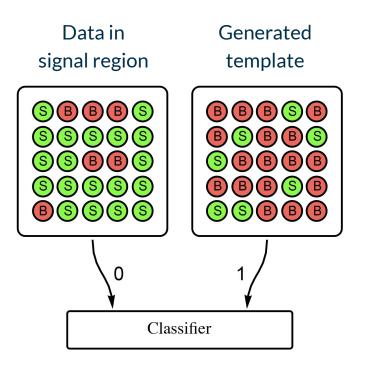
DRAPES: Diffusion for weakly supervised searches

Hammers and Nails, Swiss Edition 2023 Debajyoti Sengupta, Matthew Leigh, Johnny Raine, Sam Klein, Tobias Golling

Established Task

- Use CWOLA to look for anomalous samples

- Signal region contains: **B+S**
- Template should contain: B (+S')

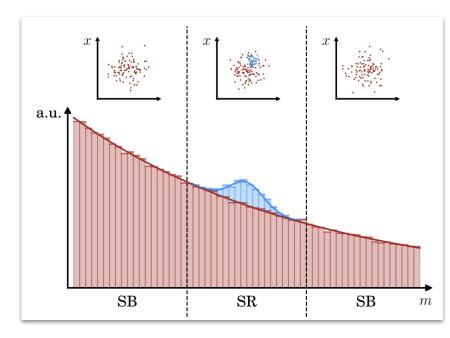


Weakly Supervised Regime

- Generate a background template in signal region (SR)
- Train a classifier b/w template and SR data.

Existing template generators:

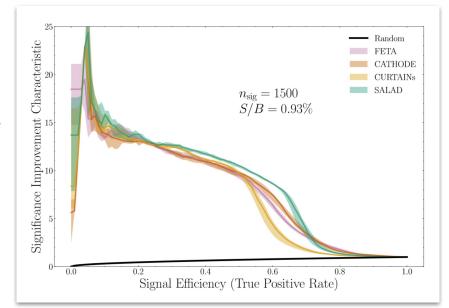
- 1. **<u>CATHODE</u>**: flow based conditional generator (data driven)
- 2. **<u>CURTAINs</u>**: flow based feature morpher (data driven)
- 3. **<u>FETA</u>**: flow based feature morpher (simulation assisted)
- 4. **SALAD**: classifier based reweighting (simulation assisted)



Weakly Supervised Regime

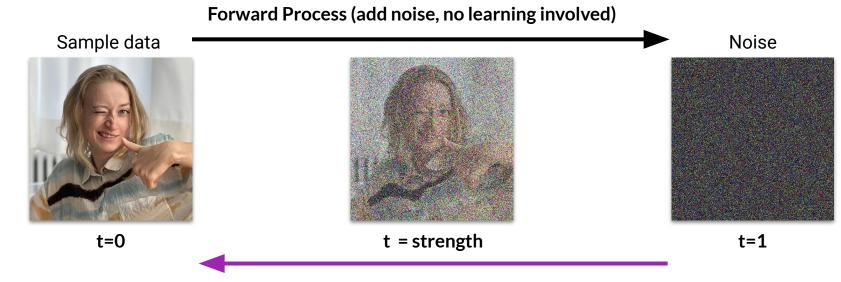
- Results for the <u>LHCO RnD dataset</u>
 - Background: QCD dijets
 - Signal: W' \rightarrow X(qq) Y(qq)
- Features: $m_{J_1}, \Delta m_J = m_{J_1} m_{J_2}, \tau_{21}^{J_1}, \tau_{21}^{J_2}, \Delta R_{JJ} = \sqrt{\Delta \eta^2 + \Delta \phi^2}$

SIC = $\varepsilon_s / \sqrt{\varepsilon_b}$ as a function of ε_s for 1500 signal samples doped in. All methods perform comparatively well in regions of interest



from : <u>2307.11157</u>

Drapes: Denoising resonant anomalies by perturbing existing samples



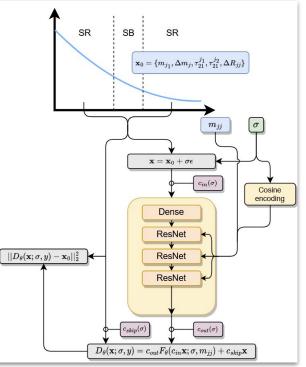
Reverse Process (requires neural net)

Drapes: Training and inference

- → Dense residual network
- → EDM **Diffusion** setup (PC-Droid)
- → Train on **SIDEBAND DATA**, Condition on mass.
- To Generate template:
 - $\circ \quad \text{Sample data} \rightarrow \text{add noise} \rightarrow \text{sample mass} \rightarrow \text{denoise}$

Considerations:

- 1. Where the data is sampled from
- 2. How much noise is added and then denoised



Drapes Variants: Where is the data sampled from?

DRAPES SB:

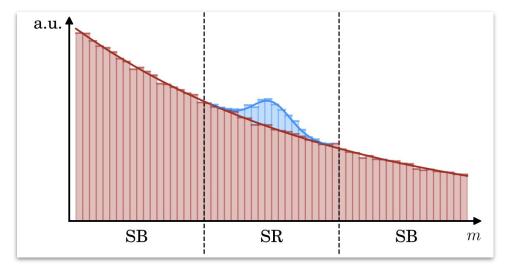
- Sample data (t = 0) from SB
- Give sample new mass (CURTAINs mode)

DRAPES SR:

• Sample data (t=0) from SR

DRAPES MC:

• Sample data (t=0) from MC (FETA mode)



Drapes Variants: How much noise is added and denoised?

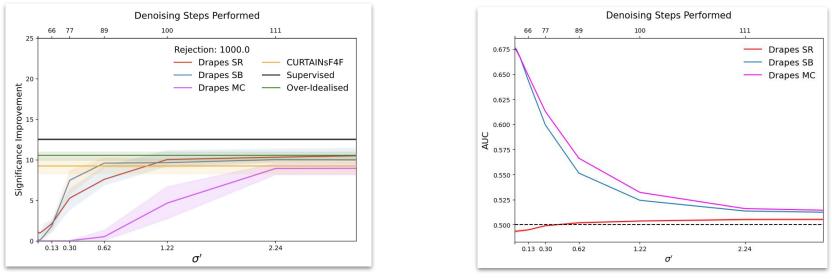
Drapes Φ :

- Full noise and denoise (corresponding to a Gaussian of width 80, and back) (CATHODE Mode)

Can also choose to only add a fraction of the noise, and then denoise.

- i.e. instead of sigma = 80, stop at sigma = sigma' and denoise.
- Performing fewer diffusion steps \Rightarrow faster

Effect of partial diffusion



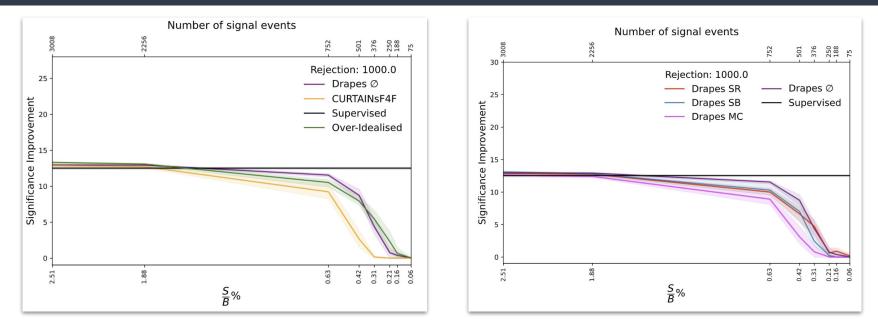
Performance ~ saturates at sigma' = 2.24, also where AUCs <= 0.52:

- \rightarrow Good template reconstruction + good performance
- \rightarrow Not full denoising \rightarrow saves on time.

AUC for template vs background as a function of sigma'

Performance

Performance as a function of signal present

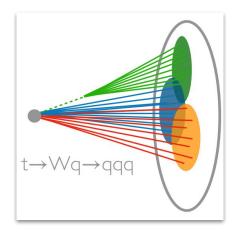


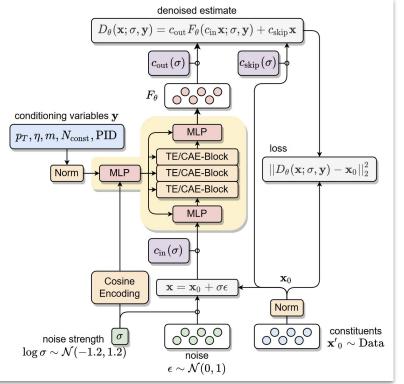
Drapes Φ outperforms existing competition across a wide range!

Drapes for constituent level

Instead of the high level features, train a diffusion model to generate the jet point cloud.

Use Droid model to conditionally generate jets

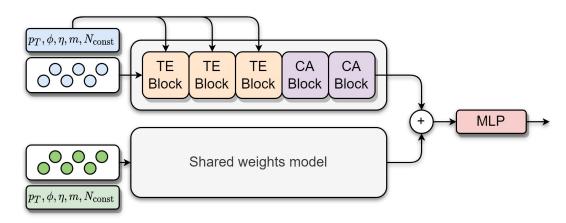




https://arxiv.org/abs/2307.06836

Discriminator used for CWoLa

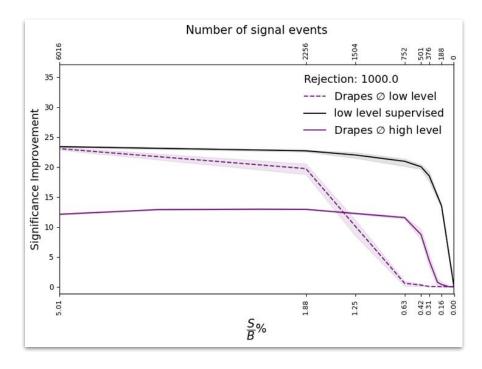
- The two jets are processed by the same network.
- The outputs are added and passed through MLP.



Drapes for constituent level

Huge improvement in SIC for several dopings.

High level features still performant for lower signal strengths!



Conclusion

- 1. Diffusion perfectly viable for template generation
- 2. Partial diffusion saves time on template generation
- 3. Weakly supervised searches with low level data!

Backup

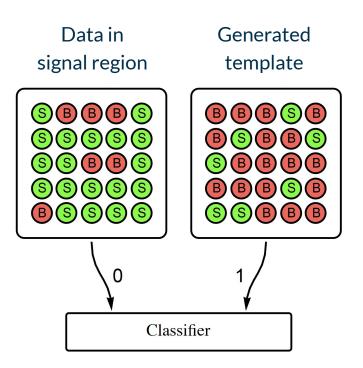
Diffusion Models

Forward / noising process

• Sample noise $p_T(\mathbf{x}_T) \rightarrow \text{turn into data}$

Established Task

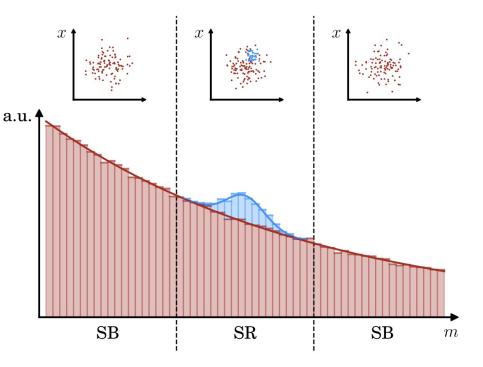
- Use CWOLA to look for anomalous samples
- Signal region contains: B+S
- Template should contain: B (+S')



CATHODE

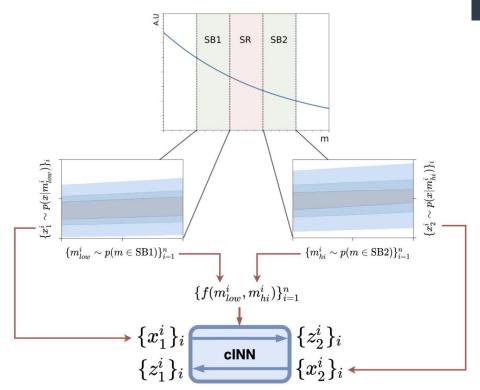
- Use NORMALISING FLOW

- Train on sidebands
- Condition on mass
- Use to generate in signal region



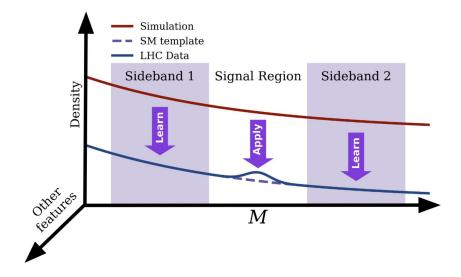
CURTAINS

- Rather than generate from scratch
- Learn how to modify data
 - ie: Take a sample, give it a new mass, and morph

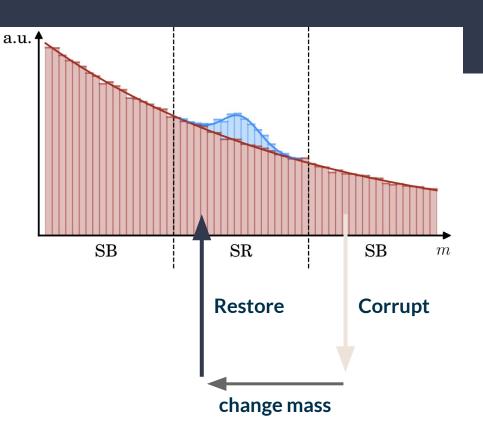


FETA

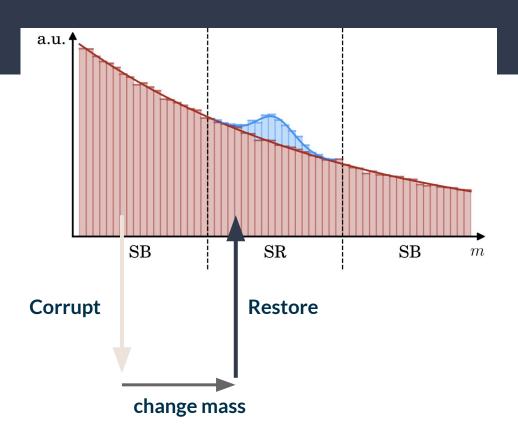
- Learn to transform MC to DATA
- Train by transforming sidebands
- Apply in signal region
- Learn how to modify data
 - Give it new origin



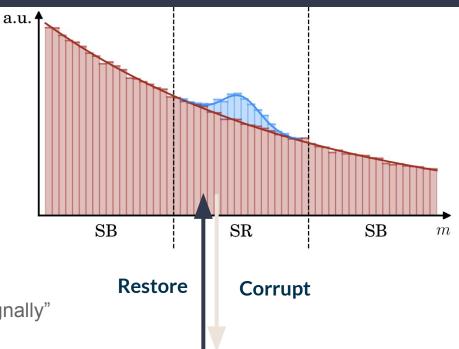
- IMG2IMG allows us to modify data
- Where do we modify our data from?
 - DRAPES SB
 - From the sideband
 - Give sample new mass
 - CURTAINS



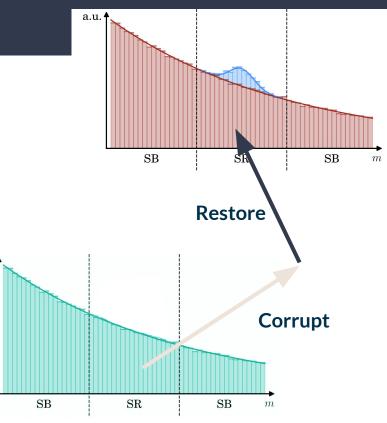
- IMG2IMG allows us to modify data
- Where do we modify our data from?
 - DRAPES SB
 - From the sideband
 - Give sample new mass
 - CURTAINS



- IMG2IMG allows us to modify data
- Where do we modify our data from?
 - DRAPES SR
 - From the signal region
 - Should make signal samples less "signally"



- IMG2IMG allows us to modify data
- Where do we modify our data from?
 - DRAPES MC
 - From the another MC template
 - Change sample generation
 - FETA



a.u.

But there's more!

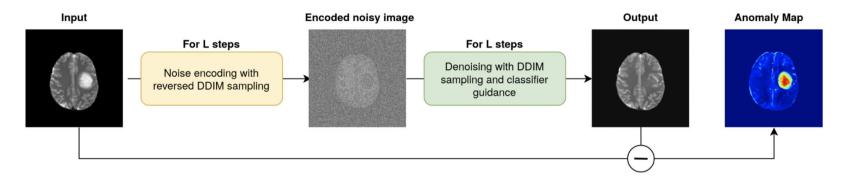
• Directly generating from noise is not the only way diffusion models can be used

IMG2IMG

IMG2IMG

Diffusion Anomaly Detection

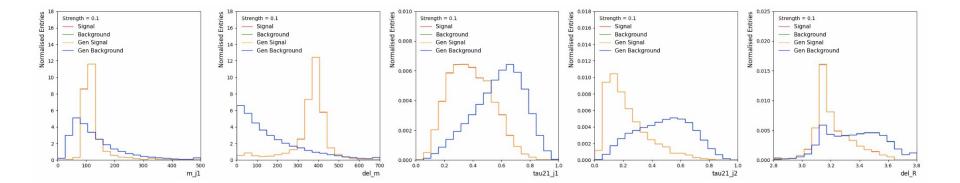
- Method has seen success in image applications
- Won't be exactly how we will use it



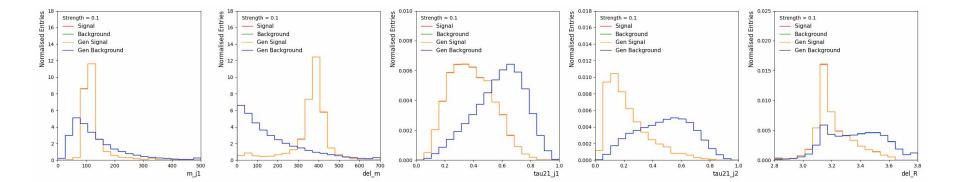
Diffusion Anomaly Detection

- We can **NOT** apply this type of anomaly detection in our data
- Images: High dimension, anomaly is localised, takes sample off manifold
- LHCO: Low dimension (5), anomaly is in the over/under density of a region
- So for now we stick to building the background templates + CWOLA

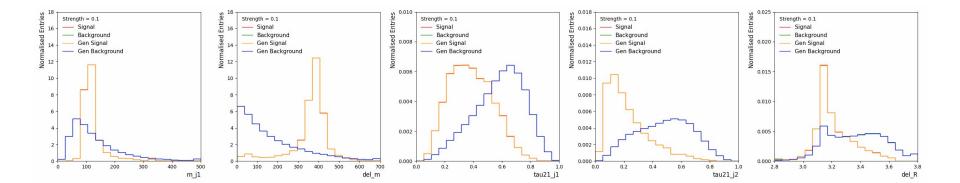
Drapes SR – Effect on Distributions



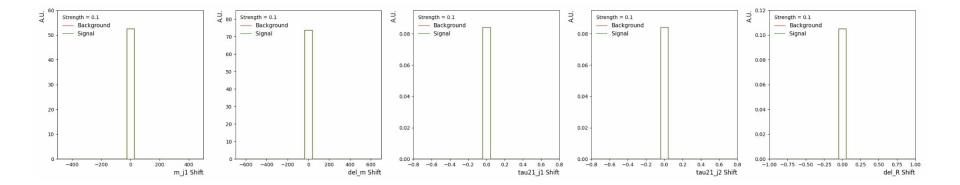
Drapes SR – Effect on Distributions



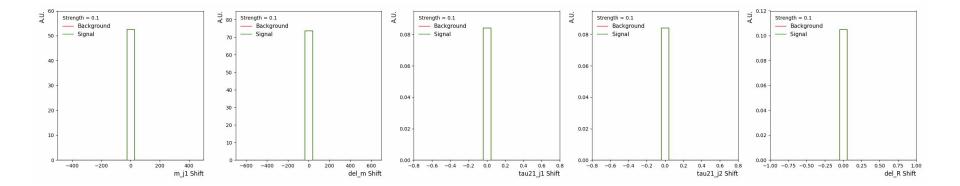
Drapes SR – Effect on Distributions



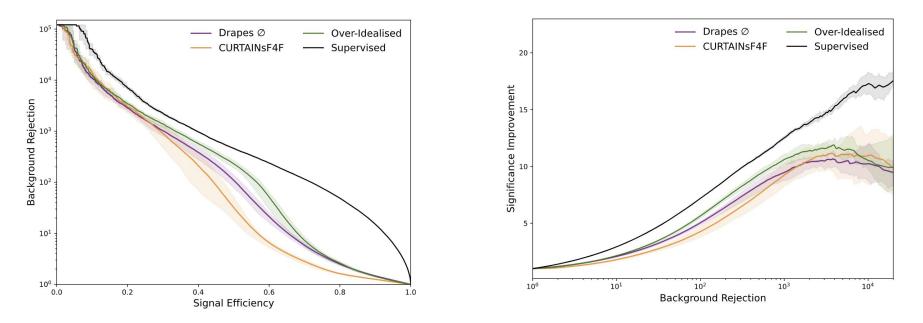
Drapes SR – Effect on Sample



Drapes SR – Effect on Sample



Performance



Data doped with 1000 signal like events.