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Masked modelling
Images and words

• The BERT pretraining 
strategy has been very 
successful for NLP


• So has BEiT for images


• Both based on recovering 
masked input sequences 

Image from 2106.08254
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Masked modelling
Does this work for HEP: Jets

• Like images: continuous 
inputs


• Like language: ‘meaningful’ 
constituents


• Unlike both: no positional 
information
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• How to quantify the performance of a 
pretrained model?


• Array of downstream tasks — fine tuning


• Pretraining on 100M Jets from JetClass


• Fine tuning on array of different jet level 
classes
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https://zenodo.org/records/6619768


• Freeze the encoder = fixed backbone


• Train the prediction head and the 
backbone = fine-tune backbone


• Reinitialise everything from scratch = 
from scratch
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Masked modelling
Fine tune on pretraining set

• JetClass contains 10 classes


• Select 1M events and fine tune


• The backbone model 
outperforms from scratch
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Masked modelling
Fine tune on new dataset

• The learned features are generically 
useful


• The performance gain applies to 
data generated with a different 
simulator


• Change card to Atlas and fine-
tune (JetClass is CMS)
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Masked modelling
Fine tune on weak supervision

• Take two QCD samples


• Add x top jets to one sample and 
label ‘signal’


• Fine-tune model on noisy labels


• Pretraining helps!
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Summary
Masked particle modelling

• Masked particle modelling is a very useful pretraining task for HEP


• Permutation invariant issue not tackled in other domains


• Plays important role in HEP


• If we really learned a useful representation then this should be useful for many 
downstream tasks 

9



Masked modelling
Permutation invariance

• Three approaches to 
permutation invariance


• Don’t worry about it


• Input to backbone


• Input to masked 
prediction head
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Masked modelling
Permutation invariance I’m working to add a 

red line to this figure
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• Three approaches to 
permutation invariance


• Don’t worry about it


• Input to backbone


• Input to masked 
prediction head


