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Thank you Tobias and Eilam!
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Hammers & Nails 2023 - Swiss Edition

29 Oct 2023,09:00 — 3 Nov 2023, 19:00 Europe/Zurich
Q@ Congressi Stefano Franscini (CSF)

Description Frontiers in Machine Learning in Cosmology, Astro & Particle Physics

October 29 — November 3, 2023 | Conference center Congressi Stefano Franscini (CSF) in Monte Verita, Ascona, Switzerland

The Swiss Edition of Hammers & Nails in 2023 is following the success of the 2017, 2019 and 2022 Hammers & Nails workshops at Weizmann
Institute of Science, Israel.

https://indico.cern.ch/event/1202995/timetable/



Major themes

e Inverse problems: Simulation-based Inference & Untolding

e Anomaly detection

e Sampling high dimensional distributions

e Self-supervised learning — learning representations

e |everaging physics knowledge / Inductive bias

e Multidisciplinary research and collaborations & cross-pollination

e Technical advances in deploying Al/ML in experiments
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A photo of a robot that
looks like Albert Einstein
sitting under a tree with an
apple falling on its head

H&N 2023
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"A robot with collection of glowing
glass jars with Calabi-Yau
manifolds inside”

H&N 2022
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Inverse Problems



Structure Space (a) High-Throughput Virtual Screening (HTVS)

Generative and
Inverse Design

Database selection
Grid search
Hierarchical pipeline \

(b) Global Optimization (GO)

Pro;_)er_ty Inve.rse o m
Prediction Design XXX < |
\:.::.:l
Q Learn prior explorations

NGy
Predict new structure

Efficient search

(c) Generative Model (GM)

< Decoding | /—\

Learn data distribution
Efficient search
Generate new structure X
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Simulation-based inference
and the places It takes us

Jakob Macke, www.mackelab.org @mackelab
Machine Learning in Science, Tubingen University
Excellence Cluster Machine Learning & Tubingen Al Center
Bernstein Center for Computational Neuroscience Tubingen
Empirical Inference, Max Planck Institute for Intelligent Systems
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Super resolution

j tnnnuéi
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Super resolution

ground truth

WE RECONGTRUCTED TURNS OUT, TS

THEORETICALLY




De-noising Graph
Super Resolution
with Diffusion Models
and transformers

Pl WEIZMANN INSTITUTE OF SCIENCE

Hammers and Nails - Swiss Edition
30 November, 2023

Nilotpal Kakati, Etienne Dreyer, Eilam Gross

(nilotpal.kakati@cern.ch)




Anomaly detection



"An image of particles
colliding at the large
adron collider where the
collisions are producing
oink elephants”

H&N 2023



Anomaly detection

Classitication Without Labels method (CWola)

Constructing Unobserved Regions by Transtforming
Adjacent Intervals (CURTAINSs)

Anomaly Detection with

Density Estimation (Ano

Classifying Anomalies THrough Outer Density

Estimation (CATHODE)

S

Probabilistic Inversion Can Efficiently Spot Signal

(PrInCESS)

The Princess
and the f])e aQ
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Some prompt based on
kowala, Anode, cathode,
curtains.

H&N 2022

Faill




An image of a koala bear
holding two electric
cables with a large spark
between the ends of the
capble. The cables should
be connected to a car
battery. In the
background there shoulo
be a window with curtains
that are on fire.

H&N 2023
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Anomaly Detection

hep-ph/2307.11157

The Interplay of Machine

Learning-based Resonant Anomaly
Detection Methods

Radha Mastandrea

In collaboration with T. Golling, G. Kasieczka, C. Krause, B. Nachman,
/\ J. A. Raine, D. Sengupta, D. Shih, and M. Sommerhalder

Frererrrnr
Hammers & Nails 2023
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UNIVERSITY OF CALIFORNIA

BERKELEY LAB 30/10/2023

Lawrence Berkeley National Laboratory

Mastandrea, Interplay of ML for AD

DRAPES: Diffusion for weakly supervised searches

Hammers and Nails, Swiss Edition 2023
Debajyoti Sengupta, Matthew Leigh, Johnny Raine, Sam Klein, Tobias Golling

Many* ML technigques can construct the SM Template
CATHODE (hep-ph/2109.00546)

Sideband Signal Region Sideband

SALAD (hep-ph/2001.05001)

Sideband Signal Region Sideband

Interpolate™

Simulation

Density

Reweight

Density

Data

Data

FETA (hep-ph/2212.11285)

Sideband Signal Region Sideband

Sideband Signal Region Sideband

Fy Fy
= Simulation ‘0
c c
8 5 Morph
—
SM Template Data

Data

M *| apologize if I've left out your favorite!

Mastandrea, Interplay of ML for AD 3

Dr dPE€S: Denoising resonant anomalies by perturbing existing samples

Forward Process (add noise, no learning involved)

Sample data = =————-—reoo oo

Noise

t =strength

(TR : S :
\ !“V«I‘ b IR ) r SR A
AN 2 SIS i
t=0

Reverse Process (requires neural net)




Sampling high dimensional distributions
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Louis’ Question

Say | only have a limited sample of training events, when will using these
generative methods help?

e |f|start with 100 events, can | really generate more?
e Often we are interested in tails of distributions
't's a good question... implicitly skeptical

e Can we get something from nothing?

e No

e But can we get more from our samples it we have a model for what the data
might be? Parametric or non-parametric with some inductive bias?

e Yes



My example... | asked ChatGPT to code it up for me

Can you generate some python code for me that does the following.
e First, generate 100 samples from a standard normal distribution.

e Second, estimate the sample mean and sample standard deviation for the
samples.

e Third, sample 1eé6 samples from a normal distribution with this mean and
standard deviation.

e Make a histogram of the samples and overlay the original standard normal and
the normal with the estimated mean and standard deviation.

30



The code ChatGPT produced and the result

import numpy as np

import matplotlib.pyplot as plt

# Set a random seed for reproducibility Histogram and Normal Distributions Overlay
np. random.seed(0)

Estimated Normal Distribution
# Generate 100 samples from a standard normal distribution 1.0 -

samples_100 = np.random.normal(loc=0.0, scale=1.0, size=100) Standard Normal Distribution

# Estimate the sample mean and sample standard deviation Standard Normal PDF

sample_mean = np.mean(samples_100) - = Estimated Normal PDF
sample_std = np.std(samples_100, ddof=1) # ddof=1 provides an unbiased estimator 0.8 -

# Generate 1le6 samples from a normal distribution with the estimated mean and std deviation
samples_1le6 = np.random.normal(loc=sample_mean, scale=sample_std, size=int(1le6))

# Make histogram of the le6 samples E?
plt.hist(samples_1le6, bins=100, density=True, alpha=0.5, label='Estimated Normal Distribution"') c 0.6 -
)
# Overlay the histogram of the original standard normal distribution E;
count, bins, ignored = plt.hist(samples_100, bins=100, density=True, alpha=0.5, label='Standard Normal Distribution’ o
L
# Plot the probability density function of the standard normal 0.4 -
from scipy.stats import norm '
X = np.linspace(min(bins), max(bins), 100)
p = norm.pdf(x, 0, 1)
plt.plot(x, p, 'k', linewidth=2, label='Standard Normal PDF')
# Plot the probability density function of the estimated normal 0.2 1
p_est = norm.pdf(x, sample_mean, sample_std)
plt.plot(x, p_est, 'r—-', linewidth=2, label='Estimated Normal PDF')
# Title and labels
plt.title('Histogram and Normal Distributions Overlay') 0.0
plt.xlabel('Value") ' ' ' : ' '
plt.ylabel('Frequency') —4 —2 0 2 4
plt.legend() Value
# Show plot
plt.show()

Yes, the model we fit on 100 examples is very useful tor generating a million samples, even out in
the tail.

e Uncertainty in model parameters will clearly propagate through. There is no magic.



DeepMind

Alex Matthews this morning

Normalizing flows,
Diffusion and
Annealed Importance Sampling

Alex Matthews
Hammer and Nails Conference.

. 3/11/2023
Quantum Monte Carlo Lattice QCD Protein physics Black hole astronomy

CRAFT one step with fixed normalizing flow(simplified) o~

Remove Pin

Flow transport and

importance sampling MCMC

CRAFT CRAFT Yk (1 k (5’7 k—1 ))
w = wy Ve ~ Fv.( Tl
k k—1 ’Yk—l(il?k—l) VT (zk-1)] Lk k(l k( k 1))

1ll & Alex Matthews m

o

AlS has identity flow. Optimal and only valid reversal of a flow is its inverse.




Barnabas, this morning

d Entropy — fp|ng

Q KLDivergence [ plogg

O Mutual Information | pxy 109

PXYy
PXPY

Fernandes & Gloor: Mutual information is critically dependent on
prior assumptions: would the correct estimate of mutual

information please identity itself?
BIOINFORMATICS Vol. 26 no. 9 2010, pages 1135—1139

Take me Home!

(D

Some density functionals
(e.g entropy, mutual information, divergences)
can be estimated directly,
without estimating the densities first!

"When solving a problem of
Interest, do not solve a
more general problem as
an intermediate step”

— Vladimir Vapnik



Self-supervised learning — learning
representations



Learning Image Representations

Without Manual Annotations
and Related Applications

Piotr Bojanowski, Senior Research Scientist Manager, FAIR, Meta
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Depth Estimation

DINOv2's frozen features can readily be used in models
predicting per-pixel depth from a single image, both in and out-of-
distribution.

+_¥ Try another image Click to switch to parallax view, then move around the scene

HTTPS://DINOV2.METADEMOLAB.COM/



Instance Retrieval

Find art pieces similar to a given image from a large collection of art
images.

DINOv2's frozen features can readily be used to retrieve images
similar to a query image using a non-parametric approach: database
images are simply ranked according to the similarity of their features
with those of the query image.

(® See results ¥ Try another image
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Instance Retrieval

Find art pieces similar to a given image from a large collection of art
images.

DINOv2's frozen features can readily be used to retrieve images
similar to a query image using a non-parametric approach: database
images are simply ranked according to the similarity of their features
with those of the query image.

(> See results ¥ Try another image

HTTPS://DINOV2.METADEMOLAB.COM/



Sparse Matching

DINOv2's frozen features are relevant to recognize the main
objects in an image and to consistently encode similar parts
across images. Here we match most similar patches across two
images.

HTTPS://DINOV2.METADEMOLAB.COM/



Learning Image Representations

Without Manual Annotations
and Related Applications

Piotr Bojanowski, Senior Research Scientist Manager, FAIR, Meta

Motivations for DINOv2
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He, Kaiming, et al. "Masked autoencoders are scalable vision Radford, Alec, et al. "Learning transferable visual models from natural
learners." Proceedings of the IEEE/CVF conference on language supervision." International conference on machine learning.

computer vision and pattern recognition. 2022. PMLR, 2021.

CPCv2, SELA,
MoCo, PIRL,
SIMCLR,
MoCov2, PCL,
BYOL,

Barlow Twins,
SImMCLRv2,
NN-CLR,
VicReg...
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~ 50M  100M  500M 1B

Number of Parameters

Goyal, Priya, et al. "Self-supervised pretraining of visual
features in the wild." arXiv preprint arXiv:2103.01988 (2021).




Was the modeling effort worth it?

The Bitter Lesson

Rich Sutton http://www.incompleteideas.net/Incldeas/BitterLesson.html

March 13, 2019

The biggest lesson that can be read from 70 years of Al research is that general methods that leverage computation are ultimately the most effective, and by a large margin. The ultimate
reason for this is Moore's law, or rather its generalization of continued exponentially falling cost per unit of computation. Most Al research has been conducted as if the computation available
to the agent were constant (in which case leveraging human knowledge would be one of the only ways to improve performance) but, over a slightly longer time than a typical research project,
massively more computation inevitably becomes available. Seeking an improvement that makes a difference in the shorter term, researchers seek to leverage their human knowledge of the
domain, but the only thing that matters in the long run is the leveraging of computation. These two need not run counter to each other, but in practice they tend to. Time spent on one is time
not spent on the other. There are psychological commitments to investment in one approach or the other. And the human-knowledge approaclg tends to complicate methods in ways that
make them less suited to taking advantage of general methods leveraging computation. There were many examples of Al researchers' belated learning of this bitter lesson, and it is instructive
to review some of the most prominent.




Effective data augmentation and curation is effectively a form of inductive bias

e Not on the model architecture, but part of the overarching ML strategy

loss:
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Self-supervised learning of
Jets using a realistic
detector simulation

Kyle Cranmer, Etienne Dreyer, Eilam Gross, Nilotpal Kakati,
Dmitrii Kobilianskii, Patrick Rieck, Nathalie Soybelman

A correlated set of particles with

Hammers & Nails 2023
Ascona, Switzerland

several learnable properties:
(due to their composite nature)

@ W Sz | 102D | WEIZMANN
4 NYU '%‘gé X | INSTITUTE
WISCONSIN | 7 M<K | ST95 | OF SCIENCE

v Process of origin (classification)
v Energy, mass (regression)

v Possible anomalous signatures

Note: similar effort by MIT/KIT/SLAC
(see their talk at BOOST)

SKIT

Start from fixed interaction, re-run simulator downstream
Contrastive:  learning of jets wvia detector replicas

—)bB i | —'bB .

ool = rs.icer L g o2 swscey “true” particle Detector random 8a % >_(I\
x jet simulation seed (a) AN
g ol , | IXIX] — —h — —Z,
S ool % i " i . A I e a \
% -02} >e r I E 4 y —

.| Simulator setting 1 _ . O . — | - detector hits grar()jh MLP Conltr::tlve

| | ; encoder 0

-08 -06 -04 -02 00 02 04 06 08 -08 -06 -04 -02 00 02 04 06 08 -08 -06 -04 -02 00 02 04 06 08
n relative to jet axis

Different simulator settings represent theory uncertainties and variation due to ,
stochastic nature of underlying physics Pythia

8b _/ I/ /
/1XI — — h,— — 2
NIX |§|7° b b

Benedikt Maier, Hammers & Nails, Oct 30, 2023 4

e — —— [2] Configurable calorimeter simulation for Al applications A. Charkin-Gorbulin et al, Mach. Learn.: Sci. Tech. (2023)




What is the same and what's different?

3 exp(sim(J;,J;)/7) A(IT
log > ken exp(sim(J;, Jx) /7)) \

SimCLR loss (2002.05709) Anchor Negative Samples

Augmentation

Benedikt Maier, Hammers & Nails, Oct 30, 2023




Leveraging physics knowledge / Inductive bias



Inductive Bias

Compositionality

Relationships

Symmetry

Causality
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Geometric algebra representations in practice \ (K
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I |
algebra
| : o I |
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Raw inputs Geometric types Multivector inputs
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We introduce the Geometric Algebra Transformer,
a general-purpose architecture for geometric data

Extract from

AN
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~
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geometric
—_— algebra
9
Raw outputs oEsaas " Multivector outputs GATr takes into account geometric structure through geometric

algebra representations and equivariance...

16

Geometric Algebra Transformers: Revolutionizing Geometric Data with Taco Cohen, Qualcomm Al

e
7
v/
Research
ﬂ-[ﬂ ...but has the scalability and expressivity of transformers
N

Achieves strong performance, even with little data

35

Geometric Algebra Transformers: Revolutionizing Geometric Data with Taco Cohen, Qualcomm Al
Research



Hamiltonian Graph Networks with ODE Integrators

Hamiltonian graph Networks

v . Alvaro Sanchez-Gonzalez Victor Bapst Kyle Cranmer
W . d h . ‘ ‘ . 'F d - . DeepMind DeepMind NYU
—_— rr\ 4 London, UK London, UK New York, USA
e I n CO rp O ra te tWO p yS I Ca y I n O r e \ alvarozr;CQ(énoogle .com vbaps?:%g(c)arclagle.com ki\gO@?l;u. edu
Alvaro Sanchez Gonzalez
[ ] [ ] ([ ] P B l'
inductive biases o o
London, UK

peterbattaglia@google.com

COMMENT HERE IS THAT CAN POOL DOWN TO A SCALAR
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Don't forget TreeRNNs

20" Century Zoo of Neural Network Architectures




Bigger picture mm

Time and length scales of
different simulation
techniques: quantum
mechanics (QM), including

y —
3

coupled cluster (CC) and -§
DFT methods, molecular P
mechanics (MM), and the ?
Brownian dynamics (BD) =
technique; and continuum s

mechanics (CM).
Demand for surrogate
multiscale modelling.
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Reduction and closure of dynamical systems
using deep learning

Qianxiao Li

Department of Mathematics

Institute for Functional Intelligent Materials
blog.nus.edu.sg/gianxiaoli

Hammer & Nails 2023, Swiss Edition
Congressi Stefano Franscini, Ascona, Switzerland
31 Oct 2023

B8 &

NUS
95

National University
of Singapore

Two viewpoints for learning dynamics from data

Invited speakers

Al & material science

Data-based approach Model-based approach Speaker: Kostya Novoselov

Data Hypothesis ~ All Models Hypothesis C Models with Structure
l Coffee break
i M Known . . oy _s . .
Model Machine learning: bridging scale gap between the worlds of materials and particles
Speaker: Andrey Ustyuzhanin
% :} Machine Intelligence...  |z¢|] Machine Intelligence...
A < . ) m Reduction and Closure of Dynamical Systems using Deep Learning
Speaker: Qianxiao Li
slides_QianxiaoLi.pdf
o 7 N it
M
(Regularisation) Model ode Lunch

Brainstorming - CANCELLED
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Mariel Pettee -+ October 30, 2023
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RNN Decoder

MLP Encoder
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Henrion, Louppe, Cho, KC, Bruna [NeurlPS DL4Physics 2017]

Jets as a graph

Connecting the semantics of physical closeness with attention in graph network
orovides a bi-directional interface. It allows us to either

ARZ

21’

* import physics knowledge by using distance measure of jet physics d§ = min(, pif) =

e |earn adjacency matrix and export an optimized notion of “distance” that can be
used in other contexts (eg. for clustering)
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Henrion, Louppe, Cho, KC, Bruna [NeurlPS DL4Physics 2017]

Attention

I
LI

8.

= Wijd + Wiearn Y =
Total |[dentity learnea physics
. . 0.60 \
The adjacency matrix starts off as purely \
ohysics-inspired (kT) and then learned . T\
adjacency matrix becomes more important § \\
0.45 \

e weight given to physics adjacency matrix \\

slowly decays, but stays relevant — ~—__

0 20 40 60 80 100
Epochs
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Cross-polination

Inverse problem, high-throughput screening (HTS) HEP vs Material Science (MS)

V Similarities HEP distinct features
: >
N A e fast simulation / generative models e Centralized data collection
& v : CRNNR S . :
O NSEA S T ——S———— e need for foundation models e Bump hunting
) e 2 for TADF organic emitters . . . . .
e L B 3 e representation learning e Science of confidence intervals
II o § e e optimal transport methods e Plenty of theoretical models for unknown
fzzv § I e inverse design / design optimization e Search for unknown
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devices e ML model uncertainty estimation
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Technical advances in deploying Al/ML in
experiments
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Jointly optimize jet embedding = event embedding — classifier

It scalesl

Event embedding Classifier
v(t1) v(tz) v(tar)
h'(e)
s
hl(tl) hl(tz) hl(tM)

Jet

embeddings
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Structure Params
(e.g. Jet Radius)

- ) " Data Flow = control how
I | - Hard Attention we hierarchically propagate info

Data Result

control what
iInfo we propagate through

the structure we’re given

Representation
Parameters
(e.g. ParT weights)



Differentiating through Particle Showers

Material Distribution Radial Hit Distribution

30
! 25 1 !

~ 20
4 O

< 15 A1
=
°.I

10 -

High Density: E-loss and splitting .
Low Density: linear propagation -

Design Parameter:
Radial Distance of Material

Design Goal: Shower Depth




Some new Questions for next H&N ?

How do we calibrate high-dim
representation?

Will we get a “safe” calibrated fine
tuning manifold?

Can we optimize structural pieces
(e.g. jet definition) & stochastic reconstruction?

Supervised vs Self-supervised N
Backbones (JetCLR, ReSim, MPM,... ) Next




How will Al enable
autonomous particle
accelerators?

V. Kain
Data Science for Beam Operation
Beams Department, CERN

Predicting magnetic hysteresis and eddy current effects

Potentially game-changing!

Time-series forecasting problem: need magnets to be measured on test bench

[Bt’ Bt+1’ ""Bt+n—1]’ [It’ It+1’ ""It+n+N] - [Bt+n’ Bt+n+1’ ""Bt+n+N]
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7 recommendations — Automating exploitation

CERN
Esplanade des Particules 1 EMDS NO. REV. VALIDITY
P.0. Box _ [2922514 1.0 RELEASED]
1211 Geneva 23 Switzerland
REFERENCE
@! 2022514
Date: July 28, 2023

PROJECT REPORT

Efficiency Think Tank Report

CEEW
\

NS

| AL| Hysteresis compensation — Fully automated standard physics
. 2. Automatic and dynamic beam scheduling operation

{AT| Automatic LHC filling

| AT| Auto-pilots

AI|Automatic fault analysis, recovery and prevention

SPS main dipole field prediction vs measured, for fixed target cycles

d sequencing

Flat top prediction and ground truth

1.817

First operational experience:

@ feedforward correction

r1.816

r1.815

rl1.814

1.813

SFTPRO2
—— LHC50NS
—— SFTPRO2
—— MD1
—— SFTSHIP

MD1
—— LHCPILOT

triggered before every cycle

® accuracy not sufficient yet

Eile View Tools Help

SPS  2023.07-18 11:15:39 10 LHC50NS | MD 26 L7200 30 200 Q20 North Extraction 2023 V1

First results PhyLSTM for
SPS main dipoles
assuming

B+ g(B,B) =TI(1), next:

sssssss

Transformers

r2.00

T
50000

r 0.06244

r 0.06238

r 0.06232

r 0.06226

18 11:15:34,704 - sps_apps.hysteresis_prediction.inference. inference - INFO - Inference took: 0.223847 s - Flat bottom prediction and ground truth

Hammers & Nails 2023 - Swiss Edition, V. Kain, 1-Nov-2023

T
60000

Data from July '23
7

6. Automatic testing an

AI|Automatic parameter optimisation

Hammers & Nails 2023 - Swiss Edition,

time by 50 %

V. Kain, 1-Nov-2023




Our Inference Machinery

Likelihood-Free Frequentist Inference

[ Proposal ]
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Parting thougnts



Interplay of key ingredients of Deep Learning

Hard to analyze the effect of data structure for real-world data sources.

Toy models are useftul!

SIMPLER QUESTION: WHEN CAN A NEURAL
NETWORK LEARN A TEACHER-NEURAL NETWORK?

Teacher-network Student-network

e Generates data X, n samples of p
dimensional data, e.g. random input
vectors.

e Observes X, y, the architecture of the
network.

e How does the best achievable
generalisation error depend on the
number of samples n?

e Generates weights w*, e.g. iid random.

o Generates labels y.

[ —

.

ke Ziobarons algorithm

Talk: https://ml4physicalsciences.github.io

Position piece: https://rdcu.be/bdp1m



https://ml4physicalsciences.github.io
https://rdcu.be/b4p1m

Generalization

Teacher =@ Causal, Generative Model (Simulator)
Richer set of problems can be investigated.

X
o

Q
¥§ %

——

..

alg()ritm

KC adapting from Lenka Zdeborova



TENSION BETWEEN TWO TH

[ 11
<

=S

Some tension between
* Imposing inductive bias & domain knowledge

* recent results showing that over-parameterized networks may
play better with optimization algorithms

A topic for further study: when does (correct) inductive bias hurt?

algorithm



Thank you Tobias and Eilam!
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