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Why do we talk about simulations?

A theorist perspective...



Why do we talk about simulations?

“What | cannot create, | do not understand”

Richard P. Feynman

“What | understand, | can create”

LHC Simulations & Generative Modelling




Why do we need them for LHC physics?



LHC analysis (oversimplified)
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“robem: Information bottleneck
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Fundamental Theory

Fast + precise : :
GUIatlon Unfolding

Detector-level
observables

Talk by Jakob Macke

Solution: LHC analysis + ML
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Solution: LHC analysis + ML

Fundamental Theory

Fast + precise Simulation
simulations

Detector-level
observables

= \We want to understand all aspects of data based on first principles!



o

Understanding LHC data based on 13! principles

What do we need to understand the data?

1. Precision simulations (a lot) <«———this talk

Talks by Jakob Macke,

Theo Heimel

2. Optimized analyses for high-dimensional data «—

Forward

Hard process Shower Hadronization Detectors

Inverse

— Machine Learning has significant impact on all aspects



Deep generative models



Deep generative models

Hierarchical Diffusion Probabillistic
\V/\\= Model

Variational

Autoencoder Diffusion Model

: Conditional Flow
Score-matchin .
Ve RY/\= ol Matching

Wasserstein GAN Normalizing Flow Continuous NFs

Generative Maximume-likelihood
Adversarial Network Models

LS-GAN Relg%{lsm Autoregessive Transfomer




Deep generative models

Diffusion Probabillistic
\Y[eYo!=]

Diffusion Model

: Conditional Flow
Score-matchin .
Model J Matching

Normalizing Flow Continuous NFs

Maximume-likelihood
Models

Autoregessive Transfomer




Deep generative models

L ‘: DIﬁUSIOn PrObab|I|St|C

5 . . Model
. @ OState-of-the-art in precision

@ Fast and stable training - Diffusion Model

Slow likelihood estimation N
Conditional Flow

Score-matchin .
e eueeeaeeseateeesseseEeseetsEsseeseatieeseesiaseaEestteeeasateeeaeessteaeesetaesaearearsaennnaent : Model 9 |\/|atch|ng

Application
dependent

@ Fast training and evaluation
@ Tractable and fast likelihoods

Reduced flexibility and expressivity

Maximume-likelihood
Models



ML aided simulation chain

Forward

7

Inverse




ML for forward simulations

Forward

Calculate (differential) cross sections

| y. 3
o~ i x (0




ML for forward simulations

Forward

>

do ~ | pdf| X Mx) * X phase space

ML reduces uncertainties

NNPDF [2109.02653]

g at 100 GeV

. uses NN for a long time (ho parametric function) | 7 NNPDF4.0 (NNLO) (68 c.l.+10)
' NNPDF3.1 (NNLO) (68 c.l.+10)

* Modern ML and hyper-opt
— reduced uncertainties:
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[hep-ph/0204232, 1002.4407, 1410.8849, 1907.05075, 2010.03996,
2012.08221, 2104.04535, 2109.02653, 2109.02671, 2201.07240, 2211.01094,
2212.12569, 2302.08527, 2303.06159, 2307.05967,.....]




ML for forward simulations

Forward

>

do ~ pdf X X  phase space

Amplitudes: avoid expensive matrix element Badger, Butter, Luchman, Pitz, Plehn [2206.14831]

* As “simple” regression task 4= VY00 largest 100% A
largest 1% Ann

* With uncertainties/boosting using Bayesian NN largest 0.1% A
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[1912.11055, 2002.07516, 2006.16273, 2008.10949, 2104.14182, 2105.04898, At + overflow bin
2106.09474, 2107.06625, 2109.11964, 2112.09145, 2201.04523, 2206.08901,
2206.04115, 2206.14831, 2301.13562, 2302.04005, 2306.07726,.....]



ML for forward simulations

Forward

>

do ~ pdf X X  phase space

Amplitudes: avoid expensive matrix element Maitre, Truong [2302.04005]

DO
-)
Oi

* As “simple” regression task e o adag = Antenna
1 Naive

—_
&)
X

* With uncertainties/boosting using Bayesian NN

* Using factorisation ansatz to reach %o level accuracy
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[1912.11055, 2002.07516, 2006.16273, 2008.10949, 2104.14182, 2105.04898,
2106.09474, 210/7.06625, 2109.11964, 2112.09145, 2201.04523, 2206.08901,
2206.04115, 2206.14831, 2301.13562, 2302.04005, 2306.07726,.....]



ML for forward simulations

Forward

>

do ~ pdf X X  phase space

Amplitudes: avoid expensive matrix element Dersey, Schwartz, Zhang [2206.04115]

* As “simple” regression task

Simplified polylogarithmic expression

* With uncertainties/boosting using Bayesian NN 2a)* L)
. . . Transformer
* Using factorisation ansatz to reach %o level accuracy I
Simplified Symbol
 RL and/or Transformer for simplifications ! 1-nes

of Polylogarithms

* NN-assisted contour deformation (Loop integrals)

[1912.11055, 2002.07516, 2006.16273, 2008.10949, 2104.14182, 2105.04898,
2106.09474, 210/7.06625, 2109.11964, 2112.09145, 2201.04523, 2206.08901,
2206.04115, 2206.14831, 2301.13562, 2302.04005, 2306.07726,.....]



NNContour

ML for loop integrals

RW, Magerya, Villa, Jones, Kerner, Butter, Heinrich, Plehn [2112.09145]



https://arxiv.org/abs/22112.09145

NNContour — ML for loop integrals 2

RW et al. [2112.09145]
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https://arxiv.org/abs/2112.09145

ML for forward simulations

o pdt x M x

Phase space: increase unweighting efficiency

A

>

Flat sampling: Importance sampling:
inefficient find g close to f

[ = <f(x)>x~unif = <f(_x)>
8 / oo




ML for forward simulations

Forward

>

do ~ pdf x Mx) 2 X

Phase space: increase unweighting efficiency (e[ Fepegi, 107t

@ Computationally cheap
e Standard VEGAS approach — fast but

High-dim and rich peaking functions
* |Improve with NN — correlations but -

Peaks not aligned with grid axes

[1707.00028, 1810.11509, 2001.05478, 2001.05486, 2001.10028, 2005.12719,
2009.07819, 2011.13445, 2112.09145, 2212.06172, 2309.12369,.....]




ML for forward simulations

o pdt x M x

Phase Space: |ncrease unwelghtlng eﬁ-'ICIenCy Bothmann, JanBen, Knobbe, Schmale, Schumann [2001.05478]

>

e Standard VEGAS approach — fast but

VEGAS

—— Uniform
| — NN

* |mprove with NN — correlations but

 Use normalizing flows — correlations and stable
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[1707.00028, 1810.11509, 2001.05478, 2001.05486, 2001.10028, 2005.12719,
2009.07819, 2011.13445, 2112.09145, 2212.06172, 2309.12369,.....]



ML for forward simulations

Forward

>

do ~ pdf x Mx) 2 X

Phase Space: |ncrease unWelghtlng eﬁICIenCy Kleiss, Pittau [hep-ph/9405257], Maltoni, Stelzer [hep-ph/0208156]

e Standard VEGAS approach — fast but
* |Improve with NN — correlations but
* Use normalizing flows — correlations and stable

* Multi-channel approach — split the integral

_ _ Multi-channel:
« Combine all (VEGAS, learned a;, NF, symmetries,..) one map for each channel

— MadNIS framework

[1707.00028, 1810.11509, 2001.05478, 2001.05486, 2001.10028, 2005.12719,
2009.07819, 2011.13445, 2112.09145, 2212.06172, 2309.12369,.....]




MadNIS

Neural Importance Sampling

Heimel, Huetsch, Maltoni, Mattelaer, Plehn, RW
Heimel, RW, Butter, Isaacson, Krause, Maltoni, Mattelaer, Plehn

23171 XxxxX

2212.06172



https://arxiv.org/abs/2212.06172

MadNIS — Basic functionality

D

Use physics knowledge to construct channel and mappings

v v

Normalizing flow to Fully connected network
refine channel mappings to refine channel weights

Update simultanously with variance as loss function




MadNIS — Loss function

Minimize total variance Total variance depends on /V,
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Learned channel
weights a’(x)

MadNIS — Basic functionality

Phase space
d C RY

Normalizing Normalizing Normalizing Combination of
Flow 1 Flow 2 Flow k k channels

Unit hypercube
= [0,1]"



MadNIS — Overview )

Basic functionality Improved multi-channeling
Neural Normalizing Stratilfied/ Sﬁmmetries
Channel — sampling etween
Weights Flow training channels
Mfggiph Nc‘:ﬂgE:z?t Channel Partial weight
elements mappings ‘ Dropping butfering

Improved training

VEGAS Buffered Surrogate

Initialization Training Integrand
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MadNIS — Buffered training

'

Improved training

Buffered
Training



MadNIS — Buffered training

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

Online training Integrand

r fo)
Sample G~ (vl PS points Loss
y X L(f(x), g(x[¢))

Buffered training :
Buffered samples Weighted Loss

x, q(x| ), f(x) L), gx1 @) wixle) | 3

G(x @)

Density (x| @) = gxlg)

g(x| @) qx|@)

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll



MadNIS —

Training algorithm

generate new samples, train on them,
save samples

]
train on saved samples n times

!
repeat

\

Reduction in training statistics by

o
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MadNIS — VEGAS initialization

'

Improved training

VEGAS
Initialization



MadNIS — VEGAS initialization @5

------------------------------------------

I
(\9

---------------------------------------

----------------------------------------

Combine advantages:

Pre-trained VEGAS grid as
starting point for flow training

------------------------------------------
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Improved multi-channeling

Strahfled Sﬁmmetries
— sqmpllng/ etween
training channels

Channel
Dropplng

MadNIS — Improved multi-channeling



MadNIS — Improved multi-channeling | ©)

Use symmetries Stratified training Channel dropping

Groups of channels only Channels have different MadNIS often reduces
differ by permutations of contributions to the contribution of some
final state momenta total variance channels to total integral

! ! !

use common flow more samples for channels remove these
Combine in IOSS funCtiOn Wlth hlgher Variance Channels frOm the
during training training completely

Reduced complexity
Improved stability



MadNIS — Results

uc — WHW+ds (@13 TeV) uc — WrWrds (@13 TeV) oo — WHdi... (@13 TeV)
2.9 = 1.50 60
X ~ B
= N o XX
T 2.0 g > 120 10 ©
% ks 5 < e
o O o =
v = = = .
= 8 = 0.75
qv) . -
T;_)‘ ‘?T‘; S e MG5 é % 7 5
- o dropped 3 =~ 9.0
2 0 15 _ a,
58 1, 0.00 025 050 075  1.00 E =25
§ > relative contribution A,
o w %
E2 5 o [ 4 -
S E_ HcBeEITEEES many channels gg — Wrdugg
2 A ATEYEL g%% g ! 384 channels, 108 symm.
g OX O Eu:: *E g S = A Sw Su . _ _
58 G E S droppig channels n="175% =59 nypcas
!
1. excellent results with all improvements scales well with high multiplicity and

2. same performance with buffered training many channels



ML for forward simulations @




ML for forward simulations 40,

Forward

>

Hard process Shower

.

Parton shower: improve over semi-classical approach

Andreassen, Feige, Frye, Schwartz [1804.09720]

e Splittings are iterative
— can be learned with RNN (JUNIPR) ete = qq
C/A clustering
Pythia freq.

JUNIPR gen.
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[1701.05927, 1703.06114, 1804.09/20, 1807.03685, 1808.07802, 1810.05165,
1906.10137, 2009.04842, 2012.06582, 2012.09873, 2106.11535, 2109.15197,
2111.12849, 2211.06406, 2211.10295, 2212.08751, 2301.08128, 2303.05376,
2304.01266, 2307.06836, 2310.00049,....]




ML for forward simulations

Forward

>

Shower

Parton shower: improve over semi-classical approach Bieringer, Butter, Heimel,

Hbche, Radev, Kbéthe, Plehn [2012.09873]

e Splittings are iterative

—— Posterior

— Ccan be Iearned Wlth RNN (JUNIPR) : \ —— Gaussian fit

Relative error of 2%

* Using ML-based inference to improve
splitting kernels

[1701.05927, 1703.06114, 1804.09/20, 1807.03685, 1808.07802, 1810.05165,
1906.10137, 2009.04842, 2012.06582, 2012.09873, 2106.11535, 2109.15197,
2111.12849, 2211.06406, 2211.10295, 2212.08751, 2301.08128, 2303.05376,

2304.01266, 2307.06836, 2310.00049,....]




ML for forward simulations

Forward

>

Shower

=

Parton shower: improve over semi-classical approach

° Sp||tt|ngs are iterative Buhmann et al. [2310.00049]

— can be learned with RNN (JUNIPR) N

—— EPIC-FM
—— EPiC-JeDi
—— PC-JeDi

MC
—— EPiC-FM
—— EPiC-JeDi
—— PC-JeDi

* Using ML-based inference to improve
splitting kernels

* End-to-end generation with particle clouds
— SOTA based on diffusion models
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[1701.05927, 1703.06114, 1804.09/20, 1807.03685, 1808.07802, 1810.05165, s
1906.10137, 2009.04842, 2012.06582, 2012.09873, 2106.11535, 2109.15197, " 04 06 08 10 12
2111.12849, 2211.06406, 2211.10295, 2212.08751, 2301.08128, 2303.05376, mj®

2304.01266, 2307.06836, 2310.00049,....]




ML for forward simulations @

Forward




ML for forward simulations

Forward
Shower Hadronization
% «%

Fragmentation: remove modelling bias

>

 Same technique as for PDFs

[1706.07049, 1807.03310, 2105.08725, 2202.10779.....] llten, Menzo, Youssef, Zupan [2203.04983]

Pythia (Avg. = 9.064 4+ 0.028)
SWAE (Avg. = 9.148 4+ 0.025)

Hadronization: better model non-perturbative effects

* |mprove existing clustering or Lund string model

 Generative ML for more generic approach

[2203.04983, 2203.12660, 2305.17169,....]

10 15

Length of fragmentation chain



ML for forward simulations

Forward

Hadronization Detectors Events




Forward

Hadronization

Detector simulation: speed-up GEANT4

. Upto ~10" faster

* More ideas developed in CaloChallenge 2022

https://calochallenge.github.io/homepage/

[1705.02355, 1711.08813, 1712.10321, 1802.03325, 1807.01954,
1912.06794, 2102.12491, 2106.05285, 2109.02551, 2110.11377,
2206.11898, 2211.15380, 2302.11594, 2305.0484 7, 2305.11934,
2305.15254, 2307.04780, 2308.03876, 2308.11700, 2309.06515, ...

— GEANT 4
CaloFlow v1

—— (CaloFlow v2
— (CaloGAN

10° 107
Generated Showers

ML for forward simulations

Krause, Shih [2110.11377]



https://calochallenge.github.io/homepage/

ML for forward simulations

Forward

Hard process Shower Hadronization Detectors Events

End-to-end generation

—> more in talk by Lukas Heinrich



ML for forward simulations

Forward

Shower Hadronization Detectors Events

End-to-end generators learn multiple steps at once Butter. Heimel. Hummerich. Krebs,

Plehn, Rousselot, Vent [2110.13632]
Precision generation 7 + 1 jet exclusive
* First attempts based on GANs and VAEs

—_
3
)

normalized

* Improved speed and efficiency with Flows

[1901.00875, 1901.05282, 1903.02433, 1907.03764, 1912.02/748,
2001.11103, 2011.13445, 2101.08944, 2110.13632, 2211.13630,
2303.05376, 2305.07696, 2305.10475, 2305.16774, 2307.06836 .....]




ML for forward simulations

Forward

Shower Hadronization Detectors Events

End-to-end generators learn multiple steps at once o it S

Z+1 jet exclusive

Precision generation

* First attempts based on GANs and VAEs So. — True
— CFM

* Improved speed and efficiency with Flows

* High precision with Diffusion
and Transformer models

[1901.00875, 1901.05282, 1903.02433, 1907.03764, 1912.02/748,
2001.11103, 2011.13445, 2101.08944, 2110.13632, 2211.13630,
2303.05376, 2305.07696, 2305.10475, 2305.16774, 2307.06836 .....]




ML for forward simulations 50,

Forward

>

Shower Hadronization Detectors Events

M

End-to-end generators learn multiple steps at once

Nachman, RW [2305.07696]

. - — W+ +3j (@14 TeV)
Precision generation N J Truth

—— Baseflow

* First attempts based on GANs and VAEs —— Laser

e
o

&
-

* Improved speed and efficiency with Flows

Normalized
Do

* High precision with Diffusion
and Transformer models

« Bayesian NN and classifiers for full control

[1901.00875, 1901.05282, 1903.02433, 1907.03764, 1912.02/748,
2001.11103, 2011.13445, 2101.08944, 2110.13632, 2211.13630,
2303.05376, 2305.07696, 2305.10475, 2305.16774, 2307.06836 .....]




ML for inverse simulations

Unfolding

Hard process Shower Hadronization Detectors Events

Inverse



Unfolding

Classifier-based +— Density-based
reweighting generative
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Unfolding — Basic concept

Detector-level Particle-level

Requirements: & 'High dimensional
&wyUnbinned
W Statistically well defined

Nature

Omnifold [1911.09107]
Andreassen, Komiske, Metodiev, Nachman

CcINN [2006.06685]

Bellagente, Butter, Kasieczka, Plehn,

Simulation Rousselot, RW, Ardizzone, Kéthe

\ R
AR
Geant4

Delphes

Theory

ICINN [2212.08674]
Backes, Butter, Dunford, Malaescu




ML for inverse simulations

Hadronization Detectors Events

<€
Inverse

Arratia et al. [2109.13243]

Unfolding of detector effects
[—1 Truth
OmniFold

—$— CcINN

Truth: Pythia 8.243

 Must be high-dimensional, unbinned,
and statistically well-defined

Truth (alt.): Herwig 8.1.5
Detector: Delphes 3.4.2 (CMS)

* Classifier-based MC reweighting

[1911.09107, 2105.04448, 2105.09923, 2109.13243
2302.05390]

Z+jet: p£>200 GeV, R=0.4

Number of Events / 104

* Density-based generative unfolding

[1806.00433, 1912.00477, 2006.06685, 2101.08944,
2109.13243, 220/.00664, 2212.08674, 2305.10399,
2307.02405, 2308.00027, 2308.12351, 2310.17037]

=
S 1
= 1
Q1
S0
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5
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0.05 0.10 0.20




ML for inverse simulations

Shower Hadronization Detectors Events
<€
Inverse
Bellagente, Butter, Kasieczka, Plehn,
Rousselot, RW, Ardizzone, Kbthe [2109.13243]
. . ! 2 jet incl.
Inversion of and S e
_ . Parton Truth
heavy particle (t,W,Z,h) decays 4 —— Parton cINN

Detector Truth

Use same techniques as before
| + others)

50 100 150 200 250 300 350 400
pT,W [GGV]

[1912.00477, 2006.06685, 2101.08944, 2207.00664,
2210.00019, 2307.02405, 2308.00027, 2310.07/752]




Summary and Outlook

Take-home message Future tasks

* ML beneficial in every step in the simulation chain * Full integration of ML-based simulations into
standard tools =+ MadGraph,....
 We find both proof-of-concepts as well as

established use cases (— MadNIS) * Make everything run on the GPU and

differentiable (vadJax - Heinrich et al. [2203.00057))

* Interesting interplay between HEP and VIL
J Play  Foster deeper collaboration between

— HEP simulations provide ~infinite data for ML theory, experiment, and ML community

— HEP requirements (precision, symmertries,...)
different than industry applications



https://arxiv.org/abs/2203.00057

Summary and Outlook

m- SciPost Phys. 14, 079 (2023)

Machine learning and LHC event generation

Anja Butter!2, Tilman Plehn!, Steffen Schumann?®, Simon Badger*, Sascha Caron®>®
Kyle Cranmer”-®, Francesco Armando Di Bello®, Etienne Dreyer!?, Stefano Forte!!,
Sanmay Ganguly'?, Dorival Goncalves'?, Eilam Gross'®, Theo Heimel’,
Gudrun Heinrich!4, Lukas Heinrich!®, Alexander Held!®, Stefan Hoche!”,
Jessica N. Howard '8, Philip Ilten'®, Joshua Isaacson!’, Timo JanRen?, Stephen Jones??,
Marumi Kado®?!, Michael Kagan??, Gregor Kasieczka??, Felix Kling?4, Sabine Kraml?®,

Claudius Krause?®, Frank Krauss??, Kevin Kroninger?’, Rahool Kumar Barman!3,
Michel Luchmann!, Vitaly Magerya'4, Daniel Maitre??, Bogdan Malaescu?,
Fabio Maltoni?®2?, Till Martini®®, Olivier Mattelaer?®, Benjamin Nachman3!:32,
Sebastian Pitz!, Juan Roj06’33 , Matthew Schwartz**, David Shih?*°, Frank Sie:gert?‘5 ,
Roy Stegeman!!, Bob Stienen®, Jesse Thaler*®, Rob Verheyen®’,

Daniel Whiteson'®, Ramon Winterhalder?®, and Jure Zupan'®

Abstract

First-principle simulations are at the heart of the high-energy physics research pro-
gram. They link the vast data output of multi-purpose detectors with fundamental the-
ory predictions and interpretation. This review illustrates a wide range of applications
of modern machine learning to event generation and simulation-based inference, includ-
ing conceptional developments driven by the specific requirements of particle physics.
New ideas and tools developed at the interface of particle physics and machine learning
will improve the speed and precision of forward simulations, handle the complexity of
collision data, and enhance inference as an inverse simulation problem.

Future tasks

* Full integration of ML-based simulations into
standard tools =+ MadGraph,....

* Make everything run on the GPU and
differentiable (vadJax - Heinrich et al. [2203.00057))

 Foster deeper collaboration between
theory, experiment, and ML community

 More detalls in our Snowmass report



https://arxiv.org/abs/2203.00057

Summary and Outlook

N  HEP ML Living Review @ Q Search

Home Recent About Contribute Resources Cite Us

A Living Review of Machine Learning for Particle Physics

Modern machine learning techniques, including deep learning, is rapidly being applied, adapted, and developed for high energy
physics. The goal of this document is to provide a nearly comprehensive list of citations for those developing and applying these
approaches to experimental, phenomenological, or theoretical analyses. As a living document, it will be updated as often as
possible to incorporate the latest developments. A list of proper (unchanging) reviews can be found within. Papers are grouped

into a small set of topics to be as useful as possible. Suggestions are most welcome.

download review | () GitHub

Expand all sections Collapse all sections

§ Modern reviews

§ Specialized reviews

f Classical papers

f Datasets

GitHub
Y246 %78

Table of contents
Reviews
Modern reviews
Specialized reviews
Classical papers
Datasets
Classification
Parameterized classifiers
Representations
Targets
Learning strategies
Fast inference [ deployment
Regression
Pileup
Calibration
Recasting
Matrix elements
Parameter estimation

PartaseDistribution Functions

Lattice Gauge Theory
Function Approximation
Symbolic Regression

Eauivariant networks.

Future tasks
* Full integration of ML-based simulations into
standard tools =+ MadGraph,....

* Make everything run on the GPU and
differentiable (vadJax - Heinrich et al. [2203.00057))

 Foster deeper collaboration between
theory, experiment, and ML community

 More details in our Snowmass report
* Stay tuned for many other MLAHEP applications
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