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Monte Carlo is ubiquitous in the natural sciences

Quantum Monte Carlo Lattice QCD Protein physics Black hole astronomy
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Black hole image: Event Horizon Telescope



Long term motivating example: the Muon g-2 experiment

New physics

Lattice QCD is a dominant Calculate the muon

error tlerm I|<n standard magnetic moment to
model background. astonishing precision.

Massive amounts of
supercomputer time. @

Animation credit: Derek B. Leinweber



Protein physics

Real protein folding is a complex dynamical process.

Many proteins do not have a single structure.

Anton supercomputer

Image credits: D. E. Shaw Research
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Two fundamental challenges

1) Computing normalizing constants of unnormalized distributions 7(x) = ﬂzﬁ

Z = / v(x)dx
2) Computing expectations under unnormalized distributions.

[ fx)ry(x)dx
Ex[f] = [ v(uw)du




Mapping to Boltzmann Distribution

Inverse temperature

/
15(x) = exp {~BE(x)}

Partition function 2 ;/B
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Mapping to Bayesian inference
Likelihood Prior

Posterior -
\P(X ly) = p(y| x)p(x)

p y) Model evidence/
Marginal likelihood

set y(x) = p(y| x)p(x) i Z=py) o



Plan for the rest of the talk

1) Annealed Importance Sampling

2) Adding normalizing flows 3) Connections to diffusion models

4) Outlook for applications
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1) Annealed Importance Sampling
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Naive importance sampling

Assume we can sample from q and evaluate its density.
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V(%)
Naive importance sampling (2) 4= / a(x) (x)dX

x) q(x) XX d x
]Ew[f]sz( )Q( q(x)d

So use estimators [a(x) 7gxgdx

N
Z=%Zwi and NZ" 1 ) w ZfoZ

i=1 N Zy 1 Wi i=1

q(xi) o



7(x)
Naive importance sampling (3) Z = / Q(X)@dx

I B L Ol
1) g x

. q X
SO use estimators Biased but consistent f ( ) q(x)

q(xi) O



Importance sampling on augmented space

Proposal distribution /

Q(zo:x) = 0(20) [Trey Fi(zk|zr—1)-

Extended target distribution

Easy to sample from

P(aor) = ) Do) = 2(ex) [ Buloslonsn
k=0

The thing we want @



Annealing

Fy(x1 | x0)

7T0(£CO)

FQ(XQ | Xl)

F3(X3 |X2)




Importance sampling on augmented space

Easy to sample from Choose to get us closer

Proposal distribution / toye want
Q(zo:x) = mo(Zo) Hi{zl Fr(Tk|Tr—1).

Extended target distribution How do we choose this?

T k-1
I'( gK), ['(zo.x) = 7(rK) H By (k| Th41)
k=0

The thing we want @

P(ac():K) =



Perfect reversal: Del Moral et al (2006)

Fri1(Tpy1|or)
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"""""""

Qr+1(Tht1) (o)



Perfect reversal: Del Moral et al. (2006)

Fri1(Tpy1|or)

B (xx|zr+1)

Intractable marginal
distribution of proposal

Qk (k) Frt1(Tht1|Tr)
Qr+1(Tht1) (o)

B (zk|Trt1) =



Anchor the annealing with intermediate targets

(z) _ exp(~Vi(z))
2y, Zy, ’

7rk(:1:) =

where Zy =1 so mo(x) = vo(z) and Vi(z) = (1 — Be)Vo+ BkVk for 0 =5y < 1 < --- < B = 1.

4 "' i ’!"’ &
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Annealed Importance Sampling: Neal (1998) /
Jarzynski method (1997)

FAIS ( ‘ ) Reversible Markov kernel with respect to Tg41(Xk+1)
k+1 LE+1|LE) (or approximation thereof)

Tl L
BAS (3 [my1) = 1T _pa1s 1y
Th+1(ZTk+1)

K
Vi (Th—1)

1 Tk—1 (Tk—1) o)

Everything cancels and wAIS (370'K) —
it is beautiful! '



Annealed Importance Sampling: one step

Importance sampling

[+ @
® ) ® i
[a] @
o % — o ®
® : L & 3 o ® @
® o
@
AIS AIS ’Yk:(xk—l)
Wy = ’wk£1
’Yk—l(xk:—l)

MCMC

o,

zr ~ F(-|xr—1)
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Plan for the rest of the talk

1) Annealed Importance Sampling

2) Adding normalizing flows 3) Connections to diffusion models

4) Outlook for applications
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2) Adding normalizing flows /
CRAFT
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Collaborators

Michael Arbel
Gatsby Unit -> INRIA

Arnaud Doucet
Oxford, DeepMind

Danilo J. Rezende
DeepMind
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Papers and code.

ICML 2022 paper

ICML 2021 paper

Open source repo on GitHub.

Continual Repeated Annealed Flow Transport Monte Carlo

Alexander G. D. G. Matthews' Michael Arbel? Danilo J. Rezende! Arnaud Doucet !

Annealed Flow Transport Monte Carlo

Michael Arbel *! Alexander G. D. G. Matthews “2 Arnaud Doucet 2

H deepmind /annealed_flow_transport ' Public

<> Code () Issues 19 Pull requests () Actions @



Normalizing flows
Denote these as Tk

These are diffeomorphisms that exploit the change of variables formula for tractability.
We parameterize them using neural networks and can incorporate symmetries.

Historically they have been trained by variational inference though this has some challenges.

Dinh et al. 2017 @



CRAFT one step with fixed normalizing flow(simplified)

Flow transport and
importance sampling

Jds ...
... —'T\E?Tﬂ—'

MCMC

3 %

CRAFT CRAFT Vk(ch(xk—l))
w =w VTIi(z— . ~ Fv(-|Tv(x
k k—1 . 1( . 1) | k( k 1)| k k-(| k( k—l))

AIS has identity flow. Optimal and only valid reversal of a flow is its inverse.
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Adding resampling to AIS

Resampling allows to remove unpromising particles.

AIS --> Sequential Monte Carlo (SMC). Sampler Del Moral, Doucet and Jasra (2006)

Importance sampling Resampling MCMC
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Full CRAFT step with fixed normalizing flows.

Flow transport .
+ importance sampling Resampling

e . N
. B, —'.?'f?'fﬁ—’, » —

"

MCMC

'

,.
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Estimating the flow

In both cases the forward sampler is non-differentiable and not batch parallel because it

includes MCMC and resampling. These components are known to help a lot so we want them.

Using multiple KLs also helps reduce mode collapse.

Previous distribution

Zero when flow passed through a flow T

transport is perfect at

each step /
\ 7

H KLITY m||m]

=1

Sum over all transitions

Next distribution.
between temperatures.

O



Comparison to Stochastic Normalizing Flows

Wu et al. (2020) uses standard ELBO from AIS with flows (implicit in the paper).

Runs into problems with discrete steps - there is a term ignored from the gradient.
Can also lead to mode collapse.

-100
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Experiments with 2D Euclidean ¢* theory

Follow Albergo et al. 2019 use this as a testbed.

Continuum theory:
Seonld] = [ (V0@ + m6(2)* + 2o(a)*} Pz

Discretize on a lattice:
Statt (4) = Z { (%) Z 20(2) — ¢(& + &,) — d(Z — &,)] + m2 ()% + ,\qs(a*c)‘*}

Target probability distribution:  €XP {—State[®]}
YA
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Samples from ¢* theory:

Used in original paper with 14x14 lattice



Samples from ¢* theory:

Used in the work.



Choice of normalizing flow

We use the real NVP normalizing flow with
checkerboard masking (left in figure).

Extract is from the original paper by
Dinh, Sohl-Dickstein and Bengio ICLR 2017.

Convolution assumption in our case
corresponds to translation invariance
which is exactly obeyed in ¢* .

This is a natural choice of flow for the
problem and is mentioned in existing work.

Figure 3: Masking schemes for affine coupling layers. On the left, a spatial checkerboard pattern
mask. On the right, a channel-wise masking. The squeezing operation reduces the 4 x 4 x 1 tensor
(on the left) into a 2 X 2 X 4 tensor (on the right). Before the squeezing operation, a checkerboard
pattern is used for coupling layers while a channel-wise masking pattern is used afterward.

(see Figure 2(b)),

{yl:d =Z1.d 0]
Yat1:p = Tatr1:p © exp (8(21.4)) + t(21:0)
T1:d =Y1d
& 8
{$d+1:D = (ya+1:0 — t(y1:a)) @ exp (— s(y1.0)), D

meaning that sampling is as efficient as inference for this model. Note again that computing the
inverse of the coupling layer does not require computing the inverse of s or ¢, so these functions can
be arbitrarily complex and difficult to invert.

3.4 Masked convolution

Partitioning can be implemented using a binary mask b, and using the functional form for y,
y=b®z+(1—b)@(z@exp(s(b@x))+t(boz)). )

‘We use two partitionings that exploit the local correlation structure of images: spatial checkerboard
patterns, and channel-wise masking (see Figure 3). The spatial checkerboard pattern mask has value
1 where the sum of spatial coordinates is odd, and 0 otherwise. The channel-wise mask b is 1 for the
first half of the channel dimensions and 0 for the second half. For the models presented here, both
s(-) and ¢(-) are rectified convolutional networks.

O



Debiasing proposals using MCMC

We can correct bias in observables for VI, SMC and CRAFT proposals using Metropolis correction.

Error (detail)
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Raw MCMC chains

150
Time in seconds
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Plan for the rest of the talk

1) Annealed Importance Sampling

2) Adding normalizing flows 3) Connections to diffusion models

4) Outlook for applications
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3) Connections to diffusion models
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Collaborators and paper

Arnaud Doucet
Oxford, DeepMind

Will Grathwonhl
DeepMind

Heiko Strathmann

DeepMind

NeurlPS 2022

Score-Based Diffusion meets

Annealed Importance Sampling
Arnaud Doucet, Will Gr A G. D. G. Matth & Heiko
DeepMind

{arnauddoucet ,wgrathwohl,alexmatthews,strathmann}@google.com
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Reversing diffusions

Forward equation. f goes from 0 — T'. Standard Brownian motion w.
x(0) ~ p,
dx(t) = f(x, t)dt + g(t)dw
p: is the marginal distribution of the forward SDE at time ¢.
Reverse equation. Reverse time 7 goes from 0 — T. Different random variable X. Standard standard Brownian notion 0.
x(0) ~ pr
dx(f) = [¢(T — D)*Vylog pr;(X) — f (X, T —1)| di+ g (T - 7) div

Note that we use a different notation convention from Song et al.

O



Example 1: Brownian motion (plus initial jitter).

Forward equation.
x(0) ~ N(0,0.01)
dx(t) = dw
Marginal distribution.
pi(x) = N'(x]0, ¢t + 0.01)

0.|0 0.2 04 06 08 10
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tion (plus initial jitter).

Brownian mo

Example 1

Forward equation.

0.01)
dw

x(0) ~ N(0,

dx(t)

Marginal distribution.

= N(x|0, + 0.01)

Pi(x)

Reverse equation.

,1+0.01)

%(0) ~ N(0

df + div

(T — 7 + 0.01)2

dx ()

O




Example 2: Homogeneous Langevin diffusion

initialized at target distribution.

Forward equation.

Marginal distribution.

Reverse equation.

x(0) ~ p(x)
dx(t) = V, log p(x)dt + 2dw

pi(x) = p(x)

x(0) ~ p(x)
dx(f) = Vi log p(x)df + v/2diw

O



Example 2: Homogeneous Langevin diffusion initialized at target

distribution.

Forward equation.

Marginal distribution.

Reverse equation.

x(0) ~ p(x)
dx(t) = V, log p(x)dt + /2dw

pi(x) = p(x)

x(0) ~ p(x)
dx(f) = V; log p(x)dtf + +/2dw
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Song et al. 2021. Continuous time diffusion from data
Also see Sohl-Dickstein et al. 2015

Data Forward SDE Prior Reverse SDE Data

de = f(z,t)dt + g(t)dw —)@—di(?) = [T = B2V, log pri®) - f (%, T —1)] di + g (T - 7) di

Figure 2: Overview of score-based generative modeling through SDEs. We can map data to a
noise distribution (the prior) with an SDE (Section 3.1), and reverse this SDE for generative modeling
(Section 3.2). We can also reverse the associated probability flow ODE (Section 4.3), which yields a
deterministic process that samples from the same distribution as the SDE. Both the reverse-time SDE
and probability flow ODE can be obtained by estimating the score Vy log p;(x) (Section 3.3).

This works really well for learning from data. Some recent papers
generate from energy and then learn from the samples.
But can’t we use the energy inside the algorithm?

O



Doucet et al. 2022. Continuous time diffusion from

XT"&’?T

X ~ mp—————dX, = Vieg m(X,)dt + V2dB,

uoinquasip 1e8.1e|

Initial distribution

XT =~ 7T()<——dX, = {*VlogﬂT t(Xt) +2V10qu p(X,)}dt + ‘\/édBf— X_() ~T

Figure 1: Top: Samples X; from an AIS proposal (red) obtained by sampling initially from a
Gaussian at ¢ = 0 and diffusing through Langevin dynamics on intermediate targets m; (white). The
intermediate marginals of the proposal, g, approximated by the samples are such that gr ~ 7 for a
reasonably fast mixing diffusion. Bottom: Computing importance weights. The optimal extended
target used to compute the weights is the distribution obtained by initializing X exactly from 7 and
then following the reverse-time dynamics of the forward AIS proposal. This requires access to score
vectors of the marginals g;.

O



Optimal reversal of
importance sampler

Continuum limit

Reversal of diffusions

O



This informs discretized algorithms

N(O, ) =» N(10,1/)

—75 - — AIS
— MCD

logZ estiamte
l
(O
o

50 100 150 200 250
# steps
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4) Outlook for applications
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Practical observations

SMC/AIS is a strong baseline but can struggle in hard cases.

CRAFT currently outperforms MCD in most cases.

MCD may need some more methodological improvements to bridge the gap - see paper.

Think about when ML will help generally...
1)  When classical algorithms are failing but there is knowledge ML can incorporate.
2) When amortization is important e.g for multiple related systems.
3) When very high accuracy is needed overhead of training is more likely to be worth it.
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Long term motivating example: the Muon g-2 experiment

New physics

Lattice QCD is a dominant Calculate the muon

error tlerm I|<n standard magnetic moment to
model background. astonishing precision.

Massive amounts of
supercomputer time. @

Animation credit: Derek B. Leinweber



nature reviews physics https://doi.org/10.1038/s42254-023-00616-w

Perspective " Check for updates

Advances in machine-learning-based
sampling motivated by lattice
quantum chromodynamics

Kyle Cranmer®", Gurtej Kanwar ®2, Sébastien Racaniére®?, Danilo J. Rezende ® ° & Phiala E. Shanahan®**®
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