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Generative Methods

Generative methods are getting more and more popular:

= VAE

= GAN

= Normalizing flows
" Transformers

= Diffusion

* and many others ...



Generative Methods

We will discuss some important questions:

Different variants/improvements of existing methods?

How to generate other objects than images?

How to create shallow (non deep learning based) generative methods?
o Density functional estimation
o Distribution regression/classification, distribution embedding

How good are these generative methods? Convergence rates?

Open problems?



Generative Methods

; o
D
Goal:
Given a training dataset, ©1,...,Tn ~ Pgats
generate more data x4 1,..., %4, from the same distribution pgats -
[without estimating the distribution/density of the data]
N

We will start the discussions with GANs



Generative Adversarial Networks

A Brief Summary




Generating Adversarial Networks

Generated fake celebrity images

Tero Karras, Timo Aila, Samuli Laine, ICLR 2018 7



CelebA-HQ
1024 x 1024

Latent space interpolations

Tero Karras, Timo Aila, Samuli Laine, ICLR 2018



Machine Learning & Art
Eunsu Kang




Ravanbakhsh, M., Lanusse, F., Mandelbaum, R., Schneider, J., and Poczos, B., AAAl 2017

visual Turing test




Generative Adversarial Networks

Goodfellow et al, Generative Adversarial Nets, 2014

Generator:
e We define a prior on input noise variables p»(z). (e.g. z ~N(0,1) )
e Then create a mapping to data space as G (z;6y).

Here G is a neural net with parameters 6,.

[In case of diffusion based merthods, G is a diffusion process starting from z]

Discriminator:

e D(x;0;) is a second neural net that outputs a single scalar in [0, 1].

e D (x;0,) represents the estimated probability that £ came from the data rather

than the generator G.
11



Generative Adversarial Networks

e \We train D to maximize the probability of assigning the correct label to both
training examples and samples from G-

D wants D(x) to be large when x ~ pgata

D wants D(G(z)) to be small [since these are the generated sample points.]

Objective function of the discriminator:

MaxV(D,G) = Eypy.. ()[109 D(@)] + By, () [109(1 = D(G(2)))]

e \We simultaneously train G to trick the discriminator D:

minmaxV(D,G) = Eg o (@) [109 D(@)] +E; oy (2 [l09(1 = D(G(2)))]
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Generating Adversarial Networks

minmaxV (D, G)
G D

V(D,G) =By, (109 D(@)] +E,_,_([109(1 — D(G(2)))]

/ D real data | g
T~ Dansa (T sigmoi
1 g : Fdatal 2 \function
g | Discriminator|
i Network | / | P(z) € [0,1]
z ~ p.(z) | Generator | D(z)
® | Network |— B —
prior G(2) generated
Ml ™ data
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Generating Adversarial Networks

mén max V(D,G) =Egp,... @109D(@)]+E, , (»)[09(1 - D(G(2)))]

Lemma: For G fixed, the optimal discriminator D is D% (x) = Pdata (Z)
Pdata () ‘|‘Pg(m)

Lemma: C(G) =V (Dg, G)

p TP p TP
= —109(4) + KL (paata 79212 22) 4 KL (g 202t P2

p tp
~109(4) + 75 (poata 2922 P2

The original GAN is trying to minimize the Jensen-Shannon divergence between
the distributions of the generated data ps and the training data pyata-

Lemma: This minimax game has a global optimum for pg = pgata- y



Other Versions?
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Adversarial Losses

Pdata + pg)
2

The GAN loss function is equivalent to mén JS (pdata |

However, there are many other divergences/distances between distributions that we
could try to minimize instead:

" Kolmogorov-Smirnov distance = Kantorivich — Rubinstein distance
" Lploss = Total variation distance

= Maximum mean discrepancy (MMD) = Sobolev distance

= Energy distance * Dudley metric

= Wasserstein distance = Neural network distance

= Renyi-alpha divergence .

They have very different properties:
= Distance/divergence, bounded/unbounded, continuity, differentiability, statistical power, ...

16



Wasserstein GAN

Arjovsky et al,Wasserstein GAN, 2017
Let P and Py, denote the distributions of the real and generated data.

The Earth-Mover distance or Wasserstein-1

W (P, P,) = inf K/ .y — ,
( T g) ’)/EH(PT,IPQ) (q:,y) 'y[H:E y“}

where M(P-,Py;) denotes the set of all joint distributions v(z,y) whose marginals
are respectively Pr and Py.

Intuitively, v(xz,y) indicates how much “mass” must be transported from x to
y in order to transform the distributions P, into the distribution Py.

The EM distance then is the cost" of the optimal transport plan.

17



Wasserstein GAN

W (P ,J-_ED = inf E ~ — .
( T g) ’)/EH(IEDT,IPQ) (q:,y) 'y[Hx y“}

The Earth-Mover distance is not tractable

However, from the Kantorovich-Rubinstein duality we have that

W(Pr,Pg) = sup E,.p.[f(2)] — Epup,lf(z)]
1 fllL<1

where the supremum is over all the 1-Lipschitz functions f : X — R.

Similarly, K - W(Pr,Pg) = sup E, p[f(z)] - Epop,[f(z)]
| fllL<K

where the supremum is over all the K-Lipschitz functions f: X — R.

18



Wasserstein GAN

K -W(Pr,Pg) = sup Ey p.[f(2z)] —Eyzop,lf(2)]
Il <K

where the supremum is over all the K-Lipschitz functions f : X — R.

Therefore, if we have a parameterized family of functions { fw}.,ecw that are all
K-Lipschitz for some K, we could consider solving the problem

max K, p, [fu(2)] — Eorp(z)fur(go(2)]

this would yield a calculation of W (P,,Py) up to a multiplicative constant.
How to get W, a family of K-Lipschitz functions for some K7
Consider neural networks with bounded weights.

WGAN objective: mgin zTe% Eznp, [fw(@)] = E,opi2) [ fw(ge(2)]
19



Li et al, MMD GAN, 2017

Given two distributions P and Q, and a kernel k, the square of MMD distance
iIs defined as

My (P, Q) = Eplk(z,2")] — 2Ep glk(z,y)] + Eqlk(y, y)].

Lemma: Let k£ be a characteristic kernel. Then M, (P,Q) =0 iff P = Q.

An example of characteristic kernel is the Gaussian kernel k(z,z") = exp(||z — z'||2).

In practice we use finite samples from distributions to estimate MMD distance.

Given X = {z1, - ,zn} ~Pand Y = {y1,--- ,yn} ~ Q, one estimator of M, (P, Q)
IS

Wp(X,Y) = - 3 k(g al) — = S Kz u) + < S k(i v)).
(3) iz (5) ) =y (5) )3#3

20



M(X,Y) = o S k(o 2h) — e 3 k(@i y) + = 3 k(w;0)-
== ( ) (5) ) iz

MMD GAN objective function:

min max Py, P
inma My (Py, Py),

where
e Py is the distribution of the training data

e Py is the distribution of samples generated by the generative neural network.
e 0 is the parameters of the generative neural network.

e IC is a set of characteristic kernels.
e.g. combining Gaussian kernels with injective functions fqb:

k(z,y) = exp(—fy(x) — fs(w)II%).

21



MMD GAN
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Take me Home!

=)

Depending on the distance/divergence used between distributions,
we can create new GAN methods

These all have different properties,
and some divergences have never been tried: e.g. Renyi-alpha GAN?

J

24



How to Generate
More Complicated Objects?

25



Point Cloud GAN

Li et al, Point Cloud GAN, 2018
The previous methods generated a sample point from a distribution.

Question: Can we create a hierarchical data generation process?
" Generate a sample point x
= Based on x, generate sample points from another conditional distribution p(y|x)

Applications:
= Point cloud generation
= 3D mesh generation
= Autoregressive data generation

26
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Point Cloud GAN

p(X.0) = p(0) ] p(ail0)
1 /

object (-
points for object

Issues:

Although GANs have been extended to learn conditional distributions, they
require the conditioning variable 6 to be observed, such as the one-hot label or
a given image.

What should 6 be?

Naively modeling 6 to be a one-hot vector, to indicate which object the points
belong to in the training data, cannot generalize to unseen test data.

We need a richer representation for €, which is an unobserved random variable.
Thus, we need to infer 8 during the training.

28



Point Cloud GAN

p(X.0) = p(0) ] p(ail0)
1 /

object (-
points for object

Solution:
If we knew the feature 6 of a given object, we could use conditional GAN:
e We define a prior on input noise variables p»(2). (e.g. z ~ N(0,1), z € R%1 )
e Let the new generated point be x = G4(z,60), where z ~ p(z2),

Gz(z,0) is a generative neural network that takes z € R% and 6 € R% as inputs.

Since we don’t know vector 6, we need to infer it from the point clouds:

We need to create an inference network (), that takes a point cloud as input
X ={x1,...,zn}, and outputs a vector 0 € R%.

Luckily such neural network exists: DeepSets.
29



Point Cloud GAN

p(X.0) = p(0) ] p(ail0)
1 /

object (-
points for object

Hierarchical sampling:

Given a point cloud X = {x1,...,zn}, we can generate more points from this
object with this: x = Gz(z, Q(X))

To create a fully hierarchical model, all that left is to create another generative

neural network Gy(u) that can map noise u € R into Q(X) € R% for some
point cloud X = {x1,...,xn}.

The full generative process for sampling one point cloud:

{ziti=1 = {G (2, w) =1 = {Ga(2, Go(u)) }i=1, where zy,..., 20 ~ p(2), and u ~ p(u).

30



Point Cloud GAN

Randomness  Randomness  Randomness
for points for objects for points

i ° >

L J Y

G(z,u) | 1 G(z,u)
l r l
Generated : Generated
point cloud : point cloud s

o forplane e 1Inference for chair |
“““ QX)) -
I | ¢t

The full generative process for sampling one point cloud:

{z;} i1 = {G(z,u) i1 = {Gz(z;, Gg(u)) }imq, where zq1,...,zn ~ p(z), and u ~ p(u).

31



Point Cloud GAN

Randomly sampled objects and corresponding point cloud from the
hierarchical sampling

32



Point Cloud GAN

genTsTTaan,
ﬂ&:" T A )"\-
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Interpolating between a table and a chair point clouds using the latent space representation.
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Interpolating between different rotations of an airplane, using the latent space
representation.

34



Shallow Generative Methods

Divergence Estimation

ML on Sets

o Regression & Classification
o Manifold Learning

35



Important problems in Statistics and ML

Given a dataset,

1. Estimate some properties of the unknown distribution of the data
(Entropy, mutual information, KL divergence, ...)

2. Sample more points from this unknown distribution
(Generative Al)

36



Density Functional Estimation

37



Density Functionals

d Entropy — fplogp

O KL Divergence fplogg

PXy

- I
J Mutual Information fPXY Od DX DY

Fernandes & Gloor: Mutual information is critically dependent on
prior assumptions: would the correct estimate of mutual

Information please identify itself?
BIOINFORMATICS Vol. 26 no. 9 2010, pages 1135-1139
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Divergences between distributions

Euclidean: D(p,q) = (J(p(z) — q(a))2da)1/2

Kullback-Leibler: D(p,q) = KL(p,q) = [ p(z) log gggda:

Renyi: D(p, q) = Ra(qu) —_ ﬁ Iog fpoqu—of

RENYI DIVERGENCE ESTIMATION
without density estimation o

o)

Using Xl;n={X1,..-,Xn}Np Yl:m:{Yla"'aym}Nq

Estimate divergence Ra(qu) o - 1 . 109 /paql—a

39



How should we estimate them?

Naive plug-in approach using density estimation

1 histogram
1 kernel density estimation
[ k-nearest neighbors [D. Loftsgaarden & C. Quesenberry. 1965.]

Density: nuisance parameter
Density estimation: difficult, curse of dimensionality!?

How can we estimate them directly, without estimating the density?

40



The estimator

Ro(pllq)

o—1

k> 1, fixed.
pr(1) : the distance of the k-th nearest neighbor of X; in Xy,
vi.(7) : the distance of the k-th nearest neighbor of X; in Y7,

Da(plle) = [p*g" "
@)

o)

_ 12 ((n—1)p2() (k)2
PelXyallV1:m) = ng( mal(i) ) r(k—a+1)T (k+a— 1)

J
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Asymptotically unbiased

The estimator

- 1
Da(Xl:nHYl:m) — ; Z
1=1

We need :
[(k—a+1D)IMk+a—1) o l-a .
I_(k)Q p4q o n,s'l?!z,rl])ooE

The r.h.s. can be rewritten as

lim {(n _ 1)1—%%(1‘@)(1)‘)(1 =j E [ma_lug(a_l)(l)‘Xl — aﬂ

n,mMm—00
\

cale = ape = — (E4+1—) o— —a o — A
Wil @ (® (g} (@“’ﬁ@

Normalized k-NN dcilstances converge to the Erlang distribution
&n = (n—1)pi(1) =4 &

D'D;jg- T wops  |Allwe need is {én —q €} = {E[&; ] — E[€T°]}

((n - 1)pz<z'))1‘“ (k)2

mvg(i) Mk—a+ 1) k+a—-1)

42



ENTROPY ESTIMATION
without density estimation

S

Using Xi.,=(X1,...,Xp) i.i.d. sample ~ f

Estimate Rényi entropy FR. = L log / FY(x)dx

1l — «

43



Rényi entropy estimators using KNN graphs

X1 ..., X"~ fi.i.d. samples in R?
Let p =d — da, k fixed.

Let NV;. ;. be the set of the k nearest neighbours of X7 in {X1, ... X"
k,j

N, n -
K.J Calculate: L, = > > ||V =X
® J=1 VEN]{J’
@ XJ - o
I H,(X
o © 1—a 0 (n(d—m/d@) = Ha(X)

44



MUTUAL INFORMATION ESTIMATION

without density estimation

o)

Using Xx;

Estimate Ml o =

..... Xp i.i.d. sample ~ f = (f1,..., f1)

1

a_

d 11—«
-log [ @ (ig fz-(:m) da

45



How can we get mutual information estimators from entropy estimators?

Trick: Information is preserved under monotonic transformations.

Let (91 (X1),.--,94(Xg)) =(41,...,2y) =Z
where g; 1R —- R, 7 =1,...,d, are monotone functions.

o (2) = ——tog [ ($2(»)" dz = I (X)

oa—1

When the marginals of Z are uniform, = Iy (Z) = —Hn(Z)
)

(D

Monotone transform  Uniform margins

46



Transformation to get uniform margins

Monotone transformation leading to uniform margins?
Prob theory 101: X; ~ F; cont. = F;(X;) ~ U[0, 1]

The copula transformation:

Let X :[[Xla-”aXd] — [Fl(Xl)a---aFd(Xd)]}: [Z1,..., 24l = Z

A little problem: we don t know F; distribution functions...
Solution: Empirical distribution function (ranks are enough)

A

1

—
an(Xj) - z/n """"""""""""""""" //
2/n I [ngl) §X}2),...,§X§n)] isort{le,...
1/n

—_——

47



Extensions

Conditional Rényi Mutual Information:

1a(X,Y12) = [ p2(:)Da(p(X,Y|Z = 2)|[p(X|Z = 2)p(Y|Z = 2)|Z = 2)

4
© done(1—a) d:(1
I, = 1 |~‘ZJ'§Ji g: (C:r’yz)(l_a) x?éz (Xn;Yn: Zn) (c: )(1—&) A —@)(Zn) B2
" a-1 anl (Ca:z)(l o) g?(l a)(Xn;Zn) (C/yz)(l —o) Pdw(l a)(yn;Zn) |
2 _ (k)
where B = F2hi—at D 2(kta—1)"

48



Open Questions

o What density functionals can we estimate without estimating the densities
themselves?
= entropy, divergences, mutual information,...
o When can we avoid the curse of dimensionality?

o How can we exploit manifold property in the data?

o What are the most practical “smoothness classes™?

49



Take me Home!

(D

Some density functionals
(e.g entropy, mutual information, divergences)
can be estimated directly,
without estimating the densities first!

50



ML on Sets

51



Traditionally, machine learning handles data of the form of fixed dimensional vectors

classification

) ‘Hummingbird’

200

200
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What happens if the inputs are sets?
(1 Unordered collection of objects
d and the number of objects can vary

classification

) Lamp’

53



Distributional Data
Manchester United 07/08

Home Home Home
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Shot Type = Y
Goal Owen Hargreaves e .
e & Rio Ferdinand . .
Cristiano Ronaldo

Shots on Goal

Shots www.juhokim.com/projects.php



Distribution Regression / Classification

Y;=1 Y,=0 Y,=1 Y =0 ?
| 1 ! I | !

Differences compared to standard methods on vectors

W The inputs are distributions, density functions (not vectors)
1 We don’t know these distributions, only sample sets are available
[ The sizes of the sets can be arbitrary and all different

m—l—l

CDENEY @
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Kernel / Support Vector Regression



Kernel / Support Vector Ridge Regression

Linear regression after feature transformation: f(z) = (w, ¢(z))

Primal problem:
P ) @
D

o~ . n 2
w =argmin > &:

subject to y; — (p(x;), W)y =¢&;, Vi=1,...,n
—

and [jw[| < B

57



Kernel / Support Vector Ridge Regression Algorithm

Dual problem:

Given D = {(«x;,y;),t =1,...,n} training data set.
k(-,-) kernel, A > 0 parameter. y = (yq,... ,yn)T c R"

(D : n,n
1L 5
where G;; =1 x; , X;
N

Vi, Gram matrix.
x = (G + )\In)_ly

;”:1 Gi(a).

= (W.0(x)) = 3. dik(zi,)

oW

o f(=x

\_/




Kernel Estimation for Support Vector Machines

Kernel function: K(.,.) is a positive semi-definite function.

Linear kernel: K(p,q) = [ pq
Polynomial kernel: K (p,q) = ([ pq + ¢)*®

Gaussian kernel: K (p,q) = exp(—55(f/(p — )?) = exp(—5=(/p*> + [ ¢° — 2 [ pg).

We only need to estimate fpo‘qﬁ terms.

59



Applications
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Estimating Properties where Physics Is too Complicated

Goal: Estimate dynamical mass of galaxy clusters.

Importance: Galaxy clusters are being the largest gravitationally bound systems in the Universe. Dynamical mass
measurements are important to understand the behavior of dark matter and normal matter.

Difficulty: We can only measure the velocity of galaxies not the mass of their cluster. Physicists estimate dynamical cluster
mass from single velocity dispersion.

Our method: Estimate the cluster mass from the whole distribution of velocities rather than just a simple velocity distribution.
61



Estimating Properties where Physics Is too Complicated

Test Catalog

] L) L] I

PL1;
M) power law

2.0 PL2:

== Mc, ) power law with «

e ML1:
Y ot SDM with oy |
1.5¢ s
ML2:
© SDM with |vy | & ||/,

PDF

el

0.0 R WY
(ﬂfpred_ﬂﬂ / M

Michelle Ntampaka et al, A Machine Learning Approach for Dynamical Mass Measurements of
Galaxy Clusters, APJ 2015 62



Find the parameters of Universe

Given a distribution of particles, our goal is to
predict the parameters of the simulated universe
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Find interesting Galaxy Clusters

Sloan Digital Sky Survey (SDSS)

O continuum spectrum

(1505 galaxy clusters (10-50 galaxies in each)

(17530 galaxies

!

%fﬂ(w«mwﬂtmwwmv‘*'ﬂ“”’“‘"l

SIS
— b

Blue galaxy

0.0256, +,/— D.0001 {[.88), Galaxy,
7000

Wavelength [&]

What are the most anomalous galaxy clusters?

The most anomalous galaxy cluster contains mostly
 star forming blue galaxies

 irregular galaxies

Image Credits: ESA, NASA
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Point Cloud Applications — High Energy Physics

Compact Muon Solenoid data (CMS, LHC) End-to-End Event Classification
0
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Surrogate robotic system in the field
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Name Range RMSE error
Leaf angle* 75.94 3.30 (4.35%)
Leaf radiation angle*  120.66 4.34 (3.60%)
Leaf length* 35.00 0.87(2.49%)
Leaf width [max] 3.61 0.27 (7.48%)
Leaf width [average] @ 2.99 0.21 (7.02%)

Leaf area*

133-45

8.11 (6.08%)

69



Find Interesting Phenomena in Turbulence Data

Anomaly detection
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Find Interesting Phenomena in Turbulence Data




Locally Linear Embedding



Locally Linear Embedding

I I I IIT 333333 555H35DHHDD



o
=
=
S
@
O
S
LL
L
©
O
=
1

Locally




Locally Linear Embedding




Local Linear Embedding of Sets and Distributions

Embedding rotated Gaussian distributions into 2D
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Local Linear Embedding of Sets and Distributions

Embedding rotated frog images into 2D

LLE with Euclidean distances
fails
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LLE with estimated Renyi divergence is
successful
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Take me Home!

) o
D
There are machine learning algorithms
that can operate
on sets/distributions as instances
J




Generative Methods without Deep Learning

Vector-to-Distribution regression

Distribution embedding with LLE
79



Convergence Rate of GANs



Adversarial Losses

Our goal is to study minimax convergence rates
for density estimation under adversarial losses

Special cases of adversarial losses as distances between distributions:

= Kolmogorov-Smirnov distance

" Lploss

= Maximum mean discrepancy (MMD)
= Energy distance

= Wasserstein distance

We will study how

Kantorivich — Rubinstein distance
Total variation distance

Sobolev distance

Dudley metric

Neural network distance

= choice of loss (encoded by the discriminator )
= smoothness of density (encoded by the generator)

affects the convergence rate of density estimation.

81



Adversarial Losses

Definition [Adversarial loss / Integral Probabilistic Metric]

a7, (P,Q) = sup [Exp [F(X)] - Exq [f(X)]
JE€F4

Fq. Discriminator class

* Bounded Borel measurable functions {f : X — R}

Fgq: Generator class
*x Borel probability measures on X
* P, Q & .Fg
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Problem Statement

* Let P € F4 be an unknown probability measure on X.

[P: the true distribution that we want to learn]

IID : -
* X1y = X1,...,Xn ~ P observations. [Training data]

x We are interested in constructing an estimator P(Xy.,) where P : X" — F,

—

[GAN estimate] Py =arg min sup [Ex.p[f(X)] —Ey_=5 f(X
", Pefgfefd\ xoP LFCO = Ex pixy . xy L B

e

Adversarial loss dr, (P, P)
best optimized estimator in Fy

Question: When does limp o dr, (P, P) = 07

Question: What is the rate of the convergence? 83



Let Z C Z% be a countable family [d-dim grid].
Let B = {¢,: X = R, sup, ¢-(u) < 0o,z € Z} be an orthonormal basis in £2.

Let P, =Exp[o:(X)] = [ p(z)p-(z)dx [The zt" coefficient of P (or p) in B]
X
We say {a;},cz is a real-valued net if a; € R, Vz € Z

Definition [Generalized Ellipse]:

> (atlfep) <}

z2EZ

\a I-valued net \ _ N ()l
\p AR Exel0:00) = [ 1(@0x(0)a

The 2zt coefficient of f in B

'mmu»={fez%X)
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Special case: Sobolev Space

Definition [Sobolev Ball]:

ween) = {reci@| T (a715r) " <1
€z

a: = ||z||8—/ \Exwf[wn = [ f@)¢:(2)de
X

p € [1,00]
The 2zt coefficient of f in B

For example, when B is the standard Fourier basis and s is an integer,
for a constant factor ¢ depending only on s and the dimension d:

wer(er) = {f € L0 IfDller < L }
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Consequences for GANs

Theorem:

Let e > 0 be a desired accuracy. Let s,t > 0.
Then there exists a GAN architecture, in which
x The discriminator F; has at most O(log(1/¢)) layers.
and O(e~%/51og(1/e)) parameters.
= The generator F,; has at most O(log(1/¢)) layers.
and O(e~%tlog(1/e)) parameters.

such that if Px(X7:,) = arg min d;d(ff’, P) is the optimized GAN estimate of P,
Pcr,
@

(9

= sup E [d o B ]<C(e—|—n_mi”{%’2stfd)
pona Xn [SWS2(PP(X1:0))] S

... and the GAN is consistent and minimax optimal! 36



Take me Home!

®

6\

Under some conditions, GANSs are consistent and their convergence
rate Is minimax optimal




Open Problems

o Statistical properties under less restrictive conditions?

o Results for convolutional neural nets?

o Best way for training GANs (i.e best way for solving the minmax optimization)?

o GANSs on manifolds?

o Rare event generation?

o Generate uniform distribution on the support of the data?

o Maybe minimax rates are too pessimistic designed for the worst-case scenarios and we
need to study different framework?

o Physics informed generative methods? Adding inductive bias to the generation?

o Similar question for diffusion based generative models ...
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Thanks for your Attention!
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