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Established Task

- Use CWOLA to look for anomalous samples

- Signal region contains: B+S
- Template should contain: B (+S’)

Data in 

signal region

Generated 

template
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Weakly Supervised Regime
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- Generate a background template in signal region (SR)
- Train a classifier b/w template and SR data.

Existing template generators:

1. CATHODE: flow based conditional generator (data 
driven)

2. CURTAINs: flow based feature morpher (data driven)

3. FETA: flow based feature morpher (simulation assisted)

4. SALAD: classifier based reweighting (simulation 
assisted)



Weakly Supervised Regime
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- Results for the LHCO RnD dataset
- Background: QCD dijets
- Signal: W’ → X(qq) Y(qq)

- Features:

SIC = εs / √εb  as a function of  εs for 1500 signal samples doped in.

All methods perform comparatively well in regions of interest

from : 2307.11157

https://zenodo.org/records/4536377
https://arxiv.org/abs/2307.11157


Drapes: Denoising resonant anomalies by perturbing existing samples
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t=0 t=1t  = strength

Forward Process (add noise, no learning involved)

Reverse Process (requires neural net)

Sample data Noise



Drapes: Training and inference

➔ Dense residual network
➔ EDM Diffusion setup (PC-Droid)
➔ Train on SIDEBAND DATA, Condition on mass.

● To Generate template:
○ Sample data → add noise → sample mass → denoise

Considerations:
1. Where the data is sampled from
2. How much noise is added and then denoised
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Drapes Variants: Where is the data sampled from?
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DRAPES SB:
● Sample data (t = 0) from SB
● Give sample new mass (CURTAINs mode)

DRAPES SR:
● Sample data (t=0) from SR

DRAPES MC:
● Sample data (t=0) from MC (FETA mode)



Drapes Variants: How much noise is added and denoised?
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Drapes Φ :
- Full noise and denoise (corresponding to a Gaussian of width 80, 

and back) (CATHODE Mode)

Can also choose to only add a fraction of the noise, and then denoise.
- i.e. instead of sigma = 80, stop at sigma = sigma’ and denoise.
- Performing fewer diffusion steps ⇒ faster



Effect of partial diffusion
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Performance ~ saturates at sigma’ = 2.24, also where AUCs <= 0.52:
→ Good template reconstruction + good performance
→ Not full denoising → saves on time.

SIC(1E3) as a function of sigma’ AUC for template vs background as a 
function of sigma’



Performance
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Performance as a function of signal present
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Drapes Φ outperforms existing competition across a wide range!
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Instead of the high level features, train a diffusion 
model to generate the jet point cloud.

Use Droid model to conditionally generate jets

https://arxiv.org/abs/2307.06836

Drapes for constituent level



Discriminator used for CWoLa
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● The two jets are processed by the 
same network.

● The outputs are added and passed 
through MLP.



Drapes for constituent level
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Huge improvement in SIC for several 
dopings.

High level features still performant for 
lower signal strengths!



Conclusion
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1. Diffusion perfectly viable for template generation
2. Partial diffusion saves time on template generation
3. Weakly supervised searches with low level data!



Backup
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Diffusion Models

17



Established Task

- Use CWOLA to look for anomalous samples

- Signal region contains: B+S
- Template should contain:B (+S’)

Data in 

signal region

Generated 

template
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CATHODE

- Use NORMALISING FLOW

- Train on sidebands

- Condition on mass 

- Use to generate in signal 
region
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CURTAINS

- Rather than generate from scratch

- Learn how to modify data

- ie: Take a sample, give it a 
new mass, and morph
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FETA

- Learn to transform MC to DATA

- Train by transforming sidebands

- Apply in signal region

- Learn how to modify data

- Give it new origin
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- IMG2IMG allows us to modify data

- Where do we modify our data from?

- DRAPES SB

- From the sideband

- Give sample new mass

- CURTAINS

Drapes

change mass

CorruptRestore
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- IMG2IMG allows us to modify data

- Where do we modify our data from?

- DRAPES SB

- From the sideband

- Give sample new mass

- CURTAINS

Drapes

change mass

RestoreCorrupt
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- IMG2IMG allows us to modify data

- Where do we modify our data from?

- DRAPES SR

- From the signal region

- Should make signal samples less “signally”

Drapes

CorruptRestore
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- IMG2IMG allows us to modify data

- Where do we modify our data from?

- DRAPES MC

- From the another MC template

- Change sample generation

- FETA

Drapes

Corrupt

Restore
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But there’s more!

● Directly generating from noise is not the only way diffusion models can be used
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IMG2IMG

t=0 t=1t=strength
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IMG2IMG

t=0 t=1t=strength

“picasso painting”
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Diffusion Anomaly Detection

https://arxiv.org/pdf/2203.04306.pdf

- Method has seen success in image applications

- Won’t be exactly how we will use it
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Diffusion Anomaly Detection

- We can NOT apply this type of anomaly detection in our data

- Images: High dimension, anomaly is localised, takes sample off manifold

- LHCO: Low dimension (5), anomaly is in the over/under density of a region

- So for now we stick to building the background templates + CWOLA
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Drapes SR - Effect on Distributions
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Drapes SR - Effect on Distributions
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Drapes SR - Effect on Distributions
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Drapes SR - Effect on Sample
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Drapes SR - Effect on Sample
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Performance

36

Data doped with 1000 signal like events.


