
Figures 5 & 6. Average reward on the 

training and validation sets: 

comparison between the Rainbow 

DQN and the Basic DQN method.
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Methodology

Introduction

Reinforcement Learning (RL) is a paradigm of Machine Learning 

used to train an autonomous agent capable of behaving optimally in 

a given environment.

What if this paradigm could be used to optimize the potential of 

telescopes as sky watchers? An autonomous telescope, 

unburdened by human biases and complications, could be able to 

discover solutions we’ve been missing this whole time.

Figure 1. The RL paradigm explained: the presence of the agent, environment, states, 

actions, and rewards. The objective of the agent is learning an optimal or nearly-

optimal policy able to map states to actions, with the goal of maximizing the 

expected discounted cumulative reward, also known as expected return.

A framework has been developed for leveraging a dataset containing

examples of interactions between a telescope and the sky as an 

environment. The dataset should contain (state, action, reward, next

state) records that will be sampled to enable learning. Experiment 

configurations will personalize the training and testing phases.

Figure 2. The RL framework enabling learning: a training buffer will wrap the user 

dataset as an environment, while experiment configurations will guide the 

process. A model trainer and tester will be used to train and evaluate the resulting

self-driving telescope.

Our results have been obtained using a dataset simulated at the Stone 

Edge Observatory (SEO) with a state space containing variables

related to the telescope, the moon, and the sun, an action space

consisting of right ascension/declination pairs, and t-effective as a 

reward variable.

The action space has been properly discretized in an optimized number

of bins and angular distance mapping is used to gather rewards based

on predictions. This mechanism ensures consistency with possible lack

of action samples in front of a portion of the states.

Several methods for discrete action spaces have been compared using

a symmetric network structure and hyper-parameters.

Results

Several methods in the class of policy-based, value-based, and 

evolutionary approaches have been compared based on a holdout

method. Using the average effectiveness distribution as a metric, 

obtained by playing many episodes and averaging the normalized

reward gained by the trained network, value-based methods have

shown remarkable success.

Figure 3. Average effectiveness distribution comparison among 

some value-based, policy-based, and evolutionary computation 

strategies.

Several extensions to the Deep Q-Network method (DQN) have been

added to the model, ensuring higher performance and generalization

capabilities. The extensions have been further combined into a 

Rainbow DQN network.

Figure 4. Average effectiveness distribution 

comparison among some extensions to the 

DQN method.

In partnership with:

Conclusions

A proper framework has been developed for the purpose of wrapping

offline datasets with the goal of using them as environments and 

enabling RL training. Our results on the SEO dataset suggest that RL 

algorithms can be used to optimize the sequential schedule of a 

telescope survey. 
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