
cases the difference between the results of competing algo-
rithms is so small and inconclusive, that one actually has to
successively toggle between images on a monitor to visually
compare their denoising quality. This raises the question of
whether the error rates of current denoising algorithms can
be reduced much further, or whether there are inherent lim-
itations imposed by the statistical structure of natural im-
ages? The goal of this paper is to derive a lower bound on
the best possible denoising error under a well defined sta-
tistical framework. Such a bound can help us understand
if there is hope to significantly improve the current state-
of-the-art image denoising with even better algorithms, or
whether we have nearly approached the fundamental limits.

Understanding the limits of natural image denoising is
also important as an instance of a more fundamental com-
puter and human vision challenge: modeling the statistics
of natural images and understanding the inherent limits of
their statistical power. Several works attempted to estimate
the entropy of natural imag However. there is




End of an Era?

And so, somewhere around 2010-2012, the general
feeling in our community was that ...

We are touching the ceiling in denoising performance
and chances of improving them are very slim

e

There is no point in devising new denoising methods

e

Work in this field has diminishing returns

Well, We Were Wrong !
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End of an Era?

Wrong ? How?

The past decade has taught us that image denoising is still

[very much alive and kicking}

due to several branches of novel activity on:

= QObtaining better performing denoisers with deep learning

= New frontiers in denoising:
o Better adaptation to image content
o Denoising strategies that go beyond PSNR
o ldentifying alternative methods for designing/training denoisers
o Extending the denoising task to realistic noise, and

= Discovering new ways for leveraging denoisers for other needs
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Design of Algorithms: Take 2

How can we ALTERNATIVELY design a den0|ser?

The machine learning approach (2012- Now)
= Gather a LARGE dataset of clean images {x; }h-4

= Add AWGN these images: {yx = Xy + N Jh-q

= Define a parametric denoising machine Dg(y)

= Train Dg(m) by setting its parameters 0:

\ ) 4. Denoiser

A LA Dg (yx)

= R N_
Michael Elad | (nicde=s 18
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Image Denoising: A Paradigm Shift

How can we design a denoiser?

By modeling image content and leveraging it for noise filtering:

%2 . Scale Invariance
o
= Sparse Representation @
O Dlecewise Smoothness
.« . . Low dimensionalit
Non-Local Self-Similarity @ e
Observe that with this
trend, all the knowledge
%D and knowhow accumulated
- . . . carefully over decades in
= Supervised Training image processing became
= TOTALLY OBSOLETE
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Image Denoising: Recent Evolution

Initial Steps - MLP Deep Shrinkage Deep Image Prior
(Burger et. al) Isogawa et. al (Ulyanov & Vedald Noise2Void
CVPR 2012 |EEE-SPL 2017 CNLNet CVPR 2018 (Krull et. al)
TNRD (Lefkimmiatis, CVPR 2019
(Chen & Pock) CVPR 2017

IEEE-TPAMI 2016

¢ § $F K

2012 2013 2014 2015 20164 017 218 2719 2020 W\2021

FFDNet (blin
h o CBDNet ; Batch
DNCNN AME Bl | blind Renormalization
Denoising Auto- (Zhang et. «. IEEE-TIP 2( (Guo[ Attent (Tian et. al)
Encoder \EEE-TIP 2017 GCBL  (ypR (Tiar Neural Networks
(Cho) Learnea rrox GAN-baseu el A 2020
ICML 2013 (Meinhardt et. al) (Chen et. al) eurazoztavvun no
ICCV 2017 CVPR 2018

*= | Michael Elad
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Synergy:
Classics + Deep Learning
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Image Denoising: Return of the Classics

[ In recent years deep learning is ruling the

image denoising domain, pushing aside 00001y
: : g eur
all the classical methods, along with Did
L) L) ee
their great achievements SG%

] Recently, however, we do see a synergy
between the two paradigms

 Recall: In building a supervised deep learning
denoiser solution, we operate along the following lines:

Gather Define an Define a cost Train and hope
training data » architecture for » function (loss) » for good
to use the Denoiser to optimize generalization

Michael Elad py)
The Computer-Science Department
The Technion




Image Denoising Architectures

So, how do we choose an architecture for a given task?

Option 1 - Copy an existing network that has shown good results in
earlier work (VGG, U-Net, ...), and slightly modify it

Option 2 — Pile and Guess a series of steps that mix known pieces
such as convolutions, fully connected layer, batch-norm, RelLU,
pooling, stride, skips,

upscale/downscale, ol
. ]
connections, ... .
and add new “tricks” o
o ¢
Option 3 - Neural . : : Neuron Neuron
number  number
ArChIteCtu re Sea rCh Inpullzl.}-'cr.‘_———p €l ——> P2 —> 3 —> P4 %‘/’ 100 ’

Kernel size Pooling size Kernel size Pooling size
16149 4 16x16x21 4

= | Michael Elad 23
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Image Denoising Architectures

Here are several paper examples from CVPR/NIPS 2019
that illustrate these architectures

Meta-SR: A Magni

Noise2Void - Learning Denoising from Single Noisy Images

Model-bling . . .
Alexander Krull'?, Tim-Oliver Buchholz?, Florian Jug ep Learning

k krull@mpi-cbg.de

Thibaud Ehi 2 Authors contributed equally
Ga Photographs
MPI-CBG/PKS (CSBD), Dresden, Germany

CVPR 2019: U-Net-based with 3.8e6 params MO%SI;};?IZ%;

ng; “DAMO Academy, Alibaba Group
CVPR 2019: DnCNN based with 5.5e5 params it e cedicsaeon

cskaizhang@gmail.com, cslzhang@comp.polyu.edu.hk

Samuli Laine CVPR 2019: U- Net based with 5.3e6 params

NVIDIA* INY iy YILZI7y, Jaaity Ul YILJIy

NIPS 2019: U-Net-based with 1.1e6 params

“1he Chinese university o Hong Kong

= Michs CVPR 2019: DnCNN-based with 1.2e6 params 2
€ Corrrpraceroererocorcpenon
¥ The Technion




Alternative Architecture Design

 Message: Do far better in choosing architectures by relying on
unfolding algorithms from the classics of image processing

[ The benefits in such architectures:

* They are far more concise yet just as effective as leading methods
" They are easier to train because they are lighter

» They have the potential to break current performance barriers

= They may bring better understanding and explainability

= They enable better adaptation to out of distribution images

1 Here are few representative examples:

= Rethinking the CSC Model [Simon & Elad, NeurIPS *19]

= Non-Local & Multi-Scale Denoising [Vaksman, Milanfar & Elad, CVPR (NTIRE) 20]
= Deep KSVD Denoising [Scetbon, Milanfar & Elad, IEEE-TIP "21]

= PatchCraft: Non-Local Video Denoising [Vaksman, Elad & Milanfar, ICCV "21]
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A Closer Look at Adaptation

Beijing is an important world capital and global power city, and one  Beijing is an important world ca N bal pov , an J jing is an important world capital and global power city, and one Beijing is an important world capital and global power city, a

culture, diplomacy and politics, business and economy, education, la

technology. A mega city, Bpijing is|the second largest Chinese city b S technology. A mega city, he second largest Chinese city b | technology. A mega city, B the second largest Chinese city b
and is the nation’s cultura juc nal, and political center.[15] It is and is the nation’s culin 1 al ce and is the nation’s culiura nal, and political center{15] It is | and is the nation’s culura nal, and politcal center[15] It is

culture, diplomacy and politics, business and e my, education, ture, nacy and pol M ™ ™ culture, diplomacy and poli business and economy, education, la

of China's largest state-owned companies and houses the largest nunr  of China’s | a of China's largest state-owned compani nd houses the largest nunr | of China's largest state-owned companies and houses the largest nun
companies in the world, as well as the world's four biggest financial panies in the | /| t fin companies in world, as well as the world's four biggest financial companies in the world, as well as the world's four biggest financial
major hub for the national highway, expressway, railway, and high-s major hub e national highway, express % major hub for the national highway, expressway, railway, and h s | major hub for the national highway, expressway, railway, and high-s
Capital International Airport has been the second busiest in the work national Airport has been the second busiest in the wc Capital International Airport has been the second busiest in the worli | Capital International Airport has been the second busiest in the worli
[18] and, as of 20186, the city's subway network is the est and sec and, as of 2016, the city’s subway networ b iest and sec  [18] and, as of 2016, the city’s subway network is the busiest and sec | [18] and, as of 2016, the city's subway network is the busiest and sec
Combining both modern and wraditional architecture, Beijing is one « | both modern and rraditional archi re, Beijing is one « Combining both modern and wraditional architecture, Beijing is one « | Combining both modern and wraditional architecture, Beijing is one ¢
with a rich history dating back three millennia. As the last of the Fou with a rich history dating back three millennia. As the last of the Fou with a rich history dating back three millennia, As the last of the Fou | with a rich history dating back three millennia. As the last of the Fou

Beijing has been the political center of the country for most of the p¢  Beij has been the political ¢ t forr C 3eijing has been the p ical center of the country for most of the pi | Beijing has been the political center of the country for most of the pe

(a) Clean text (704 x 356) (b) Noisy with o = (c) Denoised (d) Denoised

(a) Clean astrono with o = 50 (c¢) Denoised (d) Denoised
(800 x 570) (before adaptation) (after adaptation)
PSNR = 26.44dB PSNR = 28.04dB

(f) Noisy (g) Denoised (h) Denoisec
(before adaptation) (after adaptatio
111 1CUl
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Our Focus Today

Recent findings on using denoisers for other tasks:

M Discovery 1: Solving general inverse problems [2013-]
[ Discovery 2: Image Synthesis [2019-]
[ Discovery 3: High perceptual quality recovery [2021-]

Noisy Image Denoiser s 7ANAIN Denoised
image y D(y’ 0) | Image X
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Discovery 1: Solving Inverse Problems

Inverse Problems: Recovery of images from corrupted measurements

De-Blurring
In-Painting
De-Mosaicing

Tomography

(S N N Ry B

Image Scale-Up
& super-resolution

... and more ...
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Discovery 1: Solving Inverse Problems

How can we solve inverse problems?

We can return to the classic Bayesian approach:

= Model image content with a prior expression p(x) (e.g., forcing smoothness,
sparsity, low-rank, self-similarity, ... ), and

= Formulate the inversion task as an optimization problem

' » This is known as MAP estimation

= |t is an extension of the classic
path for denoising, tailoring
methods for inverse problems

= This approach leads to iterative
algorithm for getting X fromy

= |s there a supervised learning
alternative? Definitely!

= | Michael Elad 30
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% = min |[Hx — y||*+p(x)
X
Likelihood Prior

y : Given measurements
X : Denoised result




Discovery 1: Solving Inverse Problems

Question: Given a denoiser D(y, 0)
how can one solve inverse problems with it?

Plug-and-play priors for model based reconstruction

The little engine that could: Regularization by denoising (RED) 670

Romano, M Elad, P Milanfai

1 Imaging Sciences 10 (4), 180

Answer: Use D(y, o) as a regularizer

Practical Implication: Iterated use of D(:, 0)

Simple Simple Simple
y- Operation - D(" G) - Operation - D(., G) -I

= | Michael Elad 31
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Discovery 1: Solving Inverse Problems

Here is (roughly) the PnP Perspective in a nutshell:
= Recall: Inverse problems can be formulated as optimization tasks:

1
% = min= ||Hx — y||? + p(x) _
X 2 Y P ... and this way we
got an iterated

1
% = min - ||Hx — ylI* +p(v) s.t. x=v algorithm that

= Let’s do something “stupid” and split the unknown:

= Now, turn the constraint into a penalty* keeps calling to a
denoiser,

for solving the
inverse problem

|
& = min [[Hx — yl|I* + p(v) + BllIx — vl|?
XV 2
= And solve by alternating between x and v
|
o Least-Squares: X = minz lHx — y||? + Bl|x — v||?
X

o Adenoiser: ¥ =minp(v) + Bllx — v||?
A4

= | Michael Elad 32
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Discovery 1: Solving Inverse Problems

Here is the RED Perspective in a nutshell:

Let’s start again with the formulated optimization task,
and suggest a very specific regularization term:

1 1
R = min=||Hx — y||? + p(x) = min= ||Hx — y||? + Ax'[x — D(x, 0)]
X 2 X 2 g W

: ~"
Let’s use the Under mild conditions* the
Steepest Descent gradient of this is [x — D(x, 0)]

Rierr = Rk — 1 [HT (& — ) + AR, — DRy, 0)]

... and this way we got an iterated algorithm that keeps calling to a denoiser,
and is guaranteed to achieve the global minimum

* Differentiability, local homogeneity, passivity and symmetric Jacobian (MMSE)

Michael Elad 33
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Discovery 1: Solving Inverse Problems

Here are some results for Deblurring and Super-Resolution

(a) Bicubic 20.68dB (b) NCSR 26.79dB

(d) NCSR 28.39dB (e) P>-TNRD 2¢

#= | Michael Elad (¢) P>-TNRD 26.61dB d) RED: SD-TNRD 27.39dB 34
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Discovery 1: Solving Inverse Problems

. . 2013 IEEE Global Conference on Sianal and Information P
cited and extensively nference on Sig el
The little engine that could: Regularization by denoising (RED)
- B Milanfar

studied, owing to their [
generality and elegance ™

D P N P an d R E D are h eaV| Iy Plug-and-play priors for model based reconstruction

 Follow-up work focuses on

" Proving convergence to the desired solution and tying these to
properties of the permissible denoisers (e.g. MMSE ...)

= Deployment in various applications
= Creation of new variants of these two methods ... and ...
 PnP/RED can be used to define well-motivated architectures
for solving general inverse problems, built around a core
learned denoising engine

= | Michael Elad 35
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Discovery 2: Image Synthesis

O In recent years, and with the deep-learning
revolution, there is a growing interesting is
synthesizing images “out of thin air”

1 The popular tool of interest is called GAN —
Generative Adversarial Network, built of two
competing networks — a generator and a critique

d Why synthesize? Because

= We can, and it is fascinating

» |t testifies that we have seized the distribution
of images, and

® |t could be used
for other needs

O Could we synthesize
images differently?

Michael Elad
The Computer-Science Departm
The Technion
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Discovery 2: Image Synthesis

Question: Given a denoiser D(y, 0)
how can one synthesize images with it?

1548 2019

528 2020

Stochastic Solutions for Linear Inverse Problems using the Prior Implicit in a Denoiser 56 2021
>, EP S

Adh Neura ition Processing Systems 34

Answer: Use D(y, o) as a Projector onto the image manifold
Practical Implication: Iterated use of D(+, o) with varying o

Simple Simpl

Operation ' Operation ' Operati

= | Michael Elad 37
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Discovery 2: Image Synthesis

Here is the core idea in a nutshell:

Our goal: draw a sample from the distribution of images P(x)

= Start with a random noise image X,
= Climb to a more probable image by the iterative equation:

Rk+1 = Xx + a - VlogP(Xy) +b -z (Langevin Dynamics)
- /)

This is known as the Score This suggests an implicit
Function and it is approximately relation between MMSE
proportional to X — D(Xy, 0)] denoisers and Priors:

for a small value of o D(x,0) <> P(x)

... and this way we got an iterated algorithm that keeps calling to a
denoiser, and is guaranteed to obtain a sample from P(x)

= | Michael Elad 38
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Discovery 2: Image Synthesis

In practice, instead of the plain Langevin with a fixed (and
small) value of o we use the Annealed Langevin Algorithm
that considers a sequence of blurred priors:

P(x+v) for v~N(0,0fl) ‘

=P(x) ®c:-exp {— ﬁ ||X||2}

with 60 > 04 >0, - >on>0

The core idea: start by drawing
» from a wider distribution and
gradually narrow it, leading to

a faster sampling performance

*= | Michael Elad
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Discovery 2: Image Synthesis

—

Does it work? Here are some results

—

", -l
N

-

40

Michael Elad
The Computer-Science Department

The Technion



Discovery 2: Image Synthesis  mmmmmmm

Claim: diffusion-based methods are Diffusion Models Beat GANs on Image Synthesis
the best in image synthesis

Prafulla Dhariwal* Alex Nichol*
OpenAl OpenAl
prafulla@openai.com alex@openai.com

Abstract

We show that diffusion models can achieve image sample quality superior to the
current state-of-th generative models. We achieve this on unconditional im-
age synthe

conditional imag er

anc imple, Lompute ient method for trading off diversity for fidelity using
gradients from a classifier. We achieve an FID of 2.97 on ImageNet 128x 128,
4.59 on ImageNet 256 %256, and 7.72 on ImageNet 512x512, and we match
BigGAN-deep even with as fev

taining better coverage of the d

combines well with upsamplin ffusion models, further improving FID to 3.94

on ImageNet 256256 and 3.85 on ImageNet 512x512. We release our code at
https://github.com/openai/guided-diffusion.

Introduction

BigGAN (FID 6.95) Diffusion (FID 4.59)

Su% | Michael Elad
The Computer-Science Department .
The TeChnlon Figure 1: Selected samples from our best ImageNet 512x512 model (FID 3.85)




Discovery 2: Image Synthesis

Surely, you have heard of ...

Imagen Google &) DALLE 2 @ 0penal

unprecedented phaotorealism x deep level of language understanding

Michael Elad 42
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Discovery 2: Image Synthesis

Surely, you have heard of ...

.
WAKEUP THE ARTIST IN YOU

tability.ai s
'Ef e Midjourney
- i '

wms ARTIFICIAL INTELLIGENCE ART GENERATOR s

-

Michael Elad 42
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Discovery 3: Targeting Perceptual Quality

Suppose that we need to denoise the following image:

Image

Denoiser

Original

o Denoised image

Minimum Mean-

Image
Manifold Squared-Error
(MMSE) denoisers
are great for MSE
result, but their
result falls outside
the manifold

Michael Elad 43
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Should we be
pleased with this
result? It seems
to be a bit ...
blurry, no? Why?

MMSE Result
E{x|y}




Discovery 3: Targeting Perceptual Quality

Question: How can we denoise an image
while targeting “High Perceptual Quality”?

High perceptual quality image denoising with a posterior sampling cgan 23
G Ohayon, T Adrai, G Vaksman, M Elad, P Milanfar

of the IEEE/CVF International Conference on Computer Vision

Stochastic image denoising by sampling from the posterior distribution
} Kawar. G Vaksman. M Elad

onal Conference on Computer Vision

Answer: Denoise by sampling from the posterior P(x|y)

Practical Implication: We consider 2 methods These methods

* Training a deep denoiser via CGAN, or - produce a multitude

" lterated use of an MMSE denoiser D(,0) of possible solutions

Su% | Michael Elad 44
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Discovery 3: Targeting Perceptual Quality

Let’s have a closer look at the Stochastic Image Denoiser:

Task: Draw a sample from P(x|y) where [y = x + n,n~N(0, 641)]
= Start with a random noise image X,

= Climb to a more probable image by the iterative equation:
Rier1 = K +a - V9ogP(Re|y) + b -z « Langevin with a
- ~ s

conditional Score

j = VlogP(Ry) + VlogP(y|%y)
Bayes rule

= )/Zk —D()/Zk, O') + VlogP(y|)’Zk)
- ~ J - ~ /)
Approx. Score A Gaussian Distribution?
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Discovery 3: Targeting Perceptual Quality

Let’s have a closer look at the Stochastic Image Denoiser:
VlogP(Xk|y) = Xk — D(Xk, 0) + VlogP(y|Xy)
= As we use the Annealed Langevin algorithm, there are two noise
signals to consider:
o Measurement’s noise: n~N(0, 63])
o Synthetic annealing noise: V~N(O, 012<I) forop >0 >0, - >0ony>0

= |mplication: We recover

VlogP (X =
a sequence of gradually less 8P (Rily)

o R . - R y — Xk
noisy images Xy, where their = X —D(Xy, op) + 5 5
noise v is assumed to be a portion of n
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Discovery 3: Targeting Perceptual Quality

Stochastic Image Denoiser:

= We start from a noisy image (o = 150 in this example)

= Then gradually denoise it using (conditional) annealed Langevin dynamics

Michael Elad 47
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Discovery 3: Targeting Perce
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Discovery 3: Targeting Perceptual Quality

Let’s have a closer look at the Conditional GAN Denoiser: E

 Typical design approach: Optimize a distortion measure (e.g. MSE) between
the denoised and the ideal images

J Adversarial loss could be added to

improve the perceptual quality

Denoised Clean
“ Noisy

Critic

Denoiser

d However, when used together,
we get a compromise between
distortion and perceptual quality MSE(¥¥®) + AL,go(¥®)
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Discovery 3: Targeting Perceptual Quality

Perception

O For ill-posed restoration tasks, perceptual
qguality performance comes at the expense Possible |
of its distortion [Blau & Michaeli 2017] Region |

d We aim for best perceptual quality

O The posterior distribution attains perfect
perceptual quality, compromising 3dB
compared to the MMSE [Blau & Michaeli 2017] s Distortion

d We propose to sample from the posterior
via a Conditional GAN mechanism (PSCGAN)

Impossible
Region

o
0]
—~+
(=g
(0]
=
=,
%]
c
L
o]
c
L
~
<

[ 3
Alg. 4!

Samples from Pxy—y

x~Px ¥y~ Pyx=x -

' \‘q- u:
1
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Discovery 3: Targeting Perceptual Quality

The PSCGAN Architecture:

Random
noise z

Denoised

Randomized

\ 4

\ 4

Why use y in the critic? Without it,

4
we check only the perceptual quality E J

of the denoised result. With it, we Original
also assess its denoising validity
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Discovery 3: Targeting Perceptual Quality

What about the Loss?
d CGAN optimization leads to posterior sampling [Adler et al. 2018]:

mein m(gx IEX,Y [C(JL) (Xr Y)] I IED@,Y,Z [C(JL) (DG» Y)]

O However, this requires an unavailable balanced dataset to train on
(many x’s for each y and many y’s for each x)

d On the other hand, we would like to avoid a penalty of the form

Exyz[llx — Dg(y,2)I5]
O Our remedy: adding an MMSE oriented penalty term:

Exyl[llx — E,[Dglylll5]
L This gives the MMSE result “for free” (averaging many instances)
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Targeting Perceptual Quality

Discovery 3

CGAN
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Oh ... and One Last Thing
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Back to Inverse Problems

J Goal: Recovery from corrupted measurements

De-Blurring
De-Mosaicing

Tomography

1 Can we suggest a “sampler” from
P(x|y) for handling all these
problems, in order to obtain “perfect looking” results?

1 Answer: Yes! Use Langevin dynamics again, in an adapted form

Snips: Solving noisy inverse problems stochastically

Denoising Diffusion Restoration Models

= | Michael E
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Back to Inverse Problems

A&A 672, A51 (2023)
https://doi.ore/10.1051/0004-6361/202243054 A&stro nomy

© The Authors 2023 AStI‘OphySiCS

Probabilistic mass-mapping with neural score estimation™

D D 1 Al ¢ RN . - 23 1 v1:..456 I 1 Cs 11 W Oece T2 AT Colwcllanal®

Context. Weak lensing mass-mapping is a useful tool for accessing the full distribution of dark matter on the sky, but because of
intrinsic galaxy ellipticies, finite fields, and missing data, the recovery of dark matter maps constitutes a challenging, ill-posed inverse
problem

Aims. We introduce a novel methodology that enables the efficient sampling of the high-dimensional Bayesian posterior of the weak
lensing mass-mapping problem, relying on simulations to define a fully non-Gaussian prior. We aim to demonstrate the accuracy of
the method to simulated fields, and then proceed to apply it to the mass reconstruction of the HST/ACS COSMOS field.

Methods. The proposed methodology combines elements of Bayesian statistics, analytic theory, and a recent class of deep generative
models based on neural score matching. This approach allows us to make full use of analytic cosmological theory to constrain the 2pt
statistics of the solution, to understand any differences between this analytic prior and full simulations from cosmological simulations,
and to obtain samples from the full Bayesian posterior of the problem for robust uncertainty quantification.

Results. We demonstrate the method in the KTNG simulations and find that the posterior mean significantly outperfoms previous
methods (Kaiser—Squires, Wiener filter, Sparsity priors) both for the root-mean-square error and in terms of the Pearson correlation.
We further illustrate the interpretability of the recovered posterior by establishing a close correlation between posterior convergence
values and the S/N of the clusters artificially introduced into a field. Finally, we apply the method to the reconstruction of the HST/ACS
COSMOS field, which yields the highest-quality convergence map of this field to date.

Conclusions. We find the proposed approach to be superior to previous algorithms, scalable, providing uncertainties, and using a fully
non-Gaussian prior.

Results. We demonstrate the method in the KTNG simulations and find that the posterior mean significantly outperfoms previous
methods (Kaiser-Squires, Wiener filter, Sparsity priors) both for the root-mean-square error and in terms of the Pearson correlation.
We further illustrate the interpretability of the recovered posterior by establishing a close correlation between posterior convergence
values and the S/N of the clusters artificially introduced into a field. Finally, we apply the method to the reconstruction of the HST/ACS
COSMOS field, which yields the highest-quality convergence map of this field to date.

Conclusions. We find the proposed approach to be superior to previous algorithms, scalable, providing uncertainties, and using a fully

MlChaeI Elad non-Gaussian prior.
¥ The COmputer-ScienCe Depar Key words. cosmology: observations — methods: statistical — gravitational lensing: weak
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Back to Inverse Problems

[ The idea is similar to our high-perceptual denoising, with necessary
changes for considering the degradation operator H ...

 Starting naively, using Bayes theorem, we need to calculate
Vlog P(y[x;)
L We know that y = Hx + n and x; = x + v; and thus:
VlogP(y|x;) = VlogP(y — Hx;[x;) =
VlogP(Hx + n — Hx — Hv;|x;) = VlogP(n — Hv;|x;)

[ However, ... while n — Hv; is a simple Gaussian, it’s dependency
on X; in non-trivial, so how do we proceed from here?
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Back to Inverse Problems

Q Step 1: Use SVD for decoupling the measurements H = UZV!:

Uly = UT[uzvli(x; —vy) + n] = VT (x; — v;) + UTn
\“—y=Hx+n—

mmmm) y7lk] = orXrlK] — oy Vr[K] + nr[k]

Decouple X7[k] <> V[k]| by choosing
Vr|K] to be a portion of ny[K]

 Thus, we can apply the Langevin dynamics algorithm on
%1 = VIx; given yr = Uly and sample from the conditional

1 Bottom line: An MMSE denoiser is used for a novel solution of
inverse problems, this time targeting best perceptual quality
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Back to Inverse Problems

Noisy Inpainting: A portion missing and noise with gy = 25

Observed Clean

Michael Elad
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Back to Inverse Problems

Super resolution: downscaling by 4 with additive noise of gy = 25
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Back to Inverse Problems

Super resolution: downscaling by 4 with additive noise of gy = 12

Original Degraded

Michael Elad
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Back to Inverse Problems

Deblurring: uniform 5 X 5 blur with additive noise of gy = 25
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Back to Inverse Problems

Compressive sensing (12.5%) with additive noise of oy = 25

Original Degraded Sample
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Time to Summarize
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What Have we Seen Today?

WE CAN USE D(y,0) FOR

solving ANY
inverse
problem

(PnP/RED)

synthesizing

natural- .
looking

images

v

denoising images
while targeting
high perceptual
quality

\ 4

—)

—¥ 3

»

[ Suppose that we are given an MMSE denoiser D(y, ) }
<

solving ANY
inverse problem
with high
perceptual qualityj

All the above are achieved by
simply applying D(y, o) iteratively

*= | Michael Elad
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summary

Image Denoising

... Not What You Think
.

1. There are so many opportunities and challenges in
better understanding, designing, and proposing
creative usage of image denoisers

2. Despite the fact that this has not been a talk about

Deep-Learning, the presence of this field in the
topics covered is prominent
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Thank You

d The content of this lecture relies on ~10 papers that my group
has worked on and published in the past several years

d Getting these results was enabled due to the amazing people
| had the pleasure of collaborating with:

Yaniv Romano Bahjat Kawar

Guy Ohayon

) heo Adrai
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