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Given an adequate method of defining “sameness” pseudo-labels,  
self-supervised models can be trained to extract features without 
relying on explicit labels

Motivation
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✓ Training (pretext task) on huge datasets from real collisions


✓ Mitigate dependence of models on difference between simulation and reality


✓ Inject notions of “sameness” (e.g. symmetries) into learned representations [1]

Potential perks for high energy physics…

[1] Symmetries, Safety, and Self-Supervision. B. M. Dillon, G. Kasieczka, T. Plehn et al. (2021)

https://scipost.org/preprints/scipost_202108_00046v2/
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Contrastive learning of jets via detector replicas

cells

tracks

Jet
A correlated set of particles with  
several learnable properties: 
(due to their composite nature)

✓ Process of origin (classification)


✓ Energy, mass (regression)


✓ Possible anomalous signatures
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[2] Configurable calorimeter simulation for AI applications A. Charkin-Gorbulin et al, Mach. Learn.: Sci. Tech. (2023)

Note: similar effort by MIT/KIT/SLAC 
(see their talk at BOOST) 

https://indico.physics.lbl.gov/event/975/contributions/8262/attachments/4079/5490/BOOST_Krupa_2.pdf
https://iopscience.iop.org/article/10.1088/2632-2153/acf186


Example of a positive jet pair

*inter-layer and track-cell edges not shown 5

random seed (a) random seed (b)



Graph encoder “backbone” model
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Global  
representation

∑

ha

MLP za

̂za ⋅ ̂zb = cos(θab)

Message-passing  
blocks
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Global  
representation

∑

ha

MLP za

̂za ⋅ ̂zb = cos(θab)

1. During SSL training, use “NT-Xent” loss [3] for each batch of  jet pairs:N = 300

L(za, zb) = − log
exp( ̂za ⋅ ̂zb/τ)

∑2N
i≠a exp( ̂za ⋅ ̂zi /τ)

̂za := za/ |za | ⟹ ̂za ⋅ ̂zb = cos(θab)where

[3] A Simple Framework for Contrastive Learning of Visual Representations. T. Chen, G. Hinton. et al. (2020)

Message-passing  
blocks

http://proceedings.mlr.press/v119/chen20j/chen20j.pdf
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Global  
representation

∑

ha

MLP za

̂za ⋅ ̂zb = cos(θab)2. During downstream training, can freeze backbone and train single-layer perceptron

Pretrained, frozen 
backbone class, E, …

ha
(128,300) ReLU (300,1)
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Probing the  contrastive spacez
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t-SNE decompositionContrast between jet pairs
• quark jet

• gluon jet



Downstream task 1: q/g tagging
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  39k trainable parameters

337k trainable parameters
vs.
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Downstream task 2: jet E reg.



a hammer and a nail talking to each  
other using artificial intelligence

Thank you!


