
Lukas Heinrich

End to End Inference in HEP
Hammers & Nails 2023

HEP is defined by an intractable likelihood 

The Core Problem in HEP: Our Nail

p(x |θ)

100M ChannelsO(10) Parameters of Interest

Theory Data

HEP is defined by an intractable likelihood and yet: 
we want to infer something about nature

The Core Problem in HEP: Our Nail

p(x |θ) p(θ |x)

Our Hope/Hammer: ML should be able to help us

100M ChannelsO(10) Parameters of Interest O(10) Parameters of Interest

Theory Data Inference

The ML and HEP setups are fortunately very aligned.

If you squint your eyes, you can recognize many of today’s buzzwords
already in our old, traditional HEP workflows

ML + HEP = ❤

A (to me) useful - if distorted - lens to make connections 
and see how to move forward

Amortized Simulation 
Based Inference

Multi-Modal 
Foundation Models 

with Attention
Finetuning

 
The raw data in HEP is useless, and the way we run our inference is
through powerful, meaningful summary statistics 
 
We organize it into three broad steps

HEP in the modern ML Language

BackboneRaw Data Features Task Head

T

Summary

SBI

q(θ | fϕ(x))

 
When talking to a physicist we’ll label the boxes differently, but they 
are essentially the same.

HEP in the our usual Language

ReconstructionRaw Data Particles Analysis

Higgs

Observable

Statistics

q(θ | fϕ(x))

 
Very complex, optimized on a diverse set of auxiliary tasks, that aid in
learning a representation that will eventually be useful for the main
task (e.g. measure Higgs) 
 
Sole Purpose: Act as a Universal Feature Extractor

Reconstruction = Our Foundation Model

ReconstructionRaw Data Features

Auxiliary Tasks for Rep 
Learning

Charged / 
Neutral Sep.

Tracking

Jet
Reconstruction

Vertexing

Overlap 
RemovalMomentum 

Estimation

Inside the backbone, one of the key operations is a data-dependent
(think: “attention”) grouping signals from multiple data modalities
into higher-level objects (think “slots”)

“Multi-Modal (Slot) Attention”

C
al

o

C
al

o

C
al

o

Tr
ac

k

Tr
ac

k

µ
Tr

ac
k

Electron

Photon

neutr. Had

Muon

Modality A Modality B Modality C

Soft Attention (e.g. Particle Flow)Hard Attention (e.g. Jet Clustering)

C
on

st
.

C
on

st
.

C
on

st
.

C
on

st
.

C
on

st
.

C
on

st
.

Jet 1

Jet 2

Jet 3

Jet 4

Similarity in “Embedding Space”
 
We also take these “slots” (representations or low-level data) and
compare them in the representation space…

Tracks Data /  
Modality A

Calo Data /  
Modality B

Track Jets

Calo Jets

Similarity

Jets = Embedding

Jets = Embedding

[Link]

https://link.springer.com/content/pdf/10.1140/epjc/s10052-013-2304-2.pdf

The “Head”
 
The “Downstream Task” is the what people are mostly working on

Particles Analysis

Higgs

SummaryO(20) Objects 
with O(20) Features

Observations

Particles Analysis

Higgs

Summary Particles Analysis

SUSY

Summary

“The Head is small & simple
compared to the Backbone”

“Optimizing the Head is 
fast & cheap”

“Head is task dependent but works 
reasonably well on frozen backbone”

ML

“New Foundation Model = $$$”

HEP
Analysis: Grad Student Effort 
Reco: Full Collaboration Effort

Train a BDT / NN to separate 
signal from background: easy!

Reprocessing Campaign

Nominal Reconstruction is good 
as a starting point

“The Inference”
HEP has forever been “simulation-based inference”. But:

• using pre-ML techniques (e.g. histograms instead of flow)

• Frequentist School & i.i.d. data

DensitySummary Likelihood 
Model

Test 
Statistic

Final
Result

Amortized Variational Inference

We optimize the parameters of the reconstruction once for and run
these for all possible raw data inputs instead of trying to interpret any
single event especially well

ReconstructionRaw Data Particles Analysis

Higgs

Observable

Statisticsϕ ϕ

head 
parameters

backbone 
parameters

q(θ | fϕ(x))

ϕ ϕ

Amortized Variational Inference

With Variational Techniques we are worried about

• how efficient do we optimize within the variational family

• how close does this family come to the true posterior

Measurements 
(e.g. Higgs Couplings)

unreach 
ablep(θ |x) ↔ qϕmin

(θ |x) ↔ q ̂ϕ(θ |x)

Variational Gap Efficient Optimization

True Result Best Possible Result 
(given our pipeline) Obtained Result

Optimization

The optimization of the sensitivity is primarily the job of the analysis. 
→ i.e. you (=grad student) optimize the head for the task.

Particles Analysis

Higgs

Observable

Statisticsϕ

head 
parameters

q(θ | fϕ(x)) | |p(θ |x)

Optimize

Finetuning

We also already do do “finetuning” as well! Every analysis has a
choice of possible backbones (“working points”) 
→ i.e. you (=grad student) optimize it by trial/error & received wisdom

Particles Analysis

Higgs

Observable

Statisticsϕ

head 
parameters

q(θ | fϕ(x)) | |p(θ |x)

Optimize

Reconstruction
Reconstruction

Reconstruction
Reconstruction

Backbone 
Parameter Space

Optimize

Raw Data

Upshot

If you squint HEP already has a lot of similar workflows of modern ML
built in (some analogies are perhaps a bit too stretched)

Foundation Models, Task Heads, (Slot) Attention, Pretraining,
Finetuning, Object Representations, … a helpful analogy for me

 
So what’s the role of actual ML?

Automating, Optimizing, Realizing this Pipeline 
to extract the most science

Obvious Idea: Gradient-Based Optimization

Graduate Student / 
Collaborative Descent

Automatic 
Gradient Descent

∇ϕScience(ϕ)

Obvious Idea: Gradient-Based Optimization

ReconstructionRaw Data Particles Analysis

Higgs

Observable

Statisticsϕ ϕ

head 
parameters

backbone 
parameters

q(θ | fϕ(x))

This would all work great if these were reality instead of analogy.

 
Our Backbone is not a Neural Network with weights & biases

Neither is our Analysis

Both are complex mixtures of (yes) NNs but also hand-written 
programs & control flow. Need to have gradients of programs!

The Issue

Automatic Differentiation (of course)

The technical solution is becoming clearer: ML lives & 
dies by automatic gradient estimation / computation.

 
We’re starting to get the experience & 
students [know about / grow up with] it

Know how to go beyond Python, integrate 
deep into e.g. C++ or FORTRAN

 
Technical issue seems solv(ed/able)

Program

x ϕ

fϕ(x) ∇ϕ fϕ(x)

Two Examples

Differentiating MadGraph FORTRAN

Differentiating RooFit became a reality

Laurent Hascoët

Garima Singh

More difficult question

What’s a practical way to get towards deep optimization

Structure (Hard Attention) vs Representation

In our Backbone (and Analysis) there is usually a fairly well-defined
split between structure-defining operations & representation

Structure Representation

Jet Definition

Track Finding

Topoclusters

Element Links 
(to e.g. Pflow Objects)

Track Fitting / Params

Cluster Variables

Jet Observables

Particles Properties

Resonance System , invariant mass, etc..χ2

x

η

T(x)

Data Flow =

Hard Attention

Structure Params 
(e.g. Jet Radius)

Data Result

control how 
we hierarchically propagate info

x

η

T(x)

Data Flow =

Hard Attention

Structure Params 
(e.g. Jet Radius)

Data Result

control how 
we hierarchically propagate info

x

η

T(x)

Data Flow =

Hard Attention

ϕ Representation

Structure Params 
(e.g. Jet Radius)

Representation 
Parameters 

(e.g. ParT weights)

Data Result

control how 
we hierarchically propagate info

x

η

T(x)

Data Flow =

Hard Attention

control how 
we hierarchically propagate info

ϕ Representation

Structure Params 
(e.g. Jet Radius)

Representation 
Parameters 

(e.g. ParT weights)

Data Result

control what 
info we propagate through 
the structure we’re given

Two ways to make progress

We should already be able to optimize what information we pass
through the structure by standard backprop. 
 
End-to-end Optimize Representations

Two ways to make progress
• We can coarse grain the structure of the data processing. 

Fewer but bigger tasks (possibly solved by ML).

• Go to bigger (learned / latent) representations at each step, instead 
of hand-picked observables per object

Fewer Tasks with Key Structure still in place high-dimensional reps of objects

With data flow fixed we can at least still optimize representations 
(defer diffing through hard structure for now)

A trend to bigger (ML) blocks solving more complex tasks and
dropping intermediate (helper) representations 

Removing Structure

ML Particle FlowML Tracking
Jet Transformer 
vs QCD Aware

arxiv: 2302.03583

arxiv: 2103.06995

SBI vs Differentiable Inference

Inputs Density
Estimate

Parametri 
zation

Likelihood 
Model

Likelihood 
Ratio

Test 
Statistic Result

[Brehmer, Cranmer, +], [Louppe+++], [Weniger++], [LH, Mishra-Sharma, Windischhofer, Pollard] etc etc

[Simpson, Heinrich]
[de Castro, Dorigo]

ResultModern / Neural SBI

θ

θ

Inputs

[Brehm

🤯

a) work hard to make classic stats differentiable

b) replace a lot (or ~all) of it by a clever NN training

Less Structure = Better Learning Dynamics?

 
Inductive Bias is not always a blessing. Information Flow must also be
efficient & training dynamics favorable (see e.g. M. Bronstein’s talk)

[M. Bronstein]

But no Structure isn’t the Solution Either

vertexing

track extrap.

Jet 
Inputs

Shallow NetWe know 
what we’re  

doing

ML knows best Jet 
Inputs Transformer

Differentiable 
Physics

vertexing

track extrap.

Jet 
Inputs

Jet 
Tag

Transf
ormer

Transf
ormer

SubSteps

Time

[M Kagan, R. Smith, I. Ochoa et al]

Jet 
Tag

Jet 
Tag

So what gives?

Questions from last H&N

Few Q’s from Last Year’s Discussion on Differentiable Programming

How much structure is important? 
 
Are auxiliary tasks important or just 
optimize end to end?

 
What’s there to gain if we do end to end 
optimization?

A toy end-to-end Analysis

Test-Setup: X → HH → 4b. Final state with Jets.

Q: could we just train from scrach? Does pretraining matter?  
Q: Is finetuning a la modern ML worth it? 
Q: do we see benefits of scale & adjacent pretraining tasks?

Jet

Jet

Jet

Jet

Jet 
Embedder Analysis S/B

Nicole 
Hartman

Matthias 
Vigl

 
“Foundation model”: Particle Transformer 
“Analysis”: simple DeepSet + binary classification

 
Various options on size 
of communication channel

A small Experiment in End2End Optimization

 
 
Three training setups:

• pretrained on Xbb then frozen

• pretrained on Xbb and then 
finetuned on di-Higgs resonanc

• from scratch: random ParT

A small Experiment in End2End Optimization

Xbb + HLF Latent + HLF Latent Only

Architecture

Training

Frozen

Finetuned

From Scratch

Standard HEP

“Hits to Higgs”

ML-assisted HEP

Hope for a 
Sufficient Stat

Inductive Bias 
is all you need

Structural Autonomy

Representational 
 Autonomy

Two Directions

Interesting Results

• Pretraining (20M jets) helps and pretraining 
more (100M jets) helps more.

• Finetuning for Analysis extracts more 
info than just pretrained features

• higher-dim embeddings are better

• pretrain + finetune = 1000x over scratch 
“few” shot models

• (from scratch training works it’s just slow)

Well-known patterns from ML seem to hold also in HEP
Standard HEP

Various Levels of more learning 
give large data-efficiency gains

What about the Discrete / Hard Structure ?

Given fixed objects we can see that both directions help

• higher dimensional embeddings

• smart end-to-end training (i.e. pretraining + finetuning)

What about gradients for discrete structures?

Discrete Randomness
 
Differentiating discrete structures is easiest if it’s discrete and
probabilistic → smooth expectation value

Discrete Jumps

Smooth Expectation 
Value

Natural Test Case: Differentiating Particle Showers
 
Stochastic Branching: the reason for the ubiquitous clustering
we’ve seen during inference

The best known algorithm for gradient estimation is used a
lot in Reinforcement Learning - score function estimation

HEP Simulator: discrete processe Atari Games discrete actions

∇ f̄(ϕ) = 𝔼pϕ
[f(x)∇ϕlog pϕ(x)]

requires tracking probabilities (and 
their gradients) while running code 
→ probabilistic programming

Differentiating through Particle Showers

Differentiating through Particle Showers

Material Distribution

Shower

Radial Hit Distribution

High Density: E-loss and splitting 
Low Density: linear propagation

 
Design Parameter: 
Radial Distance of Material

Design Goal: Shower Depth

Differentiating through Particle Showers
It Works! Can optimize layout from post-shower reward!

Differentiating through Particle Showers
It Works! Can optimize layout from post-shower reward!

Differentiating through Particle Showers

Also investigated new Stochastic Gradient Estimators. 
→ Stochastic AD: gradients for stochastic domain. 
→ Promises much lower variance: active R&D happening 
 (but our toy was prob. too simple)

In our case (Showers) not a  
huge difference

Easiest would be to make discrete choices (cuts, clustering) etc.
probabilistic programs that we sample from

Can we do the same for discrete 
Structures in Inference

Q to Jesse (?) : can we formulate a stochastic 
Jet Clustering / Def. that is IRC safe?

Early work from Kyle++ 
Jet Clusterings as RL

G. Salam

Some Answers to last H&N

Fine-tuning workflow for end to end 
analysis works and is useful even for simple examples

High-Dim Embeddings are a good idea

Gradients of Discrete Randomness 
is a promising direction

Some new Questions for next H&N ?
How do we calibrate high-dim 

representation?
 

Will we get a “safe” calibrated fine 
tuning manifold? 

 
Can we optimize structural pieces 

(e.g. jet definition) → stochastic reconstruction? 
 

Supervised vs Self-supervised 
Backbones (JetCLR, ReSim, MPM,…)

Michael’s Talk 
Next

Thanks!

