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What is an information bottleneck (IBN)?

Given a neural network

Classification AE  i-2-i/Inverse problems
X = — Neural Network |— ¢ X ¥
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/ : ! '\‘ Latent space can be:
N . by = Asingle vector/tensor
! @) ! = Hierarchical (Markov) vectors/tensors
: ! =  Multi-vector/Multi-tensor
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Deterministic:  f,(x) 95(2)
Stochastic: q,(2|%) pyle|2)

FLOWS: f,x) 9(2) = 1, (2)



What is an information bottleneck (IBN)?

Definition of Information Bottleneck

The Information Bottleneck (IBN) theory is a framework for understanding the trade-off

between the amount of information that is preserved in a representation and the amount
of “compression” that is achieved

The IBN theory proposes that a good representation is one that preserves the most
relevant information while discarding all irrelevant information for a targeted task
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IBN based autoencoding °

Information Bottleneck: IBN-AE

y
Lagrangian formulation
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[ qg(z]x)]
15(X5Z) = Ey,(x,2) |log —
¢ qe (x,2) _ q¢(z) _
po(x|2)

[¢79(Z,X) =E px<X> _

do (X,Z) 1



IBN based autoencoding !
0(2)p2(2))

Variational decomposition of terms
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IBN based autoencoding e

Bounded Information Bottleneck (BIB) Autoencoder [BIB-AE]

LpiB-AE (¢,0) = 14(X;Z) — BI&(Z; X)
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Generalization of existing methods based on IBN

IBN: generalization of existing schemes

VAE and 3 —VAE: Variational Autoencoder
ﬁﬂ—VAE(¢7 0) = pr(X) Dk, (Q¢>(Z|X = X)||pz(z))] _BEpr(X) []E%(ZIX) [logpg(x|z)]l
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Generalization of existing methods based on IBN

BIB: generalization of existing schemes

InfoVAE:
Lintovak (¢,0) = I4(X5Z) — BE,, (x) |Eq, (2)x) [10g po(x[2)]]
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Generalization of existing methods based on IBN

BIB: generalization of existing schemes

VAE/GAN
[’VAE/GAN(¢7 0) = Epr(x) Dk (q4(2[X = x)||p (Z))l —p Epr(X) []Eq¢(ZIX) [log pg (X|Z)]1
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Restrictions of IBN

= The information bottleneck (IB) theory posits that a neural network can be trained to

extract the most relevant information from its inputs while discarding task irrelevant

information

= However, it has a number of restrictions:

IBN does not have any meaningful latent space that would correspond to the
physics of underlying phenomena

The latent space does not correspond to typical physical observation or
measurement models

IBN does not explain systems such as AAE, CycleGAN, Probabilistic AE and many
others

IBN does not envision an optimization of detectors, sensors and antennas as

“physical encoders”



Restrictions of IBN

BIB: generalization of existing schemes

AAE: Adversarial Autoencoder — Not a case!

Laae(9,0) = Dk (Gy(2)Ip2(2)) — BEy, (x) [Eqy (21x) log po(x|2)]]

I4(X5Z) = Ep, (x) [DkL (94(2|X = x)||pz(2))] =Dk (G4(2)[|p=(2))

o\X . .
Observation space constraints

14(X;Z)
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TURBO: generalized translation problem formulation

Main difference with IBN:

= Fundamental IBN task-irrelevance concept at the encoder is replaced by a concept of
satisfaction of “relevance” to physical constraints on the latent space



TURBO: generalized translation problem formulation

Main consequences

= |mpose meaningful physical priors on latent space

= |ncorporate a fact the that data and latent space representation can be dependent
= Consider all options of paired, unpaired and partially paired data

= Consider two-way propagation of information (TURBO):

" Encoding (generation) from both data and latent spaces
= Link to CycleGAN-like architectures



TURBO: generalized translation problem formulation

IBN TURBO
(6,0) = arg minLipy - Ak (6, 0) (6,0) = arg;gaxﬁme“ (¢,0)

£IBN—AE (gb, 9) = Iqs(X; Z) — qus,g(z; X) ,CDireCt (¢, 0) =S Igzb(X, Z) + Allfg,@(z; X)

: Link between data and latent space :
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Px (%) Pz (Z) p(x,2)
one-way Data encoding/generation two-way
x fele) 5 pole) g
X qdﬂ;() Z pg(_>X|Z) X encoder decoder
encoder decoder

2 Mo % o)
decoder encoder
Type of latent space

“virtual” latent space physically meanigful latent space



TURBO: generalized translation problem formulation

TURBO

Direct part Reverse part

B3

Px (X)©

Lagrangian formulation

A A

<¢7 0) — arg¢I?aX£TURBO(¢7 0)

CTURBO(¢7 9) _ EDirect (Qb, 9) + aﬁReverse (Qb, 6))
LPT (¢,0) = T3(X; Z) + M I 4(Z; X)
[ Reverse (qb, Q) — Ig(z, X) + )\21'279()(; Z)

G. Quétant, M. Drozdova, V. Kinakh, T. Golling, and S. Voloshynovskiy, "Turbo-Sim: a generalised generative model with a physical latent
space." NeurolPS, ML4PhysicalSciences2021.



TURBO: generalized translation problem formulation

Direct part

Encoder loss

[(X;Z) =E

p(x,z)




TURBO: generalized translation problem formulation

Direct part

Decoder loss
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TURBO: generalized translation problem formulation

Decoder loss
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TURBO: generalized translation problem formulation

Enocder loss
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Generalization of existing methods based on TURBO

TURBO: generalization of existing schemes
AAE
Laae(9,0) = Dk (44(2)||p2(2)) — BEp, x)Eq, (21x) [108 po(x[2)]

LP (6,6) = Dt (pa(2)186(2)) = By Ea ey g o (x}2)] i minimization form
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Direct part
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Generalization of existing methods based on TURBO

TURBO: generalization of existing schemes

Pix2Pix (paired setup) and SRGAN

»CPiXQ Pix(e) — EEp(x,z) [log q¢ (Z‘X)l o pKL (Cﬁb (Z> sz (Z))J

L, (z,z) Ds

TURBO

Direct part Reverse part 15.0(X;2Z)

ddi(z)
@
p(x,z)
=]
Pz(2) T4(X; Z)

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros, Image-to-Image Translation with Conditional Adversarial Networks, CVPR, 2017

Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z. and Shi, W., Photo-
realistic single image super-resolution using a generative adversarial network. CVPR 2017



Generalization of existing methods based on TURBO

TURBO: generalization of existing schemes
CycleGAN (unpaired setup)

Loyereaan (¢,0) = — Dxr (02(2)[135(2)) + Ep, () Eq, (z1) [l0g po(x]2)]
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Regression problems

HEP translation problem

TURBO
Direct part
=]
px(x)@
p(x,z)
(=]
Pa(2) 7%(X; Z)

Physical meaninful latent space

Z is the theory space, i.e. right after the collision, before any interaction with the detector
X is the experiment space, i.e. after reconstructing the detector signal

G. Quétant, M. Drozdova, V. Kinakh, T. Golling, and S. Voloshynovskiy, "Turbo-Sim: a generalised generative model with a physical latent
space." NeurolPS, ML4PhysicalSciences2021.



Regression problems

HEP translation problem
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Conclusions:

=  Much sense in maximising mutual information since X and Z are very correlated
= Competitive with state-of-the-art, outperforming it in some tasks
® Trained for both generation and inference at the same time

G. Quétant, M. Drozdova, V. Kinakh, T. Golling, and S. Voloshynovskiy, "Turbo-Sim: a generalised generative model with a physical latent
space." NeurolPS, ML4PhysicalSciences2021.
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Regression problems

Hubble-to-Webb translation problem

=]

WEBE MIRROR
6.5 METERS

Apr. 24, 1990 Dec. 25, 2021

= Different size of mirrors: 6,5 m Webb vs 2,2 m of Hubble
= Different bands

= Hubble: ultraviolet light, visible light and a small slice of infrared

= Webb: optimized for infrared but can see red, orange, and gold visible light.
= Different resolutions, sensitivities and captures different phenomena

https://www.jwst.nasa.gov/content/about/comparisonWebbVsHubble.html



Regression problems

Hubble-to-Web translation problem

Results of prediction

Hubble Predicted Webb




Regression problems

Hubble-to-Web translation problem

Results of prediction

Hubble Predicted Webb
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Regression problems

Inverse problems = Sampling: fMRI (k-space), arrays (uv-plane)
=  Compressive sensing

= Learnable compressive sampling

= Denoising

= Restoration and reconstruction

a common basis
for most of imaging problems <

7 = f¢(X, €) =  Superresolution
o Known = |npainting
o Unknown \_

Physical “latent space”
Observa

Restored image

z = PyUx + €
z =Apx+e€



Regression problems

Square Kilometer Array (SKA) — imaging tool of the 21t century:
= Huge amount of data (expected data are about 1 PB per day)
= Problems with Big Data:
= Reconstruction (where? and how?)
= |ntercontinental data exchange
= Storage
= Analytics and Science

Similar problems in fMRI, CT, computational photography, etc.



Information Bottleneck: regression problems

T P¢\Ijx + € U Fourier transform operator

z =Asx+e€ Py sampling operator

po(x|2)

q¢(z|x)

9 Fixed geometry

Problems:
= Proper image priors §2(x)
= Joint optimization of sampling operator P (encoder g4(z[x) ) and decoder py(x|z).
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Conclusions

= \We considered IBN in the variational formulation

= |BN is a useful tool for the analysis and generalization of existing schemes
but it has its own restrictions

= TURBO can fulfill the gap in physical applications where data should have
some meaningful latent space

= TURBO can generalize schemes not governed by IBN and envision new
architectures

= Not covered problems:
= Extension to Probabilistic AE (latent space with FLOW)
= Extension to Diffusion-type models (latent space with Markov chain)
= Extension to score based models (linking MAP with physical models)



Conclusions

You can find more details about Turbo

u entropy
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