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STRONG GRAVITATIONAL LENSING

Formation of multiple images of a single distant object due to the 
deflection of its light by the gravity of intervening structures.
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1 - Use strong lensing as a cosmic telescope. 
Lensing magnifies the images of sources and makes them appear  brighter.  
This allows us to study some of the most distant galaxies of the universe that would 
have been otherwise below our sensitivity or resolution limits.

unlensed image lensed image

SCIENCE MOTIVATIONS FOR STRONG LENSING



2 - Use lensing to probe the distribution of matter in the lensing structures. 
Distortions in images are caused by gravity. 
They can be used to map the distribution of matter in the lens.  
Particularly useful for studying dark matter.

SCIENCE MOTIVATIONS FOR STRONG LENSING



Matter power spectrum





3 - Measure comological parameters (H0). 
Different images are produced because light follows different paths. 
These paths are of different lengths.  
If the source has time variability, this will cause time delays between different images.

SCIENCE MOTIVATIONS FOR STRONG LENSING



L E N S I N G  A N A LY S I S

Data

1: Morphology of the 
background source  
(the true, undistorted image of 
the candle)

2: Matter distribution in the lens  
(the shape of the wineglass)
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LOOKING INTO THE FUTURE

In the next few years, we’re expecting to discover more 
than 170,000 new lenses. 



Methods for the future: 
How are we going to analyze 170,000 lenses?

Lens modeling is very slow.  

Simple lens model takes ~3 days     

=> 1,400 years !



ESTIMATING THE MATTER DISTRIBUTION PARAMETERS WITH CNNS

10 million times faster than traditional lens modeling. 
0.01 seconds on a single GPU

Hezaveh, Perreault Levasseur, Marshall, Nature, 2017



de-lensed image of 
background source?

UNDISTORTED IMAGE OF THE BACKGROUND SOURCE



PIXEL VALUES OF THE BACKGROUND SOURCE ARE LINEAR 
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de-lensed image of 
background source

UNDISTORTED IMAGE OF THE BACKGROUND SOURCE



Morningstar, Perreault Levasseur et al., 2019

UNDISTORTED IMAGE OF THE BACKGROUND SOURCE 
WITH THE RECURRENT INFERENCE MACHINE (RIM)



BACKGROUND SOURCE RECONSTRUCTION: 
COMPARISON TO MAXIMUM LIKELIHOOD METHODS

Morningstar, Perreault Levasseur et al., 2019



EXAMPLES OUTSIDE THE TRAINING DATA

Morningstar, Perreault Levasseur et al., 2019
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SIMULATED GALAXIES GENERATED 
WITH A VARIATIONAL AUTOENCODER

Alexandre Adam



TRAINING ON HYDRODYNAMICAL SIMULATIONS

Adam, Perreault-Levasseur, Hezaveh, Welling, ApJ, 2023, arXiv:2301.04168

https://ui.adsabs.harvard.edu/link_gateway/2023ApJ...951....6A/arxiv:2301.04168


Adam, Perreault-Levasseur, Hezaveh, Welling, ApJ, 2023, arXiv:2301.04168

https://ui.adsabs.harvard.edu/link_gateway/2023ApJ...951....6A/arxiv:2301.04168


WHAT AN ASTROPHYSICIST WANTS TO SEE:  
THE POSTERIOR (USING MCMC)

Hezaveh, …,LPL, et al. ApJ  2016



Perreault-Levasseur et al., 2017

UNCERTAINTY ESTIMATION WITH  
APPROXIMATE BAYESIAN NEURAL NETWORKS 

Morningstar et al., 2018
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UNCERTAINTY ESTIMATION WITH  
APPROXIMATE BAYESIAN NEURAL NETWORKS 

Morningstar et al., 2018



UNCERTAINTY ESTIMATION WITH  
SIMULATION-BASED INFERENCE METHODS 

Ronan Legin

Coverage probabilities

An example of the inference of the 
posterior of foreground variables

R. Legin, Y. Hezaveh, L. Perreault Levasseur, B. Wandelt, ApJ 2022



Latent variable

Hie ra rch i ca l  Bayes ian  in fe rence

We are interested in the parameters 
of the hyper distribution,

Posterior of individual 
measurements
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Legin, Stone, Hezaveh, Perreault Levasseur, 
ICML  2022  -  ML4Astro Workshop arXiv:2207.04123

Ronan 
Legin

Connor 
Stone

Hie ra rch i ca l  Bayes ian  in fe rence



P(x, θ)
Class #1

{(x1, θ1), (x2, θ2), . . . , , (xN, θN)}
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{(x1, θ1), (x2, θ2), . . . , , (xM, θM)}P(x)P(θ)

r(x, θ) =
p(x, θ)

p(x)p(θ)
=

p(θ |x)
p(θ)Classify

NEURAL RATIO ESTIMATORS



H0 INFERENCE WITH TIME DELAY COSMOGRAPHY



T H E  H U B B L E  C O N S TA N T  
D I S C R E PA N C Y  B E T W E E N  M E A S U R E M E N T S

Adam G. Riess et al 2019 
ApJ 876 85
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H0 INFERENCE WITH NEURAL RATIO ESTIMATORS



Ève Campeau-Poirier

H0 INFERENCE WITH NEURAL RATIO ESTIMATORS

Campeau-Poirier et al. ICML 2023 ML4Astro Workshop, arXiv:2309.16063



H0 INFERENCE WITH NEURAL RATIO ESTIMATORS

Ève Campeau-Poirier

Campeau-Poirier et al. ICML 2023 ML4Astro Workshop, arXiv:2309.16063



H0 INFERENCE WITH NEURAL RATIO ESTIMATORS

Ève Campeau-Poirier

Campeau-Poirier et al. ICML 2023 ML4Astro Workshop, arXiv:2309.16063
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Es t imat ing  the  da rk  mat te r  pa r t i c le  tempera tu re   
w i th  Neura l  Ra t io  Es t imato r s

Coogan et al. , NeurIPS 2020 ML4PS Workshop
Anau Montel, Coogan et al. 2022, arXiv:2205.09126

Adam 
Coogan



How do we infer the posteriors of high-dimensional parameters (e.g., an image or 
spectra)? 

Obstacles: 

1) How do we encode complex priors 

2) How we sample such high-dimensional posteriors (even if we could compute them)

TACKLING AN UNSOLVED PROBLEM:  
HIGH DIMENSIONAL INFERENCE



Can we learn our high-dimensional prior explicitly from data?  
i.e. can we learn a generative model that will produce samples from that 
distribution? 
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Can we learn our high-dimensional prior explicitly from data?  
i.e. can we learn a generative model that will produce samples from that 
distribution? 

Training data
{x1, . . . , xn,} ∼ πdata(x)iid

Density function 
pθ(x) ≈ πdata(x)

How can we do this from samples (e.g. data)? Modeling the density?

LEARNING THE PRIOR EXPLICITLY



Turns out that if I want to sample a distribution, the only thing I need to 
learn is its score, which does not include the normalization constant and 
only uses local information 

s(x) = ∇xlog(π(x))

Training data
{x1, . . . , xn,} ∼ πdata(x)iid

Density function 
pθ(x) ≈ πdata(x)
Score function

sθ(x) ≈ ∇log(π(x))

SCORE MODELING



SCORE-BASED MODELING

We model the score of the prior

sθ(x) ≡ ∇xlog pθ(x)

Alexandre Adam

Adam et al. NeurIPS 2022 ML4PS workshop, arXiv:2211.03812



SCORE-BASED MODELING

We model the score of the prior

sθ(x) ≡ ∇xlog pθ(x)

Alexandre Adam

Adam et al. NeurIPS 2022 ML4PS workshop, arXiv:2211.03812



http://www.mjjsmith.com/thisisnotagalaxy/

Connor 
Stone

Smith et al. arXiv:2111.01713



SCORE-BASED MODELING
Now if we want to sample from the posterior, its score is all we need:

∇xlog p(x |y) = ∇xlog p(y |x) + ∇xlog pθ(x)
Alexandre Adam
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SCORE-BASED MODELING
Now if we want to sample from the posterior, its score is all we need:

∇xlog p(x |y) = ∇xlog p(y |x) + ∇xlog pθ(x)
Alexandre Adam

To a good approximation, we 
can calculate the likelihood 
s c o re a n a l y t i c a l l y i f w e 
assume it’s Gaussian and we 
know the lensing matrix.

This is the 
prior score we  
learnt from the 
training data



SCORE-BASED MODELING

∇xlog p(x |y) = ∇xlog p(y |x) + ∇xlog pθ(x)
Alexandre AdamNow if we want to sample from the posterior, its score is all we need:



SCORE-BASED MODELING

∇xlog p(x |y) = ∇xlog p(y |x) + ∇xlog pθ(x)
Alexandre AdamNow if we want to sample from the posterior, its score is all we need:



∇xlog p(x |y) = ∇xlog p(y |x) + ∇xlog pθ(x)
Alexandre Adam

OUT OF DISTRIBUTION TESTS

Now if we want to sample from the posterior, its score is all we need:



The expected coverage probability of a credible region is the 
proportion of the time that the region contains the true value of interest.

ARE THESE UNCERTAINTIES ACCURATE?

TRUE VALUE

68% 95%

For an accurate posterior estimator, the expected 
coverage probability is equal to the probability mass of 

the credible region.



The expected coverage probability of a credible region is the 
proportion of the time that the region contains the true value of interest.

ARE THESE UNCERTAINTIES ACCURATE?

TRUE VALUE

68% 95%

For an accurate posterior estimator, the expected 
coverage probability is equal to the probability mass of 

the credible region.

These are HPD credible regions



Lemos, et al. ICML 2023, 2302.03026

COVERAGE TEST FOR ACCURACY

Pablo Lemos

pip install tarp



Lemos, et al. ICML 2023, 2302.03026

Accurate case

Pablo Lemos

COVERAGE TEST FOR ACCURACY



Lemos, et al. ICML 2023, 2302.03026

Accurate case

Pablo Lemos

COVERAGE TEST FOR ACCURACY



DEALING WITH REALISTIC NOISE:  
BEYOND GAUSSIANITY

Alexandre Adam Ronan Legin

Legin, Adam, et al. ApJ Letters 2023, 2302.03046



DEALING WITH REALISTIC NOISE: BEYOND GAUSSIANITY 
SLIC: SCORE-BASED LIKELIHOOD CHARACTERIZATION

Since we have learnt a generative model of the additive noise, it can now be used in a 
simulation pipeline to get new, independent realizations of noise:

Legin, Adam, et al. ApJ Letters 2023, 2302.03046
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PSF-DECONVOLUTION (FOR HST)
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PSF-DECONVOLUTION FOR INTERFEROMETRIC DATA

With Score-Based Diffusion Models

Morningstar et al. 2019
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PSF-DECONVOLUTION FOR INTERFEROMETRIC DATA
With Score-Based Diffusion Models
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PSF-DECONVOLUTION FOR INTERFEROMETRIC DATA
With Score-Based Diffusion Models
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Dia, Adam, Barth, et al. NeurIPS 2023 ML4PS workshop
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STRONG LENSING SIMULATION PIPELINE:  
CAUSTIC

A fast, AI-empowered, differentiable, extremely modular simulation pipeline for all 
your strong lensing needs.

1) Lens and source from analytic profiles or pixelated images/densities

2) Multiplane lensing

4) Fast microlensing simulations

5) Time-delays

3) Line of sight mass distributions

https://github.com/Ciela-Institute/caustic
https://ciela-institute.github.io/caustic/BasicIntroduction.html
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