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The Core Problem in HEP: Our Nail

Hypothesis
Theory Data o
“Simulation”
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HEP is defined by an intractable likelihood



The Core Problem in HEP: Our Nail

Inference
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HEP is defined by an intractable likelihood and yet:

we want to infer something about nature

Our Hope/Hammer: ML should be able to help us



ML + HEP =WV

The ML and HEP setups are fortunately very aligned.

If you squint your eyes, you can recognize many of today’s buzzwords
already Iin our old, traditional HEP workflows

: : : | Multi-Modal
Amortized Simulation :
Foundation Models
Based Inference : :
| | with Attention

A (to me) useful - if distorted - lens to make connections
and see how to move forward



HEP in the modern ML Language

The raw data in HEP is useless, and the way we run our inference is
through powerful, meaningful summary statistics

We organize It into three broad steps

i Raw Data l Backbone I Features l Task Head l Summary l

¢
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HEP in the our usual Language

When talking to a physicist we’ll label the boxes differently, but they
are essentially the same.

i Raw Data l Reconstruction I Particles l lObservablel
 Statistics

v
q(01£,(x))




Reconstruction = Our Foundation Model

Very complex, optimized on a diverse set of auxiliary tasks, that aid in
learning a representation that will eventually be useful for the main
task (e.g. measure Higgs)

Auxiliary Tasks for Rep
Learning

Sole Purpose: Act as a Universal Feature Extractor
Tracking

‘ Charged /

~ Overlap
Momentum Removal

 Estimation
‘ Jet
- Reconstruction |

Neutral Sep.

~ Vertexing



“Multi-Modal (Slot) Attention”

Inside the backbone, one of the key operations Is a data-dependent
(think: “attention”) grouping signals from multiple data modalities

into higher-level objects (think “slots”)
modality A\ dality By (qality C

Q[]

Electron
Photon

neutr. Had

Hard Attention (e.g. Jet Clustering) Soft Attention (e.g. Particle Flow)



Similarity in “Embedding Space”

We also take these “slots” (representations or low-level data) and
compare them in the representation space...

Jets = Embeddin
9 Eur. Phys. J. C (2013) 73:2304

> Track Jets
- The JES systematic uncertainty is derived for isolated

jets.?! The response of jets as a function of the distance
to the closest reconstructed jet needs to be studied and cor-
rected for separately if the measurement relies on the abso-
lute jet energy scale. The contribution to the JES uncertainty
from close-by jets also needs to be estimated separately,
since the jet response depends on the angular distance to
) the closest jet. This additional uncertainty can be estimated
Jets = Embedding from the Monte Carlo simulation to data comparison of the

/ pr-ratio between calorimeter jets and matched track jets in
Calo Data/ > C alo J ets inclusive jet events as a function of the isolation radius. This

) 1s discussed in more detail in Sect. 17.
Modality B

Tracks Data /
Modality A

[Link]


https://link.springer.com/content/pdf/10.1140/epjc/s10052-013-2304-2.pdf

The “Head”

The “Downstream Task” is the what people are mostly working on
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Observations

ML HEP
“The Head is small & simple Analysis: Grad Student Effort
compared to the Backbone” Reco: Full Collaboration Effort
“Optimizing the Head is Train a BDT / NN to separate
fast & cheap” signal from background: easy!

“New Foundation Model = $$$” Reprocessing Campaign

“Head iIs task dependent but works

Nominal Reconstruction is good
reasonably well on frozen backbone”

as a starting point

i Particles l I l iSummary'




“The Inference”
HEP has forever been “simulation-based inference”. But:

* using pre-ML techniques (e.g. histograms instead of flow)

* Frequentist School & i.i.d. data

Final
Result

mmmmmmmm




Amortized Variational Inference

g

We optimize the parameters of the reconstruction once for and run
these for all possible raw data inputs instead of trying to interpret any
single event especially well

‘ Raw Data ' Reconstruction q Particles l I ' lObservablel

q(0 ‘fgb(x))

backbone
parameters

head
parameters



Amortized Variational Inference

With Variational Technigues we are worried about
* how efficient do we optimize within the variational family

* how close does this family come to the true posterior
A

True Result Best Possible Result
(given our pipeline)

pO|x) < g, (O]x) < q;(0]x)

Obtained Result

Variational Gap Efficient Optimization

Measurements
(e.g. Higgs Couplings)



Optimization

The optimization of the sensitivity is primarily the job of the analysis.
— |.e. you (=grad student) optimize the head for the task.

Optimize

ﬂ Particles l ObS

head ¢

T 4150 1p@]1 0




Finetuning

We also already do do “finetuning” as well! Every analysis has a
choice of possible backbones (“working points”)
— |.e. you (=grad student) optimize it by trial/error & received wisdom

Optimize

| Recnnctriictinn k ” / v (
Raw Data - . N Particles ‘ ’ Obser¥s
Reconstruction | L p—
Optimize O Statistics

‘ ‘ head ¢

Backbone parameters

@0 et 9011, 11p@1)




Upshot

If you squint HEP already has a lot of similar workflows of modern ML
built in (some analogies are perhaps a bit too stretched )

Foundation Models, Task Heads, (Slot) Attention, Pretraining,
Finetuning, Object Representations, ... a helpful analogy for me

So what’s the role of actual ML?

Automating, Optimizing, Realizing this Pipeline
to extract the most science



Obvious ldea: Gradient-Based Optimization

(% Kyle Cranmer

Graduate student decent has an excellent high level interface, but low O
latency and mixed results V S C 1 enc e ( ¢ )

Graduate Student / Automatic
Collaborative Descent Gradient Descent



Obvious ldea: Gradient-Based Optimization

I Raw Data | Reconstruction - .
0 4 O Statisticy

backbone head ¢

q(0 \f¢(x))




The Issue

This would all work great if these were reality instead of analogy.

Our Backbone is not a Neural Network with weights & biases

Neither is our Analysis

Both are complex mixtures of (yes) NNs but also hand-written
programs & control flow. Need to have gradients of programs!



Automatic Differentiation (of course)

The technical solution is becoming clearer: ML lives &
dies by automatic gradient estimation / computation.

We’'re starting to get the experience & ‘
students [know about / grow up with] it ars

Y, Y4

Know how to go beyond Python, integrate
deep into e.g. C++ or FORTRAN

Technical issue seems solv(ed/able)

Programming in Fundamental Physics
26 - 28 June 2023, Garching



xamples

WA B | = BN Laurent Hascoét

Automatic Differentiation of Binned Likelihoods
With Roofit and Clad

Garima Singh*, Jo IRIS-HEP
Vassil Vassilev Today at IRIS-HEP's Garima Singh presented on work on

* Department of Physics, H : inti i i i i i I
¢ EP.SE'T, GERN, Depl Automatic differentiation of binned likelihoods with RooFit and Clad!

E-mail: garima.singh@cgq
david.lange@cern.ch,

Abstract. Just as data|
for physics analysis bed
optimizations for RooFit.
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models with many para
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based on histogram tem Garima Singh (Princeton University), Jonas Rembser (CERN),

L J = Lorenzo Moneta (CERN), Vassil Vassilev (Princeton University)

part by the NSF (USA) Grant OAC-1931408 and NSF

SA) Cooperative Agreement OAC-1836650

e lex])
, mi apbpvalue’

Garima Singh

Differentiating RooFit became a reality

Differentiating MadGraph FORTRAN



More difficult question

What’s a practical way to get towards deep optimization




Structure (Hard Attention) vs Representation

In our Backbone (and Analysis) there is usually a fairly well-defined
split between structure-defining operations & representation

Structure Representation
Track Finding Track Fitting / Params
Topoclusters Cluster Variables

Element Links

(to e.d. Pflow Objects) Particles Properties

Jet Definition Jet Observables

Resonance System  »“, invariant mass, etc..



Structure Params
(e.g. Jet Radius)

- ~ Data Flow = control how
] Hard Attention we hierarchically propagate info

'

Data Result




Structure Params
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| Hard Attention we hierarchically propagate info

Data Result




Structure Params
(e.g. Jet Radius)

| Data Flow = control how
| Hard Attention we hierarchically propagate info

Data Result

Representation
Parameters
(e.g. ParT weights)



Structure Params
(e.g. Jet Radius)

control how
we hierarchically propagate info

\ Data Flow =
| Hard Attention

Data Result

control what
iInfo we propagate through
the structure we’re given

Representation
Parameters
(e.g. ParT weights)



Two ways to make progress

We should already be able to optimize what information we pass
through the structure by standard backprop.

End-to-end Optimize Representations

RRRRRR




Two ways to make progress
* We can coarse grain the structure of the data processing.
Fewer but bigger tasks (possibly solved by ML).

* (Go to bigger (learned / latent) representations at each step, instead
of hand-picked observables per object

With data flow fixed we can at least still optimize representations

Fewer Tasks with Key Structure still in place high-dimensional reps of objects

RRRRRR




Removing Structure

A trend to bigger (ML) blocks solving more complex tasks and

dropping intermediate (helper) representations

HCAL3
arxiv: 2103.06995
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SBI vs Differentiable Inference

a) work hard to make classic stats differentiable

-
| Density
. Estimate y

~

4 Y2 ] Y2 _ N\ Y4 )
Parametri Likelihood Likelihood Test . Result
zation Model Ratio Statistic
_ JAN )L L y

b) replace a lot (or ~all) of it by a clever NN training

-
—
\

Modern / Neural SBI

o 24

N\ [ )
» Result
_J _J

T
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Less Structure = Better Learning Dynamics?

Inductive Bias is not always a blessing. Information Flow must also be
efficient & training dynamics favorable (see e.g. M. Bronstein’s talk)

Base Graph Spatially Rewired Graph  Spectrally Rewired Graph

LY

Commute Time

[M. Bronstein]



We know
what we’re
doing

ML knows best

Time

- Differentiable
Physics
v Y

vertexing

track extrap.

Shallow Net

SubSteps

Transformer

Tag

But no Structure isn’t the Solution Either

Jet
Tag

vertexing

track extrap.

Rachel E. C. Smith,!>* Inés Ochoa,? * Riben Inacio,? Jonathan Shoemaker,! and Michael Kagan?!:*

We propose a differentiable vertex fitting algorithm that can be used for secondary vertex fitting,
and that can be seamlessly integrated into neural networks for jet flavour tagging. Vertex fitting
is formulated as an optimization problem where gradients of the optimized solution vertex are
defined through implicit differentiation and can be passed to upstream or downstream neural network
components for network training. More broadly, this is an application of differentiable programming
to integrate physics knowledge into neural network models in high energy physics. We demonstrate
how differentiable secondary vertex fitting can be integrated into larger transformer-based models

Differentiable Vertex Fitting for Jet Flavour Tagging

LSLAC National Accelerator Laboratory

2 Laboratory of Instrumentation and Ezperimental Particle Physics, Lisbon

for flavour tagging and improve heavy flavour jet classification.

Jet
Tag
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[M Kagan, R. Smith, |. Ochoa et al]




So what gives?



Questions from last H&N

Few Q’s from Last Year’s Discussion on Differentiable Programming

The Inductive Bias Story

As physicists we like inductive bias

* hard-coded structure does not need to be learned from data (efficiency)

H OW m u c h St ru Ct u re i s i m p O rta n t? + by constraining the solution space, we add interpretability

« makes use feel like we contribute something

A

Are auxiliary tasks important or just s*-" 7 : E

c-Es—0

optimize end to end? e S T

...........................

@ ’
v
Differentiable Programming ] '.‘ ......... L 5 __ - ~.
(par-task and downstream signals) @ (o

What'’s there to gain if we do end to end o

] ] ] “Maximalist” ML
optimization?



A toy end-to-end Analysis

Test-Setup: X =& HH — 4b. Final state with Jets. Nicole

Hartman

Q: could we just train from scrach? Does pretraining matter?
Q: Is finetuning a la modern ML worth it? Vattias

Q: do we see benefits of scale & adjacent pretraining tasks”?

Jet Analysis
Embedder y




A small Experiment in End2End Optimization

“Foundation model”: Particle Transformer
“Analysis”: simple DeepSet + binary classification

Xbb + Latent + HLF Latent Only

HLF
Constituents L Constituents L Constituents '
aten eats aten

Latent Feats

‘ Constituents in /

Jet Backbone

Various options on size |
of communication channel ~ Cz=J

m T

Xbb Feats

u




A small Experiment in End2End Optimization

Three training setups:
* pretrained on Xbb then frozen

* pretrained on Xbb and then
finetuned on di-Higgs resonanc

* from scratch: random ParT



Representational
Autonomy

Two Directions

Structural Autonomy

Architecture ’

\ Xbb + HLF Latent + HLF Latent Only
Training ~

Hope for a
Sufficient Stat

Frozen Standard HEP

Finetuned ML-assisted HEP

From Scratch I MBI 6 “Hits to Higgs”
Is all you need



Background rejection

Bkg rejection

=

o
N
1

[
o
=

Interesting Results

Well-known patterns from ML seem to hold also in HEP

Various Levels of more learning
give large data-efficiency gains

95.0% signal efficiency

\~."

-~

N training evts

/]

Ll L ) IIIIII Ll L I'l'll Ll LB ARL)
10~ 10° 10! 107
Ntraining evts

Ntraining evts
Scalar + Hl frozen

Pretraining (20M jets) helps and pretraining
more (100M jets) helps more.

Finetuning for Analysis extracts more
Info than just pretrained features

higher-dim embeddings are better

pretrain + finetune = 1000x over scratch
“few” shot models



What about the Discrete / Hard Structure ?

Given fixed objects we can see that both directions help
* higher dimensional embeddings

* smart end-to-end training (i.e. pretraining + finetuning)

What about gradients for discrete structures?



Discrete Randomness

Differentiating discrete structures is easiest if it’s discrete and
probabilistic & smooth expectation value

Discrete Jumps

¢ 100 A
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Natural Test Case: Differentiating Particle Showers

Stochastic Branching: the reason for the ubiquitous clustering
we’ve seen during inference

Simulation Analysis



Differentiating through Particle Showers

The best known algorithm for gradient estimation is used a
lot In Reinforcement Learning - score function estimation

V]? (¢) — L Py [f (x) ngk)g P ¢(’x)] requires tracking probabilities (and

their gradients) while running code
— probabilistic programming

-
e 8
'

Reru"n:vs OpenAl Five

HEP Simulator: discrete processe Atari Games discrete actions



Differentiating through Particle Showers

Material Distribution Radial Hit Distribution

30
25 1
”~ 20 1
4 O
o 15 1
=
Ql
10 4

High Density: E-loss and splitting .
Low Density: linear propagation

Design Parameter:
Radial Distance of Maternal

Design Goal: Shower Depth




Differentiating through Particle Showers
It Works! Can optimize layout from post-shower reward!
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Branches of a Tree: Taking Derivatives of Programs with
Discrete and Branching Randomness in High Energy Physics

Michael Kagan!>* and Lukas Heinrich?: *

1SLAC National Accelerator Laboratory
2 Technical University of Munich

We propose to apply several gradient estimation techniques to enable the differentiation of programs
with discrete randomness in High Energy Physics. Such programs are common in High Energy
Physics due to the presence of branching processes and clustering-based analysis. Thus differentiating
such programs can open the way for gradient based optimization in the context of detector design
optimization, simulator tuning, or data analysis and reconstruction optimization. We discuss several
possible gradient estimation strategies, including the recent Stochastic AD method, and compare
them in simplified detector design experiments. In doing so we develop, to the best of our knowledge,
the first fully differentiable branching program.

2023
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Differentiating through Particle Showers
It Works! Can optimize layout from post-shower reward!
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Branches of a Tree: Taking Derivatives of Programs with
Discrete and Branching Randomness in High Energy Physics

Michael Kagan!>* and Lukas Heinrich?: *

1SLAC National Accelerator Laboratory
2 Technical University of Munich

We propose to apply several gradient estimation techniques to enable the differentiation of programs
with discrete randomness in High Energy Physics. Such programs are common in High Energy
Physics due to the presence of branching processes and clustering-based analysis. Thus differentiating
such programs can open the way for gradient based optimization in the context of detector design
optimization, simulator tuning, or data analysis and reconstruction optimization. We discuss several
possible gradient estimation strategies, including the recent Stochastic AD method, and compare
them in simplified detector design experiments. In doing so we develop, to the best of our knowledge,
the first fully differentiable branching program.

2023
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Differentiating through Particle Showers

Also investigated new Stochastic Gradient Estimators.

— Stochastic AD: gradients for stochastic domain.

— Promises much lower variance: active R&D happening
(but our toy was prob. too simple)

Automatic Differentiation of Programs with
Discrete Randomness

deL[X(6)]

(a) (b) o
¢ oo S 80 — ::;32§Ei92 w/ CV 0
Q X =0 E —stochastic triples o
S for step in 1:n _§60 o |
= i = rand(Categorical(probs(X))) D a0t . o
= X += ] e
= | X stepstl - In our case (Showers) not a
O | return £(X e e S huge difference
\ 20 40 60 80 100




Can we do the same for discrete
Structures in Inference

Easiest would be to make discrete choices (cuts, clustering) etc.
probabilistic programs that we sample from

Tree log likelihood relative to greedy

MLE
Random

-== Greedy

Beam search
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10 15 of the corresponding 1 — 2 splittin .

Number of leaves

Early work from Kyle++
Jet Clusterings as RL

IRC safe IRC unsafe
-jet 1-jet 2 Jets -jet
\ i/’ +o0 ‘\E/
sum Is finite sum Is Infinite
G. Salam

Q to Jesse (?) : can we formulate a stochastic
Jet Clustering / Def. that is IRC safe?



Some Answers to last H&N

Fine-tuning workflow for end to end
analysis works and Is useful even for simple examples

High-Dim Embeddings are a good idea

Gradients of Discrete Randomness
IS @ promising direction



Some new Questions for next H&N ?

How do we calibrate high-dim
representation?

Will we get a “safe” calibrated fine
tuning manifold?

Can we optimize structural pieces
(e.g. jet definition) & stochastic reconstruction?

Supervised vs Self-supervised N
Backbones (JetCLR, ReSim, MPM,... ) Next



Thanks!



