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Masked modelling

Images and words

 The BERT pretraining Visual Tokens
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Masked modelling

Does this work for HEP: Jets

* |ike Images: continuous
iINnputs

* Like language: ‘meaningful’
constituents

* Unlike both: no positional
information
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Masked modelling

Performance

 How to quantify the performance of a
pretrained model?

* Array of downstream tasks — fine tuning

* Pretraining on 100M Jets from JetClass

* Fine tuning on array of different jet level
classes
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https://zenodo.org/records/6619768

Masked modelling

Training strategies

* Freeze the encoder = fixed backbone (Prediotion]
A
* Train the prediction head and the [ Prediction Head ]
backbone = fine-tune backbone A
encodings
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Masked modelling

Fine tune on pretraining set

| 10-Class Classification Performance
 JetClass contains 10 classes
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Masked modelling

Fine tune on new dataset
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Masked modelling

Fine tune on weak supervision

~

* Take two QCD samples

 Add x top Jets to one sample and
label ‘signal’

* Fine-tune model on noisy labels

Significance improvement
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* Pretraining helps!
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Summary

Masked particle modelling

 Masked particle modelling is a very useful pretraining task for HEP
e Permutation invariant issue not tackled in other domains

* Plays important role in HEP

* |f we really learned a useful representation then this should be useful for many
downstream tasks



Masked modelling

Permutation invariance

 [hree approaches to
permutation invariance

* |nput to backbone

* |nput to masked
prediction head
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Masked modelling

Permutation invariance I’m working to add a
red line to this figure
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