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Introduction

Classical analysis

* hand-crafted observables
e binned data

Theory Hard-scattering - not all available information is used
parameter known from momenta
a theory Xprard
l Matrix Element Method (MEM)
e based on first principles

e estimates uncertainties reliably

Likelihood from differential cross section . optimal use of information

1 do(a)
9 (C() dXhard

- perfect for processes with few events

P (xhard ‘ a) —



Introduction

Theory Reconstructed
parameter known from likelihood intractable momenta
o theory - learn with neural network X

IeCo

P (xreco | C() — [dxhard P (xhard | Cl) P ( reco ‘ xhard) G(xhard)

Factorize problem - Integrate out intermediate momenta



ML+MEM integral

P (xreco | Cl) — dehard P (xhard | 0[) P (xreco | xhard) G(xhard)



ML+MEM integral

P (xreco | Cl) — [dxhard P (xhard | 0[) P (xreco | xhard) €(xhard)

Efficient MC integration

Importance sampling
with Normalizing Flow

xhard ~ p (xhard ‘ Xrecoa a)



ML+MEM integral

P (xreco | a) — [dxhard P (xhard | 0[) P (xreco | xhard) €(xhard)

Efficient MC integration Theory knowledge

Importance sampling differential
with Normalizing Flow cross-section
*hard ~ P (xhard ‘ Areco a) I da((x)

9 ((I ) dxhard



ML+MEM integral

P (xreco | (I) — dxhard P (xhard | 0[) P (xreco | xhard) €(xhard)

Efficient MC integration Theory knowledge Transfer function
Importance sampling differential Density estimation:
with Normalizing Flow cross-section Normalizing Flow

Xord ~ PO | Xroes ) 1 do(a) Solve combinatorics:

Transformer
o ((I) d'xhard



ML+MEM integral

P (xreco | (l) — dxhard P (xhard | 0{) P (xreco | xhard) G(xhard)

Efficient MC integration Theory knowledge Transfer function Acceptance function
Importance sampling differential Density estimation: learn with simple
with Normalizing Flow cross-section Normalizing Flow classifier network

Xord ~ PO | Xroes ) 1 do(a) Solve combinatorics:

Transformer

9 ((I ) dxhard



Learning the transfer function

Transformer Normalizing Flow
correlations between particles & combinatorics likelihood for individual particles
xl(li)rd xl(f;)rd 1) o Xreo
o o o o [ condition ¢ ]
; ; Bl | R l g
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[ Transformer-Encoder ) f Transformer-Decoder \ Iy »| ROS ° > n(l)
Self-Attention: Masked Self-Attention: : i l o
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> Cross-Attention:
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1 1
p(xrecolxhard) — p(xgegolc( )) p(xfggolc(n))

Transfer function + Transformer = Transfermer 5



Yt _ 2.
Ly = — cos a tt +—1sIna tyst
2

LHC example

Single Higgs production with anomalous

non-CP-conserving Higgs coupling

3

Hadronic decay of top + ISR:
tHq — (b)) (y¥) J + QCD jets

hadronic, with ISR
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Around the SM, CP-phase a = 0°:

low total cross section (few events)
+

low variation of rate
+

kinematic observables still sensitive

N2

need kinematic observables to
use all available information

N2

iIdeal use case for MEM



Inference results
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- smooth and well-calibrated likelihoods, both for low and high event count
- close to optimal Information

- Uncertainty bands: MC integration error &
syst. error from limited training statistics (Bayesian NN)



Outlook

Comparison to other simulation-based inference methods

Matrix element information used during inference
- does not need to be learned by network

Factorization of ME, transfer function, acceptance
- less “black box”, more control of uncertainties

Computes phase space integral for every event
- can be made fast, efficient & stable (see paper)

Outlook

- extend to NLO QCD
- discuss analysis applications with experimentalists



