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Why do we talk about simulations?

A theorist perspective…
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“What I cannot create, I do not understand”

Richard P. Feynman

“What I understand, I can create”

LHC Simulations & Generative Modelling

Why do we talk about simulations?



Why do we need them for LHC physics?
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Fundamental Theory

Simulation

Detector-level  
observables

Nature

Experiment

Detector-level  
observables

Pattern 
recogniton

New Physics?

LHC analysis (oversimplified)
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Fundamental Theory

Simulation

Detector-level  
observables

Nature

Experiment

Detector-level  
observables

Binned 
Statistics

Problem: Information bottleneck

⊖ x20 speed up

⊖ higher precision in 

theory predictions

HL-LHC challenge
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Fundamental Theory

Simulation

Detector-level  
observables

Fast + precise 
simulations

Solution: LHC analysis + ML

⊕ x20 speed up

⊕ higher precision in 

theory predictions

HL-LHC chance

Optimal 
Inferencer =

p(x |θ0)
p(x |θ1)

s = ∇θlog p(x |θ)

Nature

Experiment

Detector-level  
observables

Likelihood-free inference (e.g. MadMiner)  
[1506.02169, 1601.07913, 1805.00013, 1805.00020, 
1805.12244, 1907.10621, 2101.07263, 2210.01680, 
2305.10500, 2308.05704,…]

Matrix element method (MEM) 
[hep-ex/9808029, hep-ex/0406031, hep-ex/0605118, 1003.1316, 
1007.3300, 1010.2263, 1211.3011, 1304.6414, 1502.02485, 
1511.05980, 1511.06170, 1512.03429, 1606.03107, 1710.10699, 
1712.03266, 1805.08555, 2008.10949, 2210.00019, 2310.07752,…..]

Talk by Jakob Macke Talk by Theo Heimel

Unfolding
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Fundamental Theory

Simulation

Detector-level  
observables

Fast + precise 
simulations

Solution: LHC analysis + ML

⊕ x20 speed up

⊕ higher precision in 

theory predictions

HL-LHC chance

Optimal 
Inferencer =

p(x |θ0)
p(x |θ1)

s = ∇θlog p(x |θ)

Nature

Experiment

Detector-level  
observables

Sim-based inference (e.g. MadMiner)  
[1506.02169, 1601.07913, 1805.00013, 1805.00020, 
1805.12244, 1907.10621, 2101.07263, 2210.01680, 
2305.10500, 2308.05704,…]

Matrix element method (MEM) 
[hep-ex/9808029, hep-ex/0406031, hep-ex/0605118, 1003.1316, 
1007.3300, 1010.2263, 1211.3011, 1304.6414, 1502.02485, 
1511.05980, 1511.06170, 1512.03429, 1606.03107, 1710.10699, 
1712.03266, 1805.08555, 2008.10949, 2210.00019, 2310.07752,…..]

Talk by Jakob Macke Talk by Theo Heimel

Unfolding

➡We want to understand all aspects of data based on first principles!



9Understanding LHC data based on  principles1st

What do we need to understand the data?

1. Precision simulations (a lot)  

2. Optimized analyses for high-dimensional data

→ Machine Learning has significant impact on all aspects

ℒ
Theory Shower EventsHard process Hadronization Detectors

Forward

Inverse

this talk
Talks by Jakob Macke,  

Theo Heimel



Deep generative models



11Deep generative models

Diffusion ModelVariational 
Autoencoder

Generative 
Adversarial Network

Maximum-likelihood 
Models

Normalizing Flow

Autoregessive Transfomer

Diffusion Probabilistic 
Model

Conditional Flow 
Matching

Continuous NFs

Score-matching 
Model

Wasserstein GAN

LS-GAN Relativistic 
GAN

Hierarchical 
VAE

-VAEβ

VQ-VAE
SurVAE
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13Deep generative models

Diffusion Model

Maximum-likelihood 
Models

Normalizing Flow

Autoregessive Transfomer

Diffusion Probabilistic 
Model

Conditional Flow 
Matching

Continuous NFs

Score-matching 
Model

⊖ Reduced flexibility and expressivity

⊕ Fast training and evaluation
⊕ Tractable and fast likelihoods

⊖ Slow likelihood estimation

⊕ State-of-the-art in precision
⊕ Fast and stable training

Application 
dependent



14ML aided simulation chain

ℒ
Theory Shower EventsHard process Hadronization Detectors

1 Forward

Inverse 2



dσ ∼ pdf × |M(x) |2 × dΦ

Calculate (differential) cross sections

ℒ
Theory Shower EventsHard process Hadronization Detectors

15

321

Forward

ML for forward simulations
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dσ ∼ pdf × |M(x) |2 × phase space

PDFs: ML reduces uncertainties

• NNPDF uses NN for a long time (no parametric function)

• Modern ML and hyper-opt 
→ reduced uncertainties: 3-5% →  1%

• GAN-enhanced PDF compression

[hep-ph/0204232, 1002.4407, 1410.8849, 1907.05075, 2010.03996, 
2012.08221, 2104.04535, 2109.02653, 2109.02671, 2201.07240, 2211.01094, 
2212.12569, 2302.08527, 2303.06159, 2307.05967,…..] 

NNPDF [2109.02653]

ML for forward simulations

ℒ
Theory Shower EventsHard process Hadronization Detectors

Forward
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dσ ∼ pdf × |M(x) |2 × phase space

Amplitudes: avoid expensive matrix element
• As “simple” regression task

• With uncertainties/boosting using Bayesian NN

[1912.11055, 2002.07516, 2006.16273, 2008.10949, 2104.14182, 2105.04898, 
2106.09474, 2107.06625, 2109.11964, 2112.09145, 2201.04523, 2206.08901, 
2206.04115, 2206.14831, 2301.13562, 2302.04005, 2306.07726,…..] 

ML for forward simulations

ℒ
Theory Shower EventsHard process Hadronization Detectors

Forward

Badger, Butter, Luchman, Pitz, Plehn [2206.14831]
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dσ ∼ pdf × |M(x) |2 × phase space

Amplitudes: avoid expensive matrix element
• As “simple” regression task

• With uncertainties/boosting using Bayesian NN

[1912.11055, 2002.07516, 2006.16273, 2008.10949, 2104.14182, 2105.04898, 
2106.09474, 2107.06625, 2109.11964, 2112.09145, 2201.04523, 2206.08901, 
2206.04115, 2206.14831, 2301.13562, 2302.04005, 2306.07726,…..] 

• Using factorisation ansatz to reach ‰ level accuracy

Maître, Truong [2302.04005]
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ML for forward simulations

ℒ
Theory Shower EventsHard process Hadronization Detectors

Forward
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dσ ∼ pdf × |M(x) |2 × phase space

Amplitudes: avoid expensive matrix element
• As “simple” regression task

• With uncertainties/boosting using Bayesian NN

• RL and/or Transformer for simplifications 
of Polylogarithms

[1912.11055, 2002.07516, 2006.16273, 2008.10949, 2104.14182, 2105.04898, 
2106.09474, 2107.06625, 2109.11964, 2112.09145, 2201.04523, 2206.08901, 
2206.04115, 2206.14831, 2301.13562, 2302.04005, 2306.07726,…..] 

• Using factorisation ansatz to reach ‰ level accuracy

Dersey, Schwartz, Zhang [2206.04115]

• NN-assisted contour deformation (Loop integrals)

ML for forward simulations

ℒ
Theory Shower EventsHard process Hadronization Detectors

Forward



ML for loop integrals
NNContour

RW, Magerya, Villa, Jones, Kerner, Butter, Heinrich, Plehn [2112.09145] 

https://arxiv.org/abs/22112.09145


21NNContour — ML for loop integrals
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Figure 1: Feynman diagrams for our four example integrals, which we call pentagon1L,
ladder2L (first line) and triangle2L, elliptic2L (second line). The blue lines denote massive
lines, green lines denote massive or o↵-shell external legs (with a mass di↵erent from m).

Example diagrams

The Feynman diagrams we use to develop and benchmark our approaches are shown in
Figure 1.

The top left diagram is a one-loop pentagon integral as it occurs in the production
of a top quark pair in association with another massive particle and depends on four
independent Mandelstam invariants as well as the top quark mass and the invariant mass
of p5. Analytically it depends on logarithms and dilogarithms of ratios of kinematic
invariants, leading to a complicated branch-cut structure. After Feynman parametrization
the corresponding integral is described by 4 independent Feynman parameters.

The top right diagram is a two-loop box diagram with one massive on-shell leg and
one o↵-shell leg. This diagram is a topology occurring for example in tt̄V production at
two loops, where the boson V is radiated o↵ an external top quark. It is close to the
configuration of a 2-loop gluon ladder diagram where the exchange of gluons between
two top quark lines gives rise to a Coulomb singularity. The analytic expression for this
type of diagram is not known, but it is anticipated that it will contain elliptic functions.
This integral depends on 6 Feynman parameters and is the most complicated example we
consider in terms of dimensionality.

The diagram on the lower left of Figure 1 is a two-loop three-point function with
a massive sub-triangle occurring, for instance, in NLO corrections to Higgs production
in gluon fusion. It is the easiest 2-loop diagram we consider and serves as a stepping
stone towards more complicated 2-loop diagrams. Analytic results for this diagram can
be found in Refs. [49–51]. Depending on 5 Feynman parameters this integral is in between
the previous two examples in terms of dimensionality of the integration.

The diagram on the lower right is a topology occurring in Higgs+jet production in
gluon fusion at two loops. Its analytic expression contains elliptic functions and therefore
is cutting edge for integrals that are currently accessible analytically. It has been calculated
(semi-)analytically in Refs. [52,53] and also served as a benchmark for the development of
the program pySecDec [45], where it is contained in the list of examples. This integral is
5-dimensional, so it has the same number of Feynman parameters as the triangle diagram,
but it depends on four kinematic invariants rather than two.
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Contains singularities
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Parametrize with NF + NN

https://arxiv.org/abs/2112.09145
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dσ ∼ pdf × |M(x) |2 × phase space

Phase space: increase unweighting efficiency

ML for forward simulations

ℒ
Theory Shower EventsHard process Hadronization Detectors

Forward

Flat sampling: 
inefficient

I = ⟨ f(x)⟩x∼unif

Importance sampling: 
find  close to g f

I = ⟨ f(x)
g(x) ⟩

x∼g(x)
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dσ ∼ pdf × |M(x) |2 × phase space

• Standard VEGAS approach → fast but no correlations

• Improve with NN → correlations but unstable

[1707.00028, 1810.11509, 2001.05478, 2001.05486, 2001.10028, 2005.12719, 
2009.07819, 2011.13445, 2112.09145, 2212.06172, 2309.12369,…..] 

⊕ Computationally cheap


⊖ High-dim and rich peaking functions 
→ slow convergence


⊖ Peaks not aligned with grid axes 
→ phantom peaks

[G. P. Lepage, 1978]

ML for forward simulations

ℒ
Theory Shower EventsHard process Hadronization Detectors

Forward

Phase space: increase unweighting efficiency



  Bothmann, Janßen, Knobbe, Schmale, Schumann [2001.05478]
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dσ ∼ pdf × |M(x) |2 × phase space

• Standard VEGAS approach → fast but no correlations

• Improve with NN → correlations but unstable

[1707.00028, 1810.11509, 2001.05478, 2001.05486, 2001.10028, 2005.12719, 
2009.07819, 2011.13445, 2112.09145, 2212.06172, 2309.12369,…..] 

• Use normalizing flows → correlations and stable

ML for forward simulations

ℒ
Theory Shower EventsHard process Hadronization Detectors

Forward

Phase space: increase unweighting efficiency



Multi-channel: 
one map for each channel

I = ∑
i ⟨αi(x)

f(x)
gi(x) ⟩

x∼gi(x)

  Kleiss, Pittau [hep-ph/9405257], Maltoni, Stelzer [hep-ph/0208156]  

25

dσ ∼ pdf × |M(x) |2 × phase space

• Standard VEGAS approach → fast but no correlations

• Improve with NN → correlations but unstable

• Multi-channel approach → split the integral

[1707.00028, 1810.11509, 2001.05478, 2001.05486, 2001.10028, 2005.12719, 
2009.07819, 2011.13445, 2112.09145, 2212.06172, 2309.12369,…..] 

• Use normalizing flows → correlations and stable

• Combine all (VEGAS, learned , NF, symmetries,..) 
→ MadNIS framework

αi

ML for forward simulations

ℒ
Theory Shower EventsHard process Hadronization Detectors

Forward

Phase space: increase unweighting efficiency



Neural Importance Sampling
MadNIS

Heimel, RW, Butter, Isaacson, Krause, Maltoni, Mattelaer, Plehn [2212.06172] 
Heimel, Huetsch, Maltoni, Mattelaer, Plehn, RW [2311.XxxxX] 

https://arxiv.org/abs/2212.06172
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I = ∑
i ⟨αi(x)

f(x)
gi(x) ⟩

x∼gi(x)

Use physics knowledge to construct channel and mappings

Normalizing flow to 
refine channel mappings

Fully connected network 
to refine channel weights

Update simultanously with variance as loss function

MadNIS — Basic functionality



28MadNIS — Loss function

σ2
i = ⟨α2

i (x)
f2(x)
g2

i (x) ⟩
x∼gi(x)

− ⟨αi(x)
f(x)
gi(x) ⟩

x∼gi(x)

σ2
tot = N∑

i

σ2
i

Ni
with

Minimize total variance

ℒ = σ2
tot = ∑

i,k

σi σk = [∑
i

σi]
2

MadNIS loss function

Ni = N
σi

∑k σk

Total variance depends on Ni

↓

affects optimal 


↓

use stratified sampling

αi(x)
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Latent space z Conditional Splitting

⟨α1(x)
f(x)
g1(x) ⟩

Analytic Channel 
mapping 1

Analytic channel 
mapping 2

Analytic channel 
mapping k

⟨α2(x′ )
f(x′ )
g2(x′ ) ⟩ Learned channel 

weights ⃗α (x)I = + + + ⟨αk(x′ ′ )
f(x′ ′ )
gk(x′ ′ ) ⟩

Normalizing 
Flow 1

Normalizing 
Flow 2

Normalizing 
Flow k

Combination of 
 channelsk

 Φ ⊆ ℝN
Phase space

 U = [0,1]N
Unit hypercube

MadNIS — Basic functionality



30MadNIS — Overview

Neural 
Channel 
Weights

Buffered 
Training

Channel 
Dropping

VEGAS 
Initialization

Normalizing 
Flow

Surrogate 
Integrand

MadGraph 
matrix 

elements

MadEvent 
channel 

mappings

Basic functionality Improved multi-channeling

Improved training

Partial weight 
buffering

Symmetries 
between 
channels

Stratified 
sampling/ 
trainingMadNIS∫



31MadNIS — Buffered training

Neural 
Channel 
Weights

Buffered 
Training

Channel 
Dropping

VEGAS 
Initialization

Normalizing 
Flow

Surrogate 
Integrand

MadGraph 
matrix 

elements

MadEvent 
channel 

mappings

Basic functionality Improved multi-channeling

Improved training

Partial weight 
buffering

Symmetries 
between 
channels

Stratified 
sampling/ 
trainingMadNIS∫



32MadNIS — Buffered training

Sample 
y

Integrand

f(x)

Density

LossG−1(y ∣φ)

G(x |φ)

g(x ∣φ)

L( f(x), g(x ∣φ))

Online training

Buffered samples

x, q(x ∣ φ̂), f(x)
Weighted Loss

L( f(x), g(x ∣φ) |w(x ∣φ))

Density w(x ∣φ) =
g(x ∣φ)
q(x ∣ φ̂)

Buffered training

g(x ∣φ)

G(x |φ)

g(x ∣φ) φ→φ̂ q(x ∣ φ̂)

PS points
x
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1 2 3 4 5 6
reduction in training statistics R@
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fixed number of weight updates

t f = 1µs
t f = 10µs
t f = 100µs
t f = 1ms

Training algorithm 

generate new samples, train on them,

save samples


↓

train on saved samples  times


↓

repeat

n

Reduction in training statistics by


R@ = n + 1

MadNIS — Buffered training



34MadNIS — VEGAS initialization

Neural 
Channel 
Weights

Buffered 
Training

Channel 
Dropping

VEGAS 
Initialization

Normalizing 
Flow

Surrogate 
Integrand

MadGraph 
matrix 

elements

MadEvent 
channel 

mappings

Basic functionality Improved multi-channeling

Improved training

Partial weight 
buffering

Symmetries 
between 
channels

Stratified 
sampling/ 
trainingMadNIS∫
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y2

Concat

y1

RQ-Spline

z1

Split

z2

RQ-Spline Subnet

Subnet

VEGAS grid

Bin reduction

Initialization

VEGAS Flow

Training Fast Slow

Correlations No Yes

Combine advantages:


Pre-trained VEGAS grid as

starting point for flow training

MadNIS — VEGAS initialization



36MadNIS — Improved multi-channeling

Neural 
Channel 
Weights

Buffered 
Training

Channel 
Dropping

VEGAS 
Initialization

Normalizing 
Flow

Surrogate 
Integrand

MadGraph 
matrix 

elements

MadEvent 
channel 

mappings

Basic functionality Improved multi-channeling

Improved training

Partial weight 
buffering

Symmetries 
between 
channels

Stratified 
sampling/ 
trainingMadNIS∫



37MadNIS — Improved multi-channeling

Reduced complexity

Improved stability 

Use symmetries 

Groups of channels only

differ by permutations of


final state momenta

↓


use common flow

combine in loss function

Stratified training 

Channels have different

contributions to the


total variance

↓


more samples for channels

with higher variance 

during training

Channel dropping 

MadNIS often reduces 
contribution of some


channels to total integral

↓


remove these 

channels from the


training completely



38MadNIS — Results

0.5

1.0

1.5

2.0

2.5

re
la

tiv
e

st
d

de
v

æ
/I

uc ! W+W+ds (@13 TeV)
VE

G
A

S

fix
ed

Æ

tr
ai

ne
d

Æ

VE
G

A
S-

in
it

fix
ed

Æ
VE

G
A

S-
in

it
tr

ai
ne

d
Æ

st
ra

tifi
ed

fix
ed

Æ
st

ra
tifi

ed
tr

ai
ne

d
Æ

C
ha

nn
el

dr
op

pi
ng

bu
ff

er
ed

R
@

=
3

bu
ff

er
ed

R
@

=
5

5

10

15

im
pr

ov
em

en
t

w
rt

.V
EG

A
S

0

5

10

15

20

un
w

ei
gh

tin
g

ef
fic

ie
nc

y
≤
[%

]

0.75

1.00

1.25

1.50

re
ls

td
de

v
æ
/I
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scales well with high multiplicity and 
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Forward

ML for forward simulations
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Parton shower: improve over semi-classical approach
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C/A clustering

Pythia freq.

Junipr gen.

Andreassen, Feige, Frye, Schwartz [1804.09720]

[1701.05927, 1703.06114, 1804.09720, 1807.03685, 1808.07802, 1810.05165, 
1906.10137, 2009.04842, 2012.06582, 2012.09873, 2106.11535, 2109.15197, 
2111.12849, 2211.06406, 2211.10295, 2212.08751, 2301.08128, 2303.05376, 
2304.01266, 2307.06836, 2310.00049,….] 

ℒ
Theory Shower EventsHard process Hadronization Detectors

Forward

ML for forward simulations

• Splittings are iterative  
→ can be learned with RNN (JUNIPR)
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Parton shower: improve over semi-classical approach

[1701.05927, 1703.06114, 1804.09720, 1807.03685, 1808.07802, 1810.05165, 
1906.10137, 2009.04842, 2012.06582, 2012.09873, 2106.11535, 2109.15197, 
2111.12849, 2211.06406, 2211.10295, 2212.08751, 2301.08128, 2303.05376, 
2304.01266, 2307.06836, 2310.00049,….] 

Bieringer, Butter, Heimel,  
Höche, Radev, Köthe, Plehn [2012.09873]
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ℒ
Theory Shower EventsHard process Hadronization Detectors

Forward

ML for forward simulations

• Splittings are iterative  
→ can be learned with RNN (JUNIPR)

• Using ML-based inference to improve  
splitting kernels
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Parton shower: improve over semi-classical approach

• Splittings are iterative  
→ can be learned with RNN (JUNIPR)

• Using ML-based inference to improve  
splitting kernels

[1701.05927, 1703.06114, 1804.09720, 1807.03685, 1808.07802, 1810.05165, 
1906.10137, 2009.04842, 2012.06582, 2012.09873, 2106.11535, 2109.15197, 
2111.12849, 2211.06406, 2211.10295, 2212.08751, 2301.08128, 2303.05376, 
2304.01266, 2307.06836, 2310.00049,….] 

ℒ
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Forward

ML for forward simulations

• End-to-end generation with particle clouds 
→ SOTA based on diffusion models

Buhmann et al. [2310.00049]
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Hadronization: better model non-perturbative effects

[2203.04983, 2203.12660, 2305.17169,…..] 

Fragmentation: remove modelling bias

• Same technique as for PDFs

• Improve existing clustering or Lund string model

• Generative ML for more generic approach
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SWAE (Avg. = 9.148 ± 0.025)

 Ilten, Menzo, Youssef, Zupan [2203.04983][1706.07049, 1807.03310, 2105.08725, 2202.10779…..] 

ML for forward simulations
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Forward
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Detector simulation: speed-up GEANT4

• Up to ~  faster104

• More ideas developed in CaloChallenge 2022

https://calochallenge.github.io/homepage/

[1705.02355, 1711.08813, 1712.10321, 1802.03325, 1807.01954, 
1912.06794, 2102.12491, 2106.05285, 2109.02551, 2110.11377, 
2206.11898, 2211.15380, 2302.11594, 2305.04847, 2305.11934, 
2305.15254, 2307.04780, 2308.03876, 2308.11700, 2309.06515, …] 
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Krause, Shih [2110.11377]

ML for forward simulations
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Forward

https://calochallenge.github.io/homepage/
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ML for forward simulations

End-to-end generation

more in talk by Lukas Heinrich



Butter, Heimel, Hummerich, Krebs, 
 Plehn, Rousselot, Vent [2110.13632]
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[1901.00875, 1901.05282, 1903.02433, 1907.03764, 1912.02748, 
2001.11103, 2011.13445, 2101.08944, 2110.13632, 2211.13630, 
2303.05376, 2305.07696, 2305.10475, 2305.16774, 2307.06836 ..…] 

ML for forward simulations

ℒ
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End-to-end generators learn multiple steps at once

Precision generation
• First attempts based on GANs and VAEs

• Improved speed and efficiency with Flows
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End-to-end generators learn multiple steps at once

[1901.00875, 1901.05282, 1903.02433, 1907.03764, 1912.02748, 
2001.11103, 2011.13445, 2101.08944, 2110.13632, 2211.13630, 
2303.05376, 2305.07696, 2305.10475, 2305.16774, 2307.06836 ..…] 

ML for forward simulations
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Forward

• High precision with Diffusion 
and Transformer models

Precision generation
• First attempts based on GANs and VAEs

• Improved speed and efficiency with Flows
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• Bayesian NN and classifiers for full control

[1901.00875, 1901.05282, 1903.02433, 1907.03764, 1912.02748, 
2001.11103, 2011.13445, 2101.08944, 2110.13632, 2211.13630, 
2303.05376, 2305.07696, 2305.10475, 2305.16774, 2307.06836 ..…] 

ML for forward simulations
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Forward

End-to-end generators learn multiple steps at once

• High precision with Diffusion 
and Transformer models

Precision generation
• First attempts based on GANs and VAEs

• Improved speed and efficiency with Flows
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Inverse

Unfolding



Classifier-based       Density-based
Unfolding

reweighting generative



53Unfolding — Basic concept

Simulation
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Unbinned
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Andreassen, Komiske, Metodiev, Nachman
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54ML for inverse simulations

Unfolding of detector effects

ℒ
Theory Shower EventsHard process Hadronization Detectors

Inverse

[1806.00433, 1912.00477, 2006.06685, 2101.08944, 
2109.13243, 2207.00664, 2212.08674, 2305.10399, 
2307.02405, 2308.00027, 2308.12351, 2310.17037]

• Must be high-dimensional, unbinned,  
and statistically well-defined

• Classifier-based MC reweighting

• Density-based generative unfolding

[1911.09107, 2105.04448, 2105.09923, 2109.13243 
2302.05390]

Arratia et al. [2109.13243]



55ML for inverse simulations

Inverting to parton level

ℒ
Theory Shower EventsHard process Hadronization Detectors

Inverse

• Inversion of QCD radiation and 
heavy particle (t,W,Z,h) decays

• Use same techniques as before 
(cINNs, Classifiers + others)

[1912.00477, 2006.06685, 2101.08944, 2207.00664, 
2210.00019, 2307.02405, 2308.00027, 2310.07752]
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• We find both proof-of-concepts as well as 
established use cases (→ MadNIS)

Take-home message

Summary and Outlook

• ML beneficial in every step in the simulation chain

• Interesting interplay between HEP and ML

ℒ
Theory Shower EventsHard process Hadronization Detectors

    → HEP simulations provide ~infinite data for ML
  → HEP requirements (precision, symmertries,…) 
       different than industry applications

Future tasks

• Make everything run on the GPU and 
differentiable (MadJax - Heinrich et al. [2203.00057])

• Foster deeper collaboration between  
theory, experiment, and ML community

• Full integration of ML-based simulations into 
standard tools → MadGraph,….

https://arxiv.org/abs/2203.00057
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• We find both proof-of-concepts as well as 
established use cases (e.g. importance sampling)

Take-home message

Summary and Outlook

• ML beneficial in every step in the simulation chain

• Interesting interplay between HEP and ML

ℒ
Theory Shower EventsHard process Hadronization Detectors

    → HEP simulations provide ~infinite data for ML
  → HEP requirements (precision, symmertries,…) 
       different than industry applications • More details in our Snowmass report

• Make everything run on the GPU and 
differentiable (MadJax - Heinrich et al. [2203.00057])

• Foster deeper collaboration between  
theory, experiment, and ML community

• Full integration of ML-based simulations into 
standard tools → MadGraph,….

Future tasks

https://arxiv.org/abs/2203.00057


58

• We find both proof-of-concepts as well as 
established use cases (e.g. importance sampling)

Take-home message

Summary and Outlook

• ML beneficial in every step in the simulation chain

• Interesting interplay between HEP and ML

ℒ
Theory Shower EventsHard process Hadronization Detectors

    → HEP simulations provide ~infinite data for ML
  → HEP requirements (precision, symmertries,…) 
       different than industry applications

• Stay tuned for many other ML4HEP applications

• More details in our Snowmass report

• Make everything run on the GPU and 
differentiable (MadJax - Heinrich et al. [2203.00057])

• Foster deeper collaboration between  
theory, experiment, and ML community

• Full integration of ML-based simulations into 
standard tools → MadGraph,….

Future tasks

HEPML

https://arxiv.org/abs/2203.00057

