Modern Machine Learning for the LHC Simulation Chain

 $\begin{aligned} \mathscr{L} &= -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} \\ &+ \mathrm{i} \bar{\psi} \gamma^{\mu} D_{\mu} \psi \\ &+ \bar{\psi}_{L}^{i} y_{ij} \Phi \psi_{R}^{j} + \mathrm{h.c.} \\ &+ D_{\mu} \Phi^{2} + V(\Phi) + \mathrm{BSM} \end{aligned}$

UCLouvain

Hammers & Nails – Suisse Edition 2023 Ramon Winterhalder – UCLouvain

Why do we talk about simulations?

A theorist perspective...

Why do we talk about simulations?

"What I understand, I can create"

LHC Simulations & Generative Modelling

"What I cannot create, I do not understand"

Richard P. Feynman

Why do we need them for LHC physics?

LHC analysis (oversimplified)

Problem: Information bottleneck

Solution: LHC analysis + ML

Solution: LHC analysis + ML

We want to understand all aspects of data based on first principles!

Understanding LHC data based on 1^{st} principles

→ Machine Learning has significant impact on all aspects

Wasserstein GAN

Generative Adversarial Network

Relativistic GAN

.

Diffusion Probabilistic Model

Diffusion Model

Score-matching Model

Conditional Flow Matching

Normalizing Flow

Maximum-likelihood Models

ML aided simulation chain

PDFs: ML reduces uncertainties

- NNPDF uses NN for a long time (no parametric function)
- Modern ML and hyper-opt \rightarrow reduced uncertainties: $3-5\% \rightarrow 1\%$
- **GAN**-enhanced PDF compression •

[hep-ph/0204232, 1002.4407, 1410.8849, 1907.05075, 2010.03996, 2012.08221, 2104.04535, 2109.02653, 2109.02671, 2201.07240, 2211.01094, 2212.12569, 2302.08527, 2303.06159, 2307.05967,....]

NNPDF [2109.02653]

Amplitudes: avoid expensive matrix element

- As "simple" regression task
- With uncertainties/boosting using **Bayesian NN** ullet

[1912.11055, 2002.07516, 2006.16273, 2008.10949, 2104.14182, 2105.04898, 2106.09474, 2107.06625, 2109.11964, 2112.09145, 2201.04523, 2206.08901, 2206.04115, 2206.14831, 2301.13562, 2302.04005, 2306.07726,....]

12

10

8

X

largest 100% A_{NN}

largest 1% A_{NN}

largest 0.1% A_{NN}

0.4

 $gg \rightarrow \gamma \gamma gg$

Amplitudes: avoid expensive matrix element

- As "simple" regression task
- With uncertainties/boosting using **Bayesian NN** \bullet
- Using factorisation ansatz to reach **%** level accuracy \bullet

[1912.11055, 2002.07516, 2006.16273, 2008.10949, 2104.14182, 2105.04898, 2106.09474, 2107.06625, 2109.11964, 2112.09145, 2201.04523, 2206.08901, 2206.04115, 2206.14831, 2301.13562, 2302.04005, 2306.07726,....]

Amplitudes: avoid expensive matrix element

- As "simple" regression task
- With uncertainties/boosting using **Bayesian NN**
- Using factorisation ansatz to reach **%** level accuracy
- **RL and/or Transformer** for simplifications of Polylogarithms
- NN-assisted contour deformation (Loop integrals)

[1912.11055, 2002.07516, 2006.16273, 2008.10949, 2104.14182, 2105.04898, 2106.09474, 2107.06625, 2109.11964, 2112.09145, 2201.04523, 2206.08901, 2206.04115, 2206.14831, 2301.13562, 2302.04005, 2306.07726,....]

phase space

Dersey, Schwartz, Zhang [2206.04115]

NNContour ML for loop integrals

RW, Magerya, Villa, Jones, Kerner, Butter, Heinrich, Plehn [2112.09145]

NNContour – ML for loop integrals

Phase space: increase unweighting efficiency

- Standard VEGAS approach → fast but no correlations
- Improve with NN → correlations but unstable

[1707.00028, 1810.11509, 2001.05478, 2001.05486, 2001.10028, 2005.12719, 2009.07819, 2011.13445, 2112.09145, 2212.06172, 2309.12369,....]

$d\sigma \sim pdf$ X

Phase space: increase unweighting efficiency

- Standard VEGAS approach → fast but no correlations
- Improve with NN → correlations but unstable \bullet
- Use normalizing flows → correlations and stable

[1707.00028, 1810.11509, 2001.05478, 2001.05486, 2001.10028, 2005.12719, 2009.07819, 2011.13445, 2112.09145, 2212.06172, 2309.12369,....]

$$M(x)^{-2}$$

phase space

 10^{-6}

 10^{-2}

 10^{-1}

Bothmann, Janßen, Knobbe, Schmale, Schumann [2001.05478]

 10^{0}

W

 10^{1}

 10^{2}

$d\sigma \sim pdf \times M(x)^2$

Phase space: increase unweighting efficiency

- Standard VEGAS approach → fast but no correlations
- Improve with NN → correlations but unstable
- Use normalizing flows → correlations and stable
- Multi-channel approach \rightarrow split the integral
- Combine all (VEGAS, learned α_i , NF, symmetries,..) → MadNIS framework

[1707.00028, 1810.11509, 2001.05478, 2001.05486, 2001.10028, 2005.12719, 2009.07819, 2011.13445, 2112.09145, 2212.06172, 2309.12369,....]

Neural Importance Sampling

MadNIS

Heimel, Huetsch, Maltoni, Mattelaer, Plehn, RW [2311.XxxxX] Heimel, RW, Butter, Isaacson, Krause, Maltoni, Mattelaer, Plehn [2212.06172]

MadNIS – Basic functionality

Normalizing flow to refine channel mappings

Update simultanously with variance as loss function

$$\left. \alpha_i(x) \frac{f(x)}{g_i(x)} \right\rangle_{x \sim g_i(x)}$$

Use physics knowledge to construct channel and mappings

Fully connected network to refine channel weights

$$\mathscr{L} = \sigma_{\text{tot}}^2 = 2$$

MadNIS – Loss function

MadNIS – Basic functionality $I = \left| \left\langle \alpha_1(x) \frac{f(x)}{g_1(x)} \right\rangle \right| + \left| \left\langle \alpha_2(x') \frac{f(x')}{g_2(x')} \right\rangle \right| + \cdots + \left| \left\langle \alpha_k(x'') \frac{f(x'')}{g_k(x'')} \frac{f(x'')}{g_k(x'')} \right\rangle \right|$ Learned channel weights $\overrightarrow{\alpha}(x)$ Analytic channel Analytic Channel Analytic channel mapping 1 mapping 2 mapping k**Combination of** Normalizing Normalizing Normalizing Flow 2 Flow 1 k channels Flow kConditional Splitting Latent space z

MadNIS – Overview

Improved training

Buffered Training

Surrogate Integrand

MadNIS – Buffered training

Basic functionality

Improved training

Buffered Training

Surrogate Integrand

MadNIS — Buffered training

MadNIS — Buffered training

MadNIS – VEGAS initialization

Improved training

Buffered Training

Surrogate Integrand

MadNIS – VEGAS initialization

Combine advantages:

Pre-trained VEGAS grid as starting point for flow training

MadNIS – Improved multi-channeling

Improved training

Buffered Training Surrogate Integrand

MadNIS — Improved multi-channeling

Use symmetries

Groups of channels only differ by permutations of final state momenta ↓ use common flow combine in loss function

Stratified training

Channels have different contributions to the total variance

more samples for channels with higher variance during training

Reduced complexity Improved stability

Channel dropping

MadNIS often reduces contribution of some channels to total integral

remove these channels from the training completely

MadNIS – Results

- 1. excellent results with all improvements
- 2. same performance with buffered training

 $gg \rightarrow W^+ d\bar{u}gg$ 384 channels, 108 symm. $\eta = 7.5 \% = 5.9 \eta_{\text{VEGAS}}$ scales well with high multiplicity and many channels

W+3j

W+4j

Parton shower: improve over semi-classical approach

- Splittings are iterative
 - \rightarrow can be learned with RNN (JUNIPR)

[1701.05927, 1703.06114, 1804.09720, 1807.03685, 1808.07802, 1810.05165, 1906.10137, 2009.04842, 2012.06582, 2012.09873, 2106.11535, 2109.15197, 2111.12849, 2211.06406, 2211.10295, 2212.08751, 2301.08128, 2303.05376, 2304.01266, 2307.06836, 2310.00049,....]

Andreassen, Feige, Frye, Schwartz [1804.09720]

Parton shower: improve over semi-classical approach

- Splittings are iterative
 → can be learned with RNN (JUNIPR)
- Using ML-based inference to improve splitting kernels

[1701.05927, 1703.06114, 1804.09720, 1807.03685, 1808.07802, 1810.05165, 1906.10137, 2009.04842, 2012.06582, 2012.09873, 2106.11535, 2109.15197, 2111.12849, 2211.06406, 2211.10295, 2212.08751, 2301.08128, 2303.05376, 2304.01266, 2307.06836, 2310.00049,....]

Bieringer, Butter, Heimel, Höche, Radev, Köthe, Plehn [2012.09873]

Parton shower: improve over semi-classical approach

- Splittings are iterative
 → can be learned with RNN (JUNIPR)
- Using ML-based inference to improve splitting kernels
- End-to-end generation with particle clouds
 → SOTA based on diffusion models

[1701.05927, 1703.06114, 1804.09720, 1807.03685, 1808.07802, 1810.05165, 1906.10137, 2009.04842, 2012.06582, 2012.09873, 2106.11535, 2109.15197, 2111.12849, 2211.06406, 2211.10295, 2212.08751, 2301.08128, 2303.05376, 2304.01266, 2307.06836, 2310.00049,...]

Buhmann et al. [2310.00049]

Fragmentation: remove modelling bias

Same technique as for PDFs ullet

[1706.07049, 1807.03310, 2105.08725, 2202.10779.....]

Hadronization: better model non-perturbative effects

- Improve existing clustering or Lund string model ullet
- Generative ML for more generic approach

[2203.04983, 2203.12660, 2305.17169,....]

Ilten, Menzo, Youssef, Zupan [2203.04983]

Detector simulation: speed-up GEANT4

- Up to $\sim 10^4$ faster
- More ideas developed in CaloChallenge 2022

https://calochallenge.github.io/homepage/

[1705.02355, 1711.08813, 1712.10321, 1802.03325, 1807.01954, 1912.06794, 2102.12491, 2106.05285, 2109.02551, 2110.11377, 2206.11898, 2211.15380, 2302.11594, 2305.04847, 2305.11934, 2305.15254, 2307.04780, 2308.03876, 2308.11700, 2309.06515, ...]

End-to-end generators learn multiple steps at once

Precision generation

- First attempts based on GANs and VAEs
- Improved speed and efficiency with Flows

[1901.00875, 1901.05282, 1903.02433, 1907.03764, 1912.02748, 2001.11103, 2011.13445, 2101.08944, 2110.13632, 2211.13630, 2303.05376, 2305.07696, 2305.10475, 2305.16774, 2307.06836]

Butter, Heimel, Hummerich, Krebs, Plehn, Rousselot, Vent [2110.13632]

End-to-end generators learn multiple steps at once

Precision generation

- First attempts based on **GANs and VAEs** ullet
- Improved speed and efficiency with **Flows**
- High precision with **Diffusion** ulletand **Transformer** models

[1901.00875, 1901.05282, 1903.02433, 1907.03764, 1912.02748, 2001.11103, 2011.13445, 2101.08944, 2110.13632, 2211.13630, 2303.05376, 2305.07696, 2305.10475, 2305.16774, 2307.06836]

End-to-end generators learn multiple steps at once

Precision generation

- First attempts based on **GANs and VAEs** ullet
- Improved speed and efficiency with **Flows**
- High precision with **Diffusion** ulletand **Transformer** models
- Bayesian NN and classifiers for full control ightarrow

[1901.00875, 1901.05282, 1903.02433, 1907.03764, 1912.02748, 2001.11103, 2011.13445, 2101.08944, 2110.13632, 2211.13630, 2303.05376, 2305.07696, 2305.10475, 2305.16774, 2307.06836]

ML for inverse simulations

Unfolding

Unfolding

Classifier-based ↔ Density-based reweighting generative

Unfolding – Basic concept

Requirements: WHigh dimensional Unbinned Statistically well defined

Omnifold [1911.09107]

Andreassen, Komiske, Metodiev, Nachman

CINN [2006.06685]

Bellagente, Butter, Kasieczka, Plehn, Rousselot, RW, Ardizzone, Köthe

CINN [2212.08674]

Backes, Butter, Dunford, Malaescu

ML for inverse simulations

Unfolding of detector effects

• Must be high-dimensional, unbinned, and statistically well-defined

Classifier-based MC reweighting

[1911.09107, 2105.04448, 2105.09923, 2109.13243 2302.05390]

• **Density-based** generative unfolding

[1806.00433, 1912.00477, 2006.06685, 2101.08944, 2109.13243, 2207.00664, 2212.08674, 2305.10399, 2307.02405, 2308.00027, 2308.12351, 2310.17037]

ML for inverse simulations

Inverting to parton level

- Inversion of QCD radiation and heavy particle (t,W,Z,h) decays
- Use same techniques as before (clNNs, Classifiers + others)

[1912.00477, 2006.06685, 2101.08944, 2207.00664, 2210.00019, 2307.02405, 2308.00027, 2310.07752]

Bellagente, Butter, Kasieczka, Plehn, Rousselot, RW, Ardizzone, Köthe [2109.13243]

Take-home message

- ML beneficial in every step in the simulation chain Full integration of ML-based simulations into \bullet standard tools \rightarrow MadGraph,....
- We find both proof-of-concepts as well as ightarrowestablished use cases (\rightarrow MadNIS)
- Interesting interplay between HEP and ML ightarrow
 - \rightarrow HEP simulations provide ~infinite data for ML
 - \rightarrow HEP requirements (precision, symmetries,...) **different** than industry applications

Summary and Outlook

Future tasks

- Make everything run on the GPU and ulletdifferentiable (MadJax - Heinrich et al. [2203.00057])
- Foster deeper collaboration between ullettheory, experiment, and ML community

Sci Post

SciPost Phys. 14, 079 (2023)

Machine learning and LHC event generation

Anja Butter^{1,2}, Tilman Plehn¹, Steffen Schumann³, Simon Badger⁴, Sascha Caron^{5,6} Kyle Cranmer^{7,8}, Francesco Armando Di Bello⁹, Etienne Dreyer¹⁰, Stefano Forte¹¹, Sanmay Ganguly¹², Dorival Gonçalves¹³, Eilam Gross¹⁰, Theo Heimel¹, Gudrun Heinrich¹⁴, Lukas Heinrich¹⁵, Alexander Held¹⁶, Stefan Höche¹⁷, Jessica N. Howard¹⁸, Philip Ilten¹⁹, Joshua Isaacson¹⁷, Timo Janßen³, Stephen Jones²⁰, Marumi Kado^{9,21}, Michael Kagan²², Gregor Kasieczka²³, Felix Kling²⁴, Sabine Kraml²⁵, Claudius Krause²⁶, Frank Krauss²⁰, Kevin Kröninger²⁷, Rahool Kumar Barman¹³, Michel Luchmann¹, Vitaly Magerya¹⁴, Daniel Maitre²⁰, Bogdan Malaescu², Fabio Maltoni^{28,29}, Till Martini³⁰, Olivier Mattelaer²⁸, Benjamin Nachman^{31,32}, Sebastian Pitz¹, Juan Rojo^{6,33}, Matthew Schwartz³⁴, David Shih²⁵, Frank Siegert³⁵ Roy Stegeman¹¹, Bob Stienen⁵, Jesse Thaler³⁶, Rob Verheyen³⁷, Daniel Whiteson¹⁸, Ramon Winterhalder²⁸, and Jure Zupan¹⁹

Abstract

First-principle simulations are at the heart of the high-energy physics research program. They link the vast data output of multi-purpose detectors with fundamental theory predictions and interpretation. This review illustrates a wide range of applications of modern machine learning to event generation and simulation-based inference, including conceptional developments driven by the specific requirements of particle physics. New ideas and tools developed at the interface of particle physics and machine learning will improve the speed and precision of forward simulations, handle the complexity of collision data, and enhance inference as an inverse simulation problem.

collision data, and enhance inference as an inverse simulation problem. will improve the speed and precision of forward simulations, handle the complexity of New ideas and tools developed at the interface of particle physics and machine learning

Summary and Outlook

Future tasks

- **Full integration** of ML-based simulations into ulletstandard tools → MadGraph,....
- Make everything run on the GPU and ulletdifferentiable (MadJax - Heinrich et al. [2203.00057])
- Foster deeper collaboration between ullettheory, experiment, and ML community
- More details in our **Snowmass report**

💿 🔍 Search

V	HEP ML Living Review				
Home	Recent	About	Contribute	Resources	Cite

A Living Review of Machine Learning for Particle Physics

Modern machine learning techniques, including deep learning, is rapidly being applied, adapted, and developed for high energy physics. The goal of this document is to provide a nearly comprehensive list of citations for those developing and applying these approaches to experimental, phenomenological, or theoretical analyses. As a living document, it will be updated as often as possible to incorporate the latest developments. A list of proper (unchanging) reviews can be found within. Papers are grouped into a small set of topics to be as useful as possible. Suggestions are most welcome

Equivariant networks. Equivariant networks. Datasets

Table of contents Reviews Modern reviews Specialized reviews Classical papers Datasets Classification Parameterized classifiers Representations Targets Learning strategies Fast inference / deployment Regression Pileup Calibration Recasting Matrix elements Parameter estimation Part istribution Functions (and related Lattice Gauge Theo Function Approximation Symbolic Regression

GitHub ☆ 246 ¥ 78

Summary and Outlook

Future tasks

- Full integration of ML-based simulations into standard tools \rightarrow MadGraph,....
- Make everything run on the GPU and ulletdifferentiable (MadJax - Heinrich et al. [2203.00057])
- Foster deeper collaboration between ullettheory, experiment, and ML community
- More details in our **Snowmass report** ullet
- Stay tuned for many other **ML4HEP** applications

