
Some Open Problems in 
Generative Methods

Barnabas Poczos

Carnegie Mellon University

Machine Learning Department



Collaborators

Jeff 
Schneider

Ruslan
Salakhutdinov

Alexander
Smola

Siamak
Ravanbhaksh

Manzil
Zaheer

Shashank 
Singh

Danica 
Sutherland

Chun-Liang
Li

Arthur 
Gretton

Francois 
Lanosse

Zoltan
Szabo

Junier 
Oliva

Aarti 
Singh

Shirley 
Ho

Rachel 
Mandelbaum

Michelle
Ntampaka

Hy 
Trac

Ananya 
Uppal

Manfred
Paulini

Michael
Andrews

Yang 
Zhang 2



Generative Methods

Generative methods are getting more and more popular:

▪ VAE
▪ GAN
▪ Normalizing flows
▪ Transformers
▪ Diffusion
▪ and many others …
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Generative Methods

We will discuss some important questions:

▪ Different variants/improvements of existing methods?
▪ How to generate other objects than images?
▪ How to create shallow (non deep learning based) generative methods?

o Density functional estimation
o Distribution regression/classification, distribution embedding

▪ How good are these generative methods? Convergence rates?
▪ Open problems?
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Generative Methods

Goal:

We will start the discussions with GANs
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Generative Adversarial Networks
A Brief Summary  
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Generating Adversarial Networks
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Generated fake celebrity images

Tero Karras, Timo Aila, Samuli Laine, ICLR 2018



Tero Karras, Timo Aila, Samuli Laine, ICLR 2018 8



Machine Learning & Art

Eunsu Kang



Ravanbakhsh, M., Lanusse, F., Mandelbaum, R., Schneider, J., and Poczos, B., AAAI 2017 
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Generative Adversarial Networks

Goodfellow et al, Generative Adversarial Nets, 2014

Generator:

Discriminator:
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Generative Adversarial Networks

Objective function of the discriminator:
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Generating Adversarial Networks
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Generating Adversarial Networks
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Other Versions?
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Adversarial Losses  

The GAN loss function is equivalent to

▪ Kolmogorov-Smirnov distance
▪ Lp loss
▪ Maximum mean discrepancy (MMD)
▪ Energy distance
▪ Wasserstein distance
▪ Renyi-alpha divergence
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▪ Kantorivich – Rubinstein distance
▪ Total variation distance
▪ Sobolev distance
▪ Dudley metric
▪ Neural network distance
▪ …

However, there are many other divergences/distances between distributions that we 
could try to minimize instead:

They have very different properties:
▪ Distance/divergence, bounded/unbounded, continuity, differentiability, statistical power, … 



Wasserstein GAN
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The Earth-Mover distance or Wasserstein-1

The EM distance then is the ``cost'' of the optimal transport plan.

Arjovsky et al,Wasserstein GAN, 2017



Wasserstein GAN
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The Earth-Mover distance is not tractable

However, from the Kantorovich-Rubinstein duality we have that



Wasserstein GAN
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MMD GAN
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Li et al, MMD GAN, 2017



MMD GAN
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MMD GAN objective function:



MMD GAN
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MMD GAN vs WGAN

MMD GAN WGAN
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Take me Home!

Depending on the distance/divergence used between distributions,

we can create new GAN methods

These all have different properties, 

and some divergences have never been tried: e.g. Renyi-alpha GAN?
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How to Generate 
More Complicated Objects?
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Point Cloud GAN

Li et al, Point Cloud GAN, 2018

Question: Can we create a hierarchical data generation process?
▪ Generate a sample point x
▪ Based on x, generate sample points from another conditional distribution p(y|x) 

Applications:
▪ Point cloud generation
▪ 3D mesh generation
▪ Autoregressive data generation
▪ …
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The previous methods generated a sample point from a distribution.



Point Cloud GAN
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Point Cloud GAN

Issues: 
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Point Cloud GAN

Solution:
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Point Cloud GAN

Hierarchical sampling:

The full generative process for sampling one point cloud:
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Point Cloud GAN

The full generative process for sampling one point cloud:
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Point Cloud GAN

Randomly sampled objects and corresponding point cloud from the 
hierarchical sampling

32



Point Cloud GAN

Interpolating between a table and a chair point clouds using the latent space representation.
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Point Cloud GAN

Interpolating between different rotations of an airplane, using the latent space 
representation.
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Shallow Generative Methods

▪ Divergence Estimation
▪ ML on Sets
o Regression & Classification
o Manifold Learning
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1. Estimate some properties of the unknown distribution of the data
(Entropy, mutual information, KL divergence, …)

2. Sample more points from this unknown distribution
(Generative AI)

Important problems in Statistics and ML 

Given a dataset,
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Density Functional Estimation  
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❑ Entropy

❑ KL Divergence

❑ Mutual Information

Fernandes & Gloor: Mutual information is critically dependent on 

prior assumptions: would the correct estimate of mutual 

information please identify itself?  
BIOINFORMATICS  Vol. 26 no. 9 2010, pages 1135–1139

Density Functionals
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Using

Estimate divergence

RÉNYI DIVERGENCE ESTIMATION

without density estimation 

Divergences between distributions
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Naïve plug-in approach using density estimation

Density: nuisance parameter
  Density estimation: difficult, curse of dimensionality!?

❑ histogram
❑ kernel density estimation
❑ k-nearest neighbors [D. Loftsgaarden & C. Quesenberry. 1965.]

How can we estimate them directly, without estimating the density?

How should we estimate them? 
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The estimator
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We need to prove:

The estimator

Normalized k-NN distances converge to the Erlang distribution

All we need is

Asymptotically unbiased
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Using

Estimate Rényi entropy

without density estimation 

ENTROPY ESTIMATION
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Calculate:

Rényi entropy estimators using kNN graphs
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Using

Estimate MI

MUTUAL INFORMATION ESTIMATION

without density estimation 

45



Trick: Information is preserved under monotonic transformations.

Monotone transform Uniform margins

How can we get mutual information estimators from entropy estimators?
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The copula transformation:

A little problem: we don’t know Fi  distribution functions…

Solution: Empirical distribution function (ranks are enough) 

Monotone transformation leading to uniform margins?

Prob theory 101:

Transformation to get uniform margins
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Extensions

Conditional Rényi Mutual Information:

48



Open Questions

o What density functionals can we estimate without estimating the densities 
themselves?
▪ entropy, divergences, mutual information,…

o When can we avoid the curse of dimensionality?

o How can we exploit manifold property in the data? 

o What are the most practical “smoothness classes”?
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Take me Home!

Some density functionals 

(e.g entropy, mutual information, divergences) 

can be estimated directly, 

without estimating the densities first!
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ML on Sets
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‘Hummingbird’

200

2
0
0 classification

Traditionally, machine learning handles data of the form of fixed dimensional vectors

Motivation
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‘Lamp’

What happens if the inputs are sets?

❑ Unordered collection of objects

❑ and the number of objects can vary

classification

Motivation
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www.juhokim.com/projects.php
Cristiano Ronaldo

Rio Ferdinand
Owen Hargreaves

Manchester United 07/08

Distributional Data
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Distribution Regression / Classification 

Y1=1

P1

Y2=0

P2

?

Pm+1

Y3=1

P3

Ym=0

Pm…
❑ The inputs are distributions, density functions (not vectors)
❑ We don’t know these distributions, only sample sets are available
❑ The sizes of the sets can be arbitrary and all different

Differences compared to standard methods on vectors
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Kernel / Support Vector Regression
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Kernel / Support Vector Ridge Regression

Primal problem:

Linear regression after feature transformation:
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Kernel / Support Vector Ridge Regression Algorithm
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Dual problem:



Linear kernel:

Polynomial kernel:

Gaussian kernel: 

Kernel Estimation for Support Vector Machines
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Kernel function:



Applications
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Goal: Estimate dynamical mass of galaxy clusters.

Importance: Galaxy clusters are being the largest gravitationally bound systems in the Universe. Dynamical mass 
measurements are important to understand the behavior of dark matter and normal matter.

Difficulty: We can only measure the velocity of galaxies not the mass of their cluster. Physicists estimate dynamical cluster 
mass from single velocity dispersion.

Our method: Estimate the cluster mass from the whole distribution of velocities  rather than just a simple velocity distribution.
61

Estimating Properties where Physics is too Complicated  



Michelle Ntampaka et al, A Machine Learning Approach for Dynamical Mass Measurements of 
Galaxy Clusters, APJ 2015

Estimating Properties where Physics is too Complicated 
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Given a distribution of particles, our goal is to 
predict the parameters of the simulated universe 

Find the parameters of Universe  

Ravanbakhsh, M., Oliva, J., Fromenteau, S., Price, L., 
Ho, S., Schneider, J., and Poczos, B., ICML 2016
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What are the most anomalous galaxy clusters?

The most anomalous galaxy cluster contains mostly
❑ star forming blue galaxies
❑ irregular galaxies

Sloan Digital Sky Survey (SDSS) 
❑ continuum spectrum 
❑505 galaxy clusters  (10-50 galaxies in each) 
❑7530 galaxies

Find interesting Galaxy Clusters

Blue galaxy Red galaxy

Image Credits: ESA, NASA  
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End-to-End Event Classification

Point Cloud Applications – High Energy Physics  

Compact Muon Solenoid data (CMS, LHC)
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Corn Evolution 
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Surrogate robotic system in the field  
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Name Range RMSE error

Leaf angle* 75.94 3.30 (4.35%)

Leaf radiation angle* 120.66 4.34 (3.60%)

Leaf length* 35.00 0.87 (2.49%)

Leaf width [max] 3.61 0.27 (7.48%)

Leaf width [average] 2.99 0.21 (7.o2%)

Leaf area* 133.45 8.11 (6.08%)
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Find Interesting Phenomena in Turbulence Data

Anomaly scores

Anomaly detection 
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Find Interesting Phenomena in Turbulence Data
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Locally Linear Embedding



Fit Locally , Think Globally

Locally Linear Embedding



Locally Linear Embedding



Locally Linear Embedding



Local Linear Embedding of Sets and Distributions

Embedding rotated Gaussian distributions into 2D
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Local Linear Embedding of Sets and Distributions

Embedding rotated frog images into 2D

LLE with Euclidean distances 
fails

LLE with estimated Renyi divergence is 
successful
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Take me Home!

There are machine learning algorithms 

that can operate 

on sets/distributions as instances



Generative Methods without Deep Learning

Distribution embedding with LLE

Vector-to-Distribution regression
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Convergence Rate of GANs



Adversarial Losses  

Our goal is to study minimax convergence rates 
for density estimation under adversarial losses 

Special cases of adversarial losses as distances between distributions:

▪ Kolmogorov-Smirnov distance
▪ Lp loss
▪ Maximum mean discrepancy (MMD)
▪ Energy distance
▪ Wasserstein distance
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We will study how

▪ choice of loss (encoded by the discriminator )
▪ smoothness of density  (encoded by the generator)

affects the convergence rate of density estimation.

▪ Kantorivich – Rubinstein distance
▪ Total variation distance
▪ Sobolev distance
▪ Dudley metric
▪ Neural network distance
▪ …



Adversarial Losses  

Definition [Adversarial loss / Integral Probabilistic Metric]
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Problem Statement
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[P: the true distribution that we want to learn]

[Training data]

[GAN estimate]



Notation
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Definition [Generalized Ellipse]:



Special case: Sobolev Space
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Definition [Sobolev Ball]:



Consequences for GANs
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Theorem:

… and the GAN is consistent and minimax optimal!



Take me Home!

Under some conditions, GANs are consistent and their convergence 

rate is minimax optimal



Open Problems

o Statistical properties under less restrictive conditions?
o Results for convolutional neural nets?
o Best way for training GANs (i.e best way for solving the minmax optimization)?
o GANs on manifolds?
o Rare event generation?
o Generate uniform distribution on the support of the data?
o Maybe minimax rates are too pessimistic designed for the worst-case scenarios and we 

need to study different framework?
o Physics informed generative methods? Adding inductive bias to the generation?

o Similar question for diffusion based generative models …

88



Thanks for your Attention!
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