

How will AI enable autonomous particle accelerators?

V. Kain Data Science for Beam Operation Beams Department, CERN

Hammers & Nails 2023 - Swiss Edition, V. Kain, 1-Nov-2023

Why autonomous accelerators? Examples...

Summary talk CERN Injector and Experimental Facility Workshop (IEF) '21

2. Address reproducibility and availability

- Availability OK, under control of Groups. **Reproducibility** is critical concern with increasing flexibility and multi-destination operation
- Transmission problems and instability in beam delivery in many locations.
 "Need more time in 2022"→have to ensure this is there (add in schedule?) #A
- Addressing reproducibility relies on many factors including equipment, accelerator modelling and high-level controls approach

Input from CERN Joint Accelerator Performance Workshop'22

 \rightarrow Hysteresis is severe limitation for efficiency and flexibility in most machines, current mitigation methods wasting energy

 $\ast~$ ~ 15 % of yearly cost of SPS fixed target cycle for "waste" cycles and quasi-degauss Cycle MD1

Efficiency Think Tank (ETT): Oct '22 - Mar '23

ETT = Body for brainstorming for strategy definition for more efficient CERN accelerator exploitation

Response to Injector and Experimental Facility Workshop 2021 concerns with efficiency and reproducibility

- * large extended team for community discussions, small core team to synthesise directions
- Wide range of efficiency topics touched
 - * shorter turn-around, more flexibility, energy efficiency,...

Key target areas identified

- * <u>7 high priority recommendations</u>
- \rightarrow CERN accelerator sectorwide project to implement recommendations
 - * Efficient Particle Accelerators (EPA) project: 5 year project \rightarrow improvements ready for HL-LHC

7 recommendations \rightarrow Automating exploitation

CERN Esplanade des Particules 1 P.O. Box 1211 Geneva 23 Switzerland	EMDS NO.REV.VALIDITY29225141.0RELEASED	
CERN	REFERENCE 2922514	
	Date: July 28, 2023	
PROJECT REPORT		
Efficiency Think Tank Report		

- 1. Hysteresis compensation
- 2. Automatic and dynamic beam scheduling
- 3. Automatic LHC filling
- 4. Auto-pilots
- 5. Automatic fault analysis, recovery and prevention
- 6. Automatic testing and sequencing
- 7. Automatic parameter optimisation

7 recommendations \rightarrow Automating exploitation

CERN Esplanade des Particules 1 P.O. Box 1211 Geneva 23 Switzerland	EMDS NO.REV.VALIDITY29225141.0RELEASED	
CERN	REFERENCE 2922514	
	Date: July 28, 2023	
PROJECT REPORT		
Efficiency Think Tank Report		

1. Hysteresis compensation	\rightarrow Fully automated standard physics	
2. Automatic and dynamic beam scheduling	operation	
3. Automatic LHC filling		
4. Auto-pilots		
5. Automatic fault analysis, recovery and prevention		
6. Automatic testing and sequencing	\rightarrow Goal: reduce commissioning	
7. Automatic parameter optimisation	time by 50 %	

Hammers & Nails 2023 - Swiss Edition, V. Kain, 1-Nov-2023

7 recommendations \rightarrow Automating exploitation

Esplanade des Particules 1 P.O. Box 1211 Geneva 23 Switzerland	EMDS NO.REV.VALIDITY29225141.0RELEASE
CERN	REFERENCE 2922514
	Date: July 28, 2023 PROJECT REPORT
	I ROJECI REFORI
Efficienc	7 Think Tank Benort

AI	Hysteresis compensation	\rightarrow Fully automated standard physics operation
2.	Automatic and dynamic beam scheduling	
AI	Automatic LHC filling	
AI	Auto-pilots	
AI	Automatic fault analysis, recovery and prevention	
6.	Automatic testing and sequencing	ightarrow Goal: reduce commissioning
AI	Automatic parameter optimisation	time by 50 %

Hammers & Nails 2023 - Swiss Edition, V. Kain, 1-Nov-2023

Predicting magnetic hysteresis and eddy current effects

Potentially game-changing!

Time-series forecasting problem: need magnets to be measured on test bench $[B_t, B_{t+1}, \dots, B_{t+n-1}], [I_t, I_{t+1}, \dots, I_{t+n+N}] \rightarrow [B_{t+n}, B_{t+n+1}, \dots, B_{t+n+N}]$

First operational experience:

• feedforward correction triggered before every cycle

accuracy not sufficient yet

First results PhyLSTM for SPS main dipoles assuming $\ddot{B} + g(B, \dot{B}) = \Gamma I(t)$, next: Transformers

SPS main dipole field prediction vs measured, for fixed target cycles

Hammers & Nails 2023 - Swiss Edition, V. Kain, 1-Nov-2023

Auto-pilots: Adaptive control for time-varying systems

Time-varying response: limitation for using data-driven surrogate models for control so far.

- Optimal control with Gaussian Processes
 - * Model-based RL with GPs for dynamics model: very sampleefficient
 - * Deal with time-varying systems \rightarrow add time t in state space
 - * Example: with 10 DOF for trajectory steering problem and time-varying lattice at AWAKE electron line
- Continuous control with Adaptive Bayesian Optimisation
 - * Bayesian Optimisation for time-varying systems
 - * Model objective function f as f(x, t): separate kernels for x, t
 - * Example: successful $n \times 50$ Hz intensity ripple control for slow extracted spill for CERN North Area fixed target experiments

Hammers & Nails 2023 - Swiss Edition, V. Kain, 1-Nov-2023

0.4

0.3 0.0

0.2

0.4

normalised amplitude

0.6

50 Hz 100 Hz

85 %

90 % 0.15 norm, ampl

0.8

1.0

CERN

Plans and remaining challenges

5-year project to automate CERN's accelerator fleet

* Resources to be approved middle of next year, GPUs to come as soon as available

Scalable solutions for many tasks available

- * Data processing framework (UCAP) with GPUs and frameworks to define RL problems and other controllers
- * CERN Machine Learning Platform as model repository

Many challenges still ahead

* Active learning for online systems, dealing with uncertainties,...

Need to organise transition to new exploitation model

