Precision Maching Learning for the Matrix Element Method

Theo Heimel October 2023

Institut für theoretische Physik Universität Heidelberg

[2310.07752] TH, Huetsch, Winterhalder, Plehn, Butter

Introduction

Likelihood from differential cross section

$$p(x_{\text{hard}} \mid \alpha) = \frac{1}{\sigma(\alpha)} \frac{d\sigma(\alpha)}{dx_{\text{hard}}}$$

Classical analysis

- hand-crafted observables
- binned data
- → not all available information is used

Matrix Element Method (MEM)

- based on first principles
- estimates uncertainties reliably
- optimal use of information
- → perfect for processes with few events

Introduction

$$p(x_{\text{reco}} \mid \alpha) = \int dx_{\text{hard}} p(x_{\text{hard}} \mid \alpha) p(x_{\text{reco}} \mid x_{\text{hard}}) \epsilon(x_{\text{hard}})$$

$$p(x_{\text{reco}} \mid \alpha) = \int dx_{\text{hard}} p(x_{\text{hard}} \mid \alpha) p(x_{\text{reco}} \mid x_{\text{hard}}) \epsilon(x_{\text{hard}})$$

Efficient MC integration

importance sampling with Normalizing Flow

$$x_{\text{hard}} \sim p(x_{\text{hard}} \mid x_{\text{reco}}, \alpha)$$

$$p(x_{\text{reco}} \mid \alpha) = \int dx_{\text{hard}} p(x_{\text{hard}} \mid \alpha) p(x_{\text{reco}} \mid x_{\text{hard}}) \epsilon(x_{\text{hard}})$$

Efficient MC integration

importance sampling with Normalizing Flow

$$x_{\text{hard}} \sim p(x_{\text{hard}} \mid x_{\text{reco}}, \alpha)$$

Theory knowledge

differential cross-section

$$\frac{1}{\sigma(\alpha)} \frac{d\sigma(\alpha)}{dx_{\text{hard}}}$$

$$p(x_{\text{reco}} \mid \alpha) = \int dx_{\text{hard}} p(x_{\text{hard}} \mid \alpha) p(x_{\text{reco}} \mid x_{\text{hard}}) \epsilon(x_{\text{hard}})$$

Efficient MC integration

importance sampling with Normalizing Flow

 $x_{\text{hard}} \sim p(x_{\text{hard}} \mid x_{\text{reco}}, \alpha)$

Theory knowledge

differential cross-section

$$\frac{1}{\sigma(\alpha)} \frac{d\sigma(\alpha)}{dx_{\text{hard}}}$$

Transfer function

Density estimation: Normalizing Flow

Solve combinatorics: Transformer

$$p(x_{\text{reco}} \mid \alpha) = \int dx_{\text{hard}} p(x_{\text{hard}} \mid \alpha) p(x_{\text{reco}} \mid x_{\text{hard}}) \epsilon(x_{\text{hard}})$$

$$p(x_{\text{hard}} \mid \alpha)$$

$$p(x_{\text{reco}} \mid x_{\text{hard}})$$

$$\epsilon(x_{\rm hard})$$

Efficient MC integration

importance sampling with Normalizing Flow

 $x_{\text{hard}} \sim p(x_{\text{hard}} \mid x_{\text{reco}}, \alpha)$

Theory knowledge

differential cross-section

$$\frac{1}{\sigma(\alpha)} \frac{d\sigma(\alpha)}{dx_{\text{hard}}}$$

Transfer function

Density estimation: Normalizing Flow

Solve combinatorics: Transformer

Acceptance function

learn with simple classifier network

Learning the transfer function

Transformer correlations between particles & combinatorics

Normalizing Flow likelihood for individual particles

[Butter et al, 2305.10475] [Finke et al, 2303.07364]

Transfer function + Transformer = Transfermer

LHC example

Single Higgs production with anomalous non-CP-conserving Higgs coupling

$$\mathcal{L}_{t\bar{t}H} = -\frac{y_t}{\sqrt{2}} \left[\cos \alpha \, \bar{t}t + \frac{2}{3} i \sin \alpha \, \bar{t}\gamma_5 t \right] H$$

Hadronic decay of top + ISR: $tHq \rightarrow (bjj) (\gamma\gamma) j + QCD jets$

Around the SM, CP-phase $\alpha = 0^{\circ}$:

low total cross section (few events)

low variation of rate

kinematic observables still sensitive

need kinematic observables to use all available information

ideal use case for MEM

Inference results

- → smooth and well-calibrated likelihoods, both for low and high event count
- → close to optimal information
- → Uncertainty bands: MC integration error & syst. error from limited training statistics (Bayesian NN)

Outlook

Comparison to other simulation-based inference methods

- Matrix element information used during inference
 - → does not need to be learned by network
- Factorization of ME, transfer function, acceptance
 - → less "black box", more control of uncertainties
- Computes phase space integral for every event
 - → can be made fast, efficient & stable (see paper)

Outlook

- → extend to NLO QCD
- → discuss analysis applications with experimentalists