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The Interplay Between Theory/Models and Data
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Simulators are Ubiquitous in Science

e High Energy Physics
(Particle Collisions) 10°

1012

Neuroscience

(Neural Activity)

Cosmology
(Evolution of the Universe)
e Epidemiology
- (Epidemic Spreading)

Credit: Dalmasso (adapted from Cranmer et al, 2020)

@ For many complex phenomena, the only meaningtul
“theory”may be in the form of simulations.




Taxonomy ot Different Types of Simulators
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Simulation/Prediction to Scientific Inference

@ Revolution in simulators and Al deep generative models
(GANSs, transformers, difftusion models etc) & high-
performance prediction algorithms.
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Simulation/Prediction to Scientific Inference

@ Revolution in simulators and Al deep generative models
(GANSs, transformers, difftusion models etc) & high-
performance prediction algorithms.

@ But what about scientific inference?

@ Simulators are often poorly suited for the “inverse problem”
of inferring the causes behind observed phenomena.
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Scientific Inference and Causation

@ Much of ML targets “forward” problems and generative

models.

KiDS-450 (wCDM

Planck (ACDM) ---

In many science applications, however, R o =
5 )

the quantities of interest are internal
parameters 6, i.e. the “causes” of
observations in 8 — D problems.

Given observed data, constrain internal parameters of interest using
assumed theoretical/simulation model. Valid measures of uncertainty.




Likelihood-Based Inference

Likelihood

Data Generating . Observable Data
Process 6 L (D’ 9)




Likelihood-Free Interence (LFI)
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@ The likelihood cannot be evaluated. But it is implicitly
encoded by the simulator...

Simulate 0; ~ r(-), | D;|0; ~ L(-;0;)|where D; = (X;1, ..., Xin)

— Tg =1{(01,D1), (02,Ds),...,(0,Dp)},




Likelihood-Free Interence (LFI)
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L.ke%od (D; )
Data Generating Input Output Observable Data
Process 0 A .‘ —l

Forward Simulator

Parameters of

Image credit: Nic Dalmasso

@ The likelihood cannot be evaluated. But it is implicitly
encoded by the simulator...

@ Inference on parameters in this setting is called
likelihood-free inference (LFI), a.k.a. SBI

Simulate 0; ~ r(-), D;|0; ~ L(-;0;) where D; = (X;1,...,Xin)

— Tg =1{(01,D1), (02,Ds),...,(0,Dp)},




Classical LFI: Approximate Bayesian Computation
(ABC) [Rubin 1984; Overview of ABC: Sisson et al, 2018]

Prior distribution of
model parameter 6

Observational data

v

() Given a certain model,
perform n simulations, each
with a parameter drawn from
the prior distribution

(D Compute summary statistic
u from observational data

Simulation 1 Simulation 2 Simulation 3 Simulation n

(3 Compute summary -
u2 p 3

statistic p, for each H,
simulation

olu, 1) <& X X

@ Based on a distance p(*,*)
and a tolerance ¢, decide for
each simulation whether its
summary statistic is sufficiently B
close to that of the observed

data Posterior distribution of (® Approximate the posterior

model parameter 6 distribution of 6 from the distribution

of parameter values 6, associated
with accepted simulations.

J
|

mage credit: Sunnaker et al. 2013



https://arxiv.org/pdf/1802.09720.pdf

MOderﬂ I_Fl Landscape [review: Cranmer et al, PNAS 2019]

@ Use ML-based algorithms to directly estimate key inferential
quantities from simulated “train” set

7’B = {(91,7)1), ((92,D2), Ceey (HB,DB)}, Where (9 ~ ’I“('), D|(9 ~ E(,H)
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https://www.pnas.org/doi/full/10.1073/pnas.1912789117

Ex: Learning the Likelihood Ratio fpie)/fpiey)

[e.g, Cranmer et al, 2015; Thomas et al, 2016; Hermans et al, 2020; Durkan et al, 2020; Brehmer et al, 2020]

Approximating Likelihood Ratios with
Calibrated Discriminative Classifiers

Kyle Cranmer!, Juan Pavez?, and Gilles Louppe!
New York University
2Federico Santa Marfa University

March 21, 2016  arXiv:1506.02169

In light of this result, the likelihood ratio estimation problem can now be recast as a

(probabilistic) classification problem, by noticing that the decision function

px(x|61) |
px (x[6o) + px (x|6:)

§*(x) = (2.10)

modeled by a classifier trained to distinguish samples x ~ pg, from samples x ~ pg,

Learning Likelihood Ratios with Neural Network Classifiers

Shahzar Rizvi,">* Mariel Pettee,?' and Benjamin Nachman? 3 ¥
! Department of Statistics, University of California, Berkeley, CA 94720, USA
2 Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
3 . . . . . . .
Berkeley Institute for Data Science, University of California, Berée'l%,l\gz? 3@50,’] WOO



https://arxiv.org/abs/1506.02169
https://arxiv.org/abs/2305.10500

Ex: Learning the Likelihood Function fpie)
[e.g, Izbicki et al, 2014; Thomas et al, 2016; Durkan et al, 2020; Brehmer et al., 2020]

High-Dimensional Density Ratio Estimation with Extensions to
Approximate Likelihood Computation

AISTATS 2014; arXiv:1506.02169

Ann B. Lee Chad M. Schafer

Department of Statistics — Carnegie Mellon University

mate the ratio

RKHS basis (orthogonal wrt P)
(5)
Hence, we define our likelihood function estimator by
where f(x|) is the conditional density of x given 6,
and g(x) is the marginal density for x. This is, up to
a multiplicative factor that is not a function of 6, the
standard definition of the likelihood function.

[Submitted on 30 Nov 2016 (v1), last revised 11 Sep 2020 (this version,a?,)(lv: ’I 6" ’| ) ’| O 2 42
Likelihood-free inference by ratio estimation

Owen Thomas, Ritabrata Dutta, Jukka Corander, Samuel Kaski, Michael U. Gutmann LR trick and |ogi5tic regression


https://arxiv.org/abs/1506.02169
https://arxiv.org/abs/1611.10242

Ex: Learning the Posterior feiD)

[e.g, Papamakarios et al, 2016; Lueckmann et al, 2017; Alsing et al 2019; Izbicki et al, 2019; Greenberg et al, 2019]

Fast ¢-free Inference of Simulation Models with
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NeurlPS 2016; arXiv:1605.06376
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Flexible statistical inference for mechanistic models of
neural dynamics

NeurlPS 2017: arXiv:1711.01861
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Kaan Ocal'-2, Marcel Nonnenmacher, Jakob H. Macke'!
research center caesar, an associate of the Max Planck Society, Bonn, Germany
2 Mathematical Institute, University of Bonn, Bonn, Germany
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(S)INPE via MDNs

+ sequential updates
via proposal priors and reweighting

forn =1..N do
sample 0,, ~ p(0)
sample x,, ~ p(x|6,)

end
train g4 (0 | x) on {6, %, }
BB | x = X,)  E8) g5(6] X,)

(SINPE via MDNs

+ sequential updates via
importance-weighted loss

K, (xna XO) log q¢(9n|xn)’



https://arxiv.org/abs/1711.01861
https://arxiv.org/abs/1605.06376

MOderh I_Fl Landscape [review: Cranmer et al, PNAS 2019]

@ Use ML-based algorithms to directly estimate key inferential
quantities from simulated “train” set

7’B = {((91,7)1), ((92,D2), Ceey (HB,DB)}, Where (9 ~ ’I“('), D|(9 ~ £(,9)

@ Likelihood ratios, f(D101)/f(D105) [e.g, Cranmer et al, 2015; Thomas et al,
2016; Hermans et al, 2020; Durkan et al, 2020; Brehmer et al, 2020]

@ Likelihoods, f(DI0) [e.g., Izbicki et al, 2014; Thomas et al, 2016; Durkan et
al, 2020; Brehmer et al., 2020]

@ Posteriors, f(8ID) [e.g., Papamakarios et al, 2016; Lueckmann et al, 2017;
Izbicki et al, 2018; Alsing et al 2019; Greenberg et al, 2019]

@ These ML-based approaches can handle complex high-
dimensional data without a prior dimension reduction. Base

versions also provide “amortizged” inference.
EGEGE——————EL


https://www.pnas.org/doi/full/10.1073/pnas.1912789117

Two Open Problems in ML-Based
Likelihood-Free Inference



Challenge 1: Valid UQ / Coverage

@ Valid UQ / Coverage: How do we guarantee confidence sets
R(D) to have nominal coverage —- for every 67,

AN

Ppio (9 c R(D)|9) —1-a,([Veco




Challenge 1: Valid UQ / Coverage

@ Valid UQ / Coverage: How do we guarantee confidence sets
R(D) to have nominal coverage —- for every 6, for any

sample size n (including e.g. n=1)?

Ppio (9 c E(D)|9) —1-a, V9eO

Simulate (92 ~ T('), Dz‘ez ~ [,(, (92) where Dz — (Xz',la O 7Xi,n)

— Tg =1{(01,D1), (02,Ds),...,(0B,Dp)},




Challenge 1: Valid UQ / Coverage

@ Valid UQ / Coverage: How do we guarantee confidence sets
R(D) to have nominal coverage —- for every 6, any sample

size n (including e.g. n=1), and for any choice of reference
or prior distribution r?

Ppio (9 c E(D)|9) —1-a, V9eO

Simulate 92 ~ 7"('), Dz|(97, ~ L(, (9@) where Dz — (Xz',la SR 7X’i,n)

— Tg ={(01,D1), (02,Ds),...,(0,Dp)},

5 =1(01,D),(05,D5),...,(0%,Dy)}, where @ ~1'(-), |D'|0" ~ L(-;80)




Challenge 2: Diagnostics/Validation of Coverage

® How do we check empirical coverage of the final
constructed confidence sets across the entire parameter

space? (Note: “Consistency checks” only check marginal coverage)

@ R. Cousins: "Lectures on Statistics in Theory: Prelude to
Statistics in Practice”, arXiv:1807.05996, 2018:

A complete, rigorous check of coverage considers a fine multi-D grid of all parameters, and
for each multi-D point in the grid, generates an ensemble of toy MC pseudo-experiments,
runs the full analysis procedure, and finds the fraction of intervals covering the yu of interest
that was used for that ensemble. Le., one calculates P(u; € [u1, p2]), and compares to C.L.

ut. . . the ideal of a fine grid is usually impractical.




Recall: LFI Setting

Given observed data, constrain internal parameters of interest using
assumed theoretical/simulation model. Valid measures of uncertainty.

Ppis (9 c }A%(D)‘Q) —1-a, Y9eO

Like%od

Input Output

Data Generating Observable Data
Process 6 — .‘ —

Parameters of

Forward Simulator

713 — {((91,@1), ((92,7)2), cee (QB,DB)}, Where (9 ~ T('), D\@ ~ ,C(, (9)




Predictive Approach Can Be Very Powerful, But

One Needs to Correct for Bias

[with Luca Masserano, Tommaso Dorigo, Rafael Izbicki and Mikael Kuusela]

Data coming from Dorigo et al. (2020): ~ 400’000
simulated muons with true incoming energy
sampled uniformly between 100 and 2000 GeV.

Energy=655.69965 GeV
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Figure 9: 2D histogram of uncorrected
kNN prediction versus true energy for test
data.

corr. [GeV]

EPred

Figure 10: 2D histogram of corrected
kNN prediction versus true energy for test
data.

E[O|X] #6

Figure 4: Muon entering the calorimeter in z direction.

[Kieseler et al., July 2021 arXiv:2107.02119]

Source: Dorigo et al 2020.
Slide credit: Luca Masserano




Similarly, neural posteriors via e.g. NFs do not guarantee

coverage of internal parameters (often “over-confident”)

10.06581v2 [stat. ML] 14 Oct 2021

Averting A Crisis In Simulation-Based Inference
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Abstract

We present extensive empirical evidence show-
ing that current Bayesian simulation-based
inference algorithms are inadequate for the fal-
sificationist methodology of scientific inquiry.
Our results collected through months of ex-

perimental computations show that all bench-

marked algorithms — (S)NPE, (S)NRE, SNL
and variants of ABC — may produce overconfi-

Antoine Wehenkel
University of Liege
antoine.wehenkel@uliege.be

dent posterior approximations. which makes

them demonstrably unreliable and dangerous
if one’s scientific goal is to constrain param-

eters of interest. We believe that failing to
address this issue will lead to a well-founded
trust crisis in simulation-based inference. For
this reason, we argue that research efforts
should now consider theoretical and method-

Arnaud Delaunoy*
University of Liege
a.delaunoy@uliege.be

Gilles Louppe
University of Liege
g.louppe@uliege.be

evaluation requires the often intractable integration of
all stochastic execution paths. In this problem setting,
statistical inference based on the likelihood becomes
impractical. However, approximate inference remains
possible by relying on likelihood-free approximations
thanks to the increasingly accessible and effective suite
of methods and software from the field of simulation-
based inference (Cranmer et al., 2020).

While simulation-based inference targets domain sci-
ences, advances in the field are mainly driven from a
machine learning perspective. The field, therefore, in-
herits the quality assessments (Lueckmann et al., 2021)
customary to the machine learning literature, such as
the minimization of classical divergence criteria. De-
spite recent developments of post hoc diagnostics to
inspect the quality of likelihood-free approximations
(Cranmer et al., 2015; Brehmer et al., 2018, 2019; Her-
mans et al., 2021; Lueckmann et al., 2021; Talts et al.,

https://arxiv.org/abs/2110.06581



https://arxiv.org/abs/1911.11089

Toy Ex: Coverage of Prediction and Posterior
Intervals Depends on the Choice of Prior

@ Likelihood: |0 ~ N (O, 6 = 1)
@ Assume prior: 0 ~ N (u =0, 0 = 2)

= empirical coverage (green curve)
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Ex: Credible Regions from Neural (NF) Posteriors
D|0 ~ 3N (0,1I) + sN(0,0.01 ©I), where @ € R? and n =1

Parameter Reaions Coverage Diaanostics

Credible Region Credible Region Credible Region Diagnostics Credible Regions

—— Posterior Credible Region 95% 100 gps
N(0, 21) Prior Credible Region 95% 75 N

N

e

VVaidu CuUINJeive oct

- Waldo Confidence Set 95%

Blue contours: 95% credible regions from Normalizing Flows
Overly confident when prior is poorly specified




How about Frequentist LFI Approaches?

DES collaboration, Abbott+17

KiDS, Joudaki+17
05650 (wCoN) Guarantee nominal coverage at every

Planck 2015 (wCDM) N
KiDS (ACDM) -~

h e O (regardless of n and design prior)?

Ppio (9 c E(D)|9) —1—a, VAeO
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How about Frequentist LFI Approaches?

DES collaboration, Abbott+17

KiDS, Joudaki+17
05650 (wCoN) Guarantee nominal coverage at every

Planck 2015 (wCDM) N
KiDS (ACDM) -~

wm O (regardless of n and design prior)?

Ppio (9 c E(D)|9) —1—a, VAeO

@ Frequentist approaches (that estimate likelihoods or likelihood ratios)
are by construction robust to prior prob shift

® However, most such approaches
@ rely on asymptotic assumptions (e.g. Wilks 1938) for downstream inference
@ do not assess validity across entire parameter space

@& do not take advantage of “good” prior information
29
EGEGE——————EL



Can we have it all?

Reliable inference regardless of observed sample size n,
even for poorly specified prior.

But higher constraining power if well-specified prior.
Interpretable diagnostics.

* All done by leveraging the arsenal of ML/Al tools “as is”
(same network architecture and same loss functions, etc)




Toward a General Inference Machinery for LFI

@ Bridges classical statistics with ML to provide:

(i) valid inference: confidence sets with finite-n (e.g. n=1)
guarantees of nominal coverage for all parameters

(i) practical diagnostics: independent check of actual coverage
across entire parameter space (separate from calibration step)

@ Goal: Modular procedures with theoretical guarantees.
@ For any test statistic, and any reference or prior distribution

@ Ideally, plug in your favorite SBI algorithm for computing
likelihoods, likelihood ratios, posteriors (NPE, NLE, NRE), ...

2
EGEGE——————EL



/abs/2002.10399 (ICML 2020)

I_F 2| Likelihood-Free Frequentist Inference:
Conndence Sets with Correct Conditional Coverage

Niccold Dalmasso*f httDS:/ / a rXIv'org-é%'g%é%nlIQxlég%gr;\gM
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Ann B. Lee 11 ANNLEEQCMU.EDU
Abstract

Many areas of science make extensive use of computer simulators that implicitly encode
likelihood functions of complex systems. Classical statistical methods are poorly suited for
these so-called likelihood-free inference (LFI) settings, particularly outside asymptotic and
low-dimensional regimes. Although new machine learning methods, such as normalizing
flows, have revolutionized the sample efficiency and capacity of LFI methods, it remains
an open question whether they produce confidence sets with correct conditional coverage
for small sample sizes. This paper unifies classical statistics with modern machine learning
to present (i) a practical procedure for the Neyman construction of confidence sets with
finite-sample guarantees of nominal coverage, and (ii) diagnostics that estimate conditional
coverage over the entire parameter space. We refer to our framework as likelihood-free fre-
quentist inference (LF2I). Any method that defines a test statistic, like the likelihood ratio,
can leverage the LF2I machinery to create valid confidence sets and diagnostics without
costly Monte Carlo samples at fixed parameter settings. We study the power of two test
statistics (ACORE and BFF), which, respectively, maximize versus integrate an odds function
over the parameter space. Our paper discusses the benefits and challenges of LF2I, with a

- A A

)3920v3 [stat. ML] 4 Apr 2022


https://arxiv.org/abs/2002.10399
https://arxiv.org/abs/2107.03920
https://arxiv.org/abs/2205.15680

Equivalence of Tests and Confidence Sets

@ Data D ={Xy,.... X, } ~ Fy
@ Test statistic A\(D;0)

@ Critical values

Reject Hy : 0 = 0y <— )\(D; 90) < Ceo,a

Theorem (Neyman 1937)

Constructing a 1 — o confidence set for 0 is equivalent to testing

H():Q:@o VS. HAZQ#HO

for every 0y € O.




1. Fixed 6. Find the rejection region for test statistic .

LR(D; 6)




2. Repeat for every 6 in parameter space.




3. Observe data D = D. Evaluate A\(D;#).

0.0 -

2.5 1

5.0

7.5 1




4. Construct (1 — «) confidence set for 6.

0.0 -

2.5 -

5.0 -




Challenges

@ Neyman construction itself. L. Lyons, “Open Statistical Issues
in Particle Physics”, AOAS 2008:

However, in practice, it is very hard to use the Neyman frequentist construction
when more than two or three parameters are involved: software to perform a Ney-

man construction efficiently in several dimensions would be most welcome. The

@ Validation of frequentist coverage. R. Cousins: “Lectures on

Statistics in Theory: Prelude to Statistics in Practice”,
arXiv:1807.05996, 2018:

A complete, rigorous check of coverage considers a fine multi-D grid of all parameters, and
for each multi-D point in the grid, generates an ensemble of toy MC pseudo-experiments,
runs the full analysis procedure, and finds the fraction of intervals covering the u of interest

that was used for that ensemble. ILe., one calculates P(u; € [u1, p2]), and compares to C.L.

But. . . the ideal of a fine grid is usually impractical.

38
EGEGE——————EL



How Do we Turn the Neyman Construction and Validation
into Practical Procedures?

The Neyman construction requires one to test
H():H:@o VS. HAIH#H()

for every 6y € O.

Key insight:

© Test statistic A(D; 6)
@ Ciritical values Cy, ,, or p-values p(D;0g) of the test

© Coverage Ppg (9 S R(D)) of the constructed confidence set

are conditional distribution functions of the (unknown) parameters, and
often vary smoothly across the parameter space O.



Efficient Construction of Finite-Sample Confidence Sets

LR(D; 6)

Co LR(D; 6)

Rather than running a batch of Monte Carlo simulations for every null
hypothesis 8 = 6 on, e.g., a fine enough grid in ©, we can interpolate
across the parameter space using training-based ML algorithms.




Our Inference Machinery

Likelihood-Free Frequentist Inference

[ Proposal ]
lo

Simulator

B

g l----CReference Distribution)

Classification

— /
/ Critical or / /_Odds and / / Diagnostics /
L

P-Value / Test Statistics /
Hypothesis Confidence
[ Damd Testing *| Setforo




Construct Confidence Set via Neyman Inversion

R(D) = {9 c O | \D;6) > ég,a}

Critical or Odds and
p-Value Test Statistics
Hypothesis Confidence
( Lol ) '[ testing I ’[ set for 6 ]




Test Statistics: Leverage ML Classification/
Prediction Algorithms

" 1l . 17} \
@ Estimate “odds function” (from parameters to data)

@ — ACORE (approximate LRT) [Izbicki et al 2013; Cranmer et al
2015; Dalmasso et al 2020, arXiv:2002.10399]

@ — BFF (approximate Bayes Factor) [Dalmasso et al 2021,

arXiv:2107.03920; Heinrich 2022, arXiv: 2203.13079]
\_ _J

@ Obtain point predictions or posterior estimates (from data

to parameters)

& — WALDO (modified Wald test statistic) [Masserano et al
2022, arXiv:2205.15680]

® — Frequentist Bayes sets [Masserano, Shen et al 2023-]
43
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https://arxiv.org/abs/2002.10399
https://arxiv.org/abs/2107.03920
https://arxiv.org/pdf/2203.13079.pdf
https://arxiv.org/abs/2205.15680

Center Branch: Estimating Odds and Test Statistic

[Izbicki et al 2013; Dalmasso et al 2020]
Parameter: 6 € ©

Simulated data: X, x € X. Observed data: X°Ps x°Ps ¢ X.

(Proposal n(ﬁ)) @ Proposal distribution 7(6) over
lo the parameter space ©

Simulator F, @ Forward simulator Fy
» Fy, # Fy, for 0y #0605 € O

yB } -- ( Reference Distribution G )

\ 4
Classification f----

© Reference distribution G over
the feature space X

l » [y < G forall @ e ©®

/TOdds and / O A simulated sample of size B to
S

t Statisti - isti
O5: SialStC estimate odds and test statistic




Estimate Odds via Probabilistic Classification

Simulate two samples:
o {(0, X, Y, = 1)}2/% where 6 ~ 7(6), X ~ Fj
o {(6,,X,,Y;=0)}"? where 6 ~ 7(6), X ~ G

Probabilistic classifier r:
r:(0,X) — P(Y =1|X,6)

Define the odds at # € © and fixed x € X as

O P(Y =1lx,60)  fa(x)
O(x;0) := P(Y =0|x,0) ¢g(x)

Interpretation: Chance that x was generated from Fjy rather than G.




Test Statistics Based on Odds: ACORE and BFF

Suppose we want to test:
Hy:0€ 0y vs H;:0¢€ 01, where ©1 = O;

For observed data D = {X$"s, ..., X955} we define:

@ ACORE (Approximate Computation via Odds Ratio Estimation):

- n  Q(X0bs: g
A(D;0¢) :=log SUPgeo( 1'1;—1/\ ( ;bs )
supgeg | [i=1 O(X3°;6)

@ BFF (Bayesian Frequentist Factor):

Jo (TTi=y O(XS55; ) dmo(6)

7(D;09) := - — .
f@g 11;=1 @(Xq: 59) d7r1(9)

where g and 71 are the restrictions of a proposal distribution 7, over
© to O and OF, respectively.



ACORE and BFF are Approximations of the LR Statistic and
the Bayes Factor respectively!

Lemma (Fisher's Consistency)
If P(Y =1/6,X) =P =1/|0,x)V0,X

Supee@o L(D,Q)
Supee@ L(D,Q) )

Q0 — A(D;0g) =LR(D;0) = log

_ PD|Hy) _ Jeo, £(Di0)dmo(0)

Q@ — 7(D;60) =BF(D;00) = 557,) = I, £(D:8)dmi(6)
1

Note: The Bayes factor is often used as a Bayesian alternative to
significance testing but here we are treating it as a frequentist test statistic.




Test Statistics Based on Odds: ACORE and BFF

Suppose we want to test:

Ho:@zeo VS H1:97£90

For observed data D = {X$bs, ..., X°Ps) we define

@ ACORE (Approximate Computation via Odds Ratio Estimation):

A 1y O(X$™; 6)

A(D; 6y) :=log ——
supgee) [T O(X9; 6p)

@ BFF (Bayesian Frequentist Factor):

I, O(X™:0)
Jo (TTi=) O(X; 6)) dr- (6)

where 7-(6) is a probability distribution over the parameter space.

?(@, 90) =




Left Branch: Estimate Critical Values or P-Values

( Proposal )
lo

Simulator

g .
"/B

\ 4

Critical or
p-Value

/ . . . -
We use B simulations to estimate critical values.




Estimating Critical Values Cy, ,

To control Type | error at level a: l00(AD)

a

Reject Hy : 0 = 0y when \(D;60y) < Cy, o, Where N\

Ceo, a

Coy,0 = arg sup {C Ppjg, (A(D;0p) < C) < Oz} :

CeR

Problem: Need to compute Ppg (A(D;0) < C) for every 0 € ©.

Solution: Fy4(C | 0) =\Ppg(A(D;0) < C | 8))is a conditional CDF, so
we can estimate its a-quantile via quantile regression )\‘9(049)




Construct Confidence Set via Neyman Inversion

R(D) = {9 c O | \D;6) > ég,a}

Critical or Odds and
p-Value Test Statistics
Hypothesis Confidence
( Lol ) '[ testing I ’[ set for 6 ]




Are the Constructed Confidence Sets Valid?

Theorem (Validity for any test statistic)

Let Cg be the critical value of a level-o test based on the statistic
A(D;60y). Then, if the quantile regression estimator is consistent,

P

B — 0

Cp

> C™,

where C* is such that

Ppjo(A(D;6o)) < CF) =

!/ . . .
If B is large enough, we can construct a confidence set with guaranteed
nominal coverage regardless of the observed sample size n.




Are the Constructed Confidence Sets Valid?

Theorem (Validity for any test statistic)

Let Cg be the critical value of a level-o test based on the statistic
A(D;60y). Then, if the quantile regression estimator is consistent,

P
Cp >C*,

B — 0

where C* is such that

Ppjo(A(D;6o)) < CF) =

NOTE: Regardless of the number of observations n, how well we
estimate the test statistic, and the proposal distribution r(©)
If B' is large enough, we can construct a confidence set with guaranteed
nominal coverage regardless of the observed sample size n.




Right Branch: Assessing Conditional Coverage of R(D)

How do we check coverage of constructed confidence sets across ©7
Note:

R(D)={0c O | \D;0) > Cpa}

Py (9 e R(D) | 9) — Epyg []1 (9 € fz(@)) | 0}

( Proposal )
"0

Smulater @ Sample 0; and data D; ~ Fy,
¢ )
g, @ Construct confidence set R(D;)
B
ﬁ ; / Q@ For {0;, R(D;)}2 ., regress
iagnostics R
[ Confidence ]_|
set for 6

How close is the actual coverage to the nominal confidence level 1 — a7
54



Right Branch: Assessing Conditional Coverage of R(D)

How do we check coverage of constructed confidence sets across ©7
Note:

R(D)={0c O | \D;0) > Cpa}

Py (9 e R(D) | 9) — Epyg []1 (9 € fz(@)) | 0}

( Proposal j
"0

Smulator @ Sample 0; and data D; ~ Fp,
( )
g, @ Construct confidence set R(D;)
B
ﬁ ; / Q@ For {0;, R(D;)}2 ., regress
iagnostics .
{Cor:f}degce]_| Independent check of coverage

across parameter space
How close is the actual coverage to the nominal confidence level 1 — a7
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Ex 1 (one MVQ): Construct LF2I Confidence Sets

., X, ~N(0,1;), where n =10, 8 =0

LFI setting, 90% confidence sets

1.5
1.0
0.5 ]
< 0.0] &" * D"
—0.57 ACORE, B=B'=5000 1
BFF, B=B'=5000
-1.04{ 1 Exact LR
L — Exact BF
-15

215 -10 -05 00 05 10 15 -15 -10 -05 00 ©05 10 15 -15 -10 -05 00 05 1.0 15
91 61 61

When d=2, ACORE and BFF confidence sets (for B=B'=5000) are

similar in size to the confidence sets. (LF2| scales well if
d<10)
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Ex 2 (Gaussian Mixture): The distribution of the LR statistic is
not known. Valid inference with nominal coverage (n=1000)?

X1,..., X, ~05N(0,1) +0.5N(—6,1)

LR with Monte Carlo samples ) u ) LR with Cg via Quantile Regression

MC/bootstrap: SLOW \ - Nanwlcome- o LF21/QR: VALID/EFFICIENT
Wilk's theorem: INVALID

(Left) LR with1000 MC simulations at each 6 on a fine grid in 1D
(Center) Assume chi-squared distribution of LR statistic
(Right) LR with quantile regression with B’=1000 simulations total

57/
EGEGE——————EL



But what if we have >1,000 nuisance parameters?

The parameters 0

One more issue: the “theory” space is not the only thing effecting the data

* every step of the forward process comes with its own parameters
(we understand the process generally but need additional knobs to model the data)

bt e
4iPPy whee
+Bytigs e
+ B~ vip)

palza)  pedea)  pCalm)  plzl6)

| | ~.
p(x|0) = /dzddzhdzp p(x|zd,( p(zd|zh,') p(2n|2p, p(zp|.6th)

core “theory”
nuisance parameters parameters of inferest
(e.g. “Higgs Mass”

Credit: Lukas Heinrich




How do we Handle Nuisance Parameters?

In many applications, the parameter space can be decomposed as
© = M x N, where M contains the main parameters p. of interest, and N
contains the nuisance parameters v not of immediate interest.

Suppose we want to test

Ho o : o= po versus Hy,o:p#po for ppeM

How does one solve this problem within our inference machinery?




GG S s G S
But Critical Value Estimation is Difficult with Many NPs

Remember: To guarantee frequentist coverage by Neyman's inversion
technique, we need to test null hypotheses

Hopo i pp=po versus Hy,o:p#po for ppeM

by comparing test statistics to the cutoffs 6“0 == inf e é(uo,u)-

That is, one needs to control the type | error at each pg for all possible
values of the nuisance parameters.

Can lead to numerically unwieldy and costly computations if the number
of nuisance parameters is large (>10 NPs).




Two Popular Approaches to Systematics

Hybrid Approaches to Critical Value Estimation

@ h-ACORE: Hybrid Resampling(or Profiling! of Nuisance Parameters
» Compare ACORE test statistic with the hybrid cut-off

~ . p—1 ~
Co = FA(D;uo)|(uo,;#o) (e |10, o)

where the quantile regression is based on a train sample T’ generated
at fixed V,,,,.

@ h-BFF: Integration of Nuisance Parameters
» Compare BFF test statistic with the approximate cut-off

. ﬁ—l
CNO T(D;uo)’lm (Ol ’ IUIO)

where we draw the train_sample 7’ from the entire parameter space
© = M x N, but apply quantile regression using . only

1\V/an der Vaart, 2000; Chuang & Lai, 2000; Feldman, 2000; Sen et-al. 2009



Assessing Confidence Sets

@ "For small sample sizes, there is no theorem as to whether
profiling or marginalization will give better frequentist
coverage for the parameter of interest” (Cousins 2018)

@ Our LF2| diagnostic tool can

@ provide guidance as to which method to choose for the
problem at hand, and

@ pinpoint regions of parameter space where inference
may be unreliable, e.g., under/over-confident.

@ The diagnostic branch works for any SBI method (including
Bayesian credible regions)
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~

Classical “On-Oft” Problem

[Lyons 2008; Cowan et al 2011; Cowan 2012; L. Heinrich 2022]

@& Simultaneous measurements of two Poisson processes

Observed data X = (IV,, Ny),

where N, ~ Pois(v7bh), Ns; ~ Pois(vb + us)

@ Ngis the # of events in the background region (expected background
count b)

@ Ns is the # of events in the contaminated signal region (expected

signal count s)
@ Unknown parameters:

@ signal strength-POlI (u); scaling factor-NP (v)

o [L. Heinrich 2022] Set hyper-parameters at s=15, b=70, 7=1 =

asymptotic regime with profiled values away from the MLE


https://arxiv.org/pdf/2203.13079.pdf
https://arxiv.org/pdf/2203.13079.pdf

Our diagnostic tool can identify regions in parameter

space with under/over-coverage (95% nominal)
Left: profiling; Center: marginalization; Right: chi-square)

h-ACORE

0
—
()
>
(@)
&)
©
()
]
©
£
S
n
(WN]

el B h-ACORE
[ h-BFF, under-coverage
I h-BFF, correc t/over-covera ge

W ACORE x?

h-BFF (center top) has closest to
nominal coverage with the highest
constraining power (orange hist)

Proportion

0% 80% 100%
64 Lengtiri% of parameter space]




What's Next?

@ Alternative test statistics based on direct predictions ana
posteriors

@ Reason 1: large arsenal of Al tools for prediction and
NPEs. LR trick + maximization over many parameters
sometimes hard to implement in practice (loss of power)

@ Reason 2: LR approaches do not benefit from good priors

@ "Freq Bayes sets” (in progress). Show some highlights ot
WALDO (1st version, 2022)




Ex 1: Back to the Problem of Calorimetric Muon
Energy Measurement... [Masserano et al, AISTATS 2023]

Data coming from Dorigo et al. (2020): ~ 400’000
simulated muons with true incoming energy
sampled uniformly between 100 and 2000 GeV.

Energy=655.69965 GeV

>
)
1)
E
8

E Pred

e
ETrue [GeV]

Figure 9: 2D histogram of uncorrected Figure 10: 2D histogram of corrected
kNN prediction versus true energy for test kNN prediction versus true energy for test
data. data.

E[O|X] #6

Figure 4: Muon entering the calorimeter in z direction. Source: Dorigo et al 2020.
Slide credit: Luca Masserano

[Kieseler et al., July 2021 arXiv:2107.02119] 66




https://arxiv.org/abs/2205.15680

Simulation-Based Inference with WALDO: Confidence Regions by Leveraging
Prediction Algorithms or Posterior Estimators for Inverse Problems

Luca Masserano' Tommaso Dorigo® Rafael Izbicki’ Mikael Kuusela' Ann B. Lee'
'Department of Statistics & Data Science, Carnegie Mellon University
’INFN, Sezione di Padova *Department of Statistics, Federal University of Sio Carlos
N
N
g‘ Abstract 1 INTRODUCTION
~ Predictive algorithms, such as deep neural net- Tha vast majority of modern machine learning targets pre-
Theorem (Neyman 1937) yn_nrohleme  with aloarithme cuch a¢ NDeen Nenral
: : . . . 1 2
Constructing a 1 — a confidence set for 6 is equivalent to testing ‘ WALDO (E [0 ‘ D] e 0 O)
{7 (D;0) =
Hy:0=0y vs. Hy:0+#6, V[Q‘D]
for every 6y € ©. 4 : = :
: e : of a data-generating process with reliable measures of
- certainty quantification, especially when both pa- uncertaintv. The parameters of interest. which we denote by
0 Wald test statistic (1D case): [dJ Waldo test statistic (1D and p-D case):
E[0| D] - 6,)*
Wald @MEF — 6y) oMo = = \/l[e |]9] .
t"HUD;0)) = ——————— 4

Waldo(g; 6) = (E[0| D] - 6)" VIO | 217 (EL6 | 2] - 6p)
— samplc (hCOl’y. h.lany simulalor-bascd infcrcncc PHCALICU 1O DC CVdIUdICU CAPLICIUY. LCL LY .= (X1, ..., Xn)
L{\' (SBI) methods are indeed known to produce bi- denote observable data, where the “sample size” n refers

- -


https://arxiv.org/abs/1911.11089

Can we do frequentist inference for muon energy?

We are mainly interested in two questions:

1. Infer, from the pattern of the energy deposits in the calorimeter, how much energy the incoming
muon had and construct a confidence set for it with proper coverage

- goal: Reconstruct muon properties with rigorous uncertainties for downstream analyses

2. How much added value does a high granularity of the calorimeter cells offer over the 1D and
28D representations?

— goal: devise better and more cost-effective calorimeters for future particle colliders

Slide credit: Luca Masserano




Inputs: 1D energy-sum, 28 features, or tull calorimeter

Prediction algorithms used

Three “nested” datasets:
1. One-dimensional energy sum: minimizer of Cross-Validation MSE loss (XGBoost)
2. 27 features + 1D energy sum: minimizer of Cross-Validation MSE loss (XGBoost)
3. Full calorimeter (51200-D) + 28 features: custom CNN (with MSE loss) from Kieseler et al. (2022)

—¥%  We estimate E[@| D] and V[@| D] for each of these. Muon energy is

Slide credit: Luca Masserano




Valid confidence sets?

Confidence sets for muon energy have proper coverage

0 Nominal coverage is achieved regardless of the dataset used
J Prediction sets do not achieve the desired level of coverage

™ Coverage Diagnostics

o
o

orediction sets

N

o
FN

@
(@)
48]
—
Q
S
o
O

Waldo Energy Sum

Waldo 28 Features

Waldo Full Calorimeter

Prediction Sets Full Calorimeter
-== Nominal coverage = 68.3 %

"0 1000 2000 3000 4000 5000 6000 7000 8000
True Muon Enerqgy 6 [GeV]

Confidence and Prediction Sets

Pl

B Waldo Full Calorimeter
¢ Prediction Sets Full Calorimeter

Upper/Lower Bounds [Ge_V]

1000 2000 3000 4000 5000 6000 7000 8000
True Muon Energy 6 [GeV]

Slide credit: Luca Masserano




Constraining power?
Valuable information in high-granularity calorimeter

Interval Length

‘--‘-" ‘“‘.""" .’_'
O Intervals are shorter as the data

becomes higher-dimensional

A"’--._.,..-O .-
O Prediction sets can even be larger

than Waldo confidence sets (while

4
4
also not guaranteeing coverage)

4
3

—&— Waldo Energy Sum
Waldo 28 Features

-#- Waldo Full Calorimeter

$
]
3
]
)
: J
3
3
]
]
]
3
.

¢ Prediction Sets Full Calorimeter

1000 2000 3000 4000 5000 6000 7000 8000

True Muon Energy 6 [GeV]

%%
Slide credit: Luca Masserano




Ex 2: Credible Regions from Neural (NF) Posteriors
D|0 ~ 3N (0,1I) + sN(0,0.01 ©I), where @ € R? and n =1

Parameter Reaions Coverage Diaanostics

Credible Region Credible Region Credible Region Diagnostics Credible Regions

—— Posterior Credible Region 95% 100 gps

N(0, 21) Prior Credible Region 95% 75

AN

2
age

2 S
R N

Estimated Cover

e

VVaidu CuUINJeive oct

wn
(=1
RN

- Waldo Confidence Set 95%

(] w -
(=] (=] (=3
R R =R

o
R

Blue contours: 95% credible regions from Normalizing Flows
(overly confident when prior is poorly specified)




Ex: LF2I/Waldo Confidence Sets Derived from the
Same Neural Posteriors & Correct Coverage

Parameter Regions Coverage Diagnostics

Credible Region Credible Region Credible Region Diagnostics Credible Regions

—— Posterior Credible Region 95% 10.0 $ A A
75

50 S
25 SR
62 '
00 &8
-25 TR
-50 ENIE

N(O, 21) Prior Credible Region 95%

v Ly
- »
75 SO )
)

-
Waldo Confidence Set Waldo Confidence Set Waldo Confidence Set
- Waldo Confidence Set 95%

®

Waldo guarantees coverage everywhere, even if the prior poorly

specified. Well-specified prior & power (tighter constraints) JEurpa- <E[9x|/2[)61|1_>]90)2
73




Another application of Waldo to NPEs (5 POI) ...

Astronomy: Infer galaxy parameters from SEDs via NPE

- A
PROSPECTOR | R
SEDM s ‘ Approximate JA
. roposa | [\ [
p— p— S— : Posteriors T2 A
= N
Priors | | M\
| —> 002 A
1 / \

(5-parameter |—P | SEDs mapped to 3

SED model) ‘ . ‘ regions in the .
1 e - { parameter space \

7 1 ‘ 151 ’/‘.‘

/

s
F -

Simulated galaxy spectrum

r

Gaussian [ 1 ‘

Why? Advent of billion-galaxy surveys with complex data needs efficient modeling of spectral energy
distributions (SEDs) with robust uncertainty quantification

How? Combine SBI and NPE to infer galaxy parameters (5-parameter model)

Goal: use Waldo to obtain reliable constraints and check their validity against those obtained via NPE

(E[6|D] — 60)°

WALDO D0, =
T ( ) 0) V[9|D]




arXiv:2211.09126

DIGS: Deep Inference of Galaxy Spectra with
Neural Posterior Estimation

Gourav Khullar! 2345 Brian Nord!?3, Aleksandra
Ciprijanovié¢!, Jason Poh?3, Fei Xu??

IFermi National Accelerator Laboratory, Batavia, IL 60510, USA
2Department of Astronomy and Astrophysics, University of Chicago, Chicago,
IL 60637, USA

3Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL
60637, USA

4Kavli Institute for Astrophysics & Space Research, Massachusetts Institute of
Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA

5Department of Physics and Astronomy and PITT PACC, University of
Pittsburgh, Pittsburgh, PA 15260, USA

E-mail: gkhullar@uchicago.edu

Abstract.

With the advent of billion-galaxy surveys with complex data, the need of
the hour is to efficiently model galaxy spectral energy distributions (SEDs)
with robust uncertainty quantification. The combination of Simulation-Based
inference (SBI) and amortized Neural Posterior Estimation (NPE) has been
successfully used to analyse simulated and real galaxy photometry both precisely
and efficiently. In this work, we utilise this combination and build on existing
literature to analyse simulated noisy galaxy spectra. Here, we demonstrate a
proof-of-concept study of spectra that is a) an efficient analysis of galaxy SEDs
and inference of galaxy parameters with physically interpretable uncertainties;
and b) amortized calculations of posterior distributions of said galaxy parameters

astro-ph.GA] 16 Nov 2022


https://arxiv.org/abs/2211.09126

Coverage across the entire parameter space

r@):=P@ € #D)|60), 0eR’

Joint Coverage Probability

)

Credible Sets (NPE) Confidence Sets (Waldo)

(E[6]D] — 60)°
V[o|D]

TWALDO(D; 00) _




Example of parameter regions when NPE undercovers

Confidence regions (Waldo, green) and credible regions (NPE, blue) obtained from three observations sampled from the same true parameter

ool22
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Partial dependence of coverage probability vs parameters
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Profiled dependence of coverage probability vs parameters
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Classification Under Systematic Uncertainties:

Application to Atmospheric Cosmic-Ray Showers
[IN PROGRESS 2023- with Alex Shen, Luca Masserano, Michele Doro, Tommaso Dorigo]

@ SWGO plans to study ultra-energetic (above 1 TeV) photon showers =

High-altitude array of Cherenkov tanks.

@ Information on gamma flux requires separating gamma showers (very rare) from
hadrons (common background). CORSIKA to generate G- and H-showers.

Right: a simulated photon-induced air shower
over the LHAASO array in China. Below: a
representation of the SWGO array.




Classification Under Systematic Uncertainties

@& Suppose we ignore shower parameters (e.g. energy E, direction) and
various hyper-parameters, and directly classify showers (G or H) based on
array measurements. That is, compare Pr(u=po | x) to a constant C.

ROC Curves, Tomographic Binning

&= Left: Direct classification
ignoring NPs leads to a
, misleading ROC curve (red
-~ = All Energies . .
— - Ein (100 TeV, 167 Tev) curve) and biased estimates

Ein (167 Tev, 353 Tev) . .
e Ein (353 Tev. 1384 Tev) (circles) when attempting to

=+ Ein (1384 Tev, 10 PeV) Control e.g, FPR at 005

103 269) E G (269 957) 957 2746) E S (2746 9577)

Right: Q-Q plots show that the estimated ==

probabilities of rejection (TPR and FPR) are e
not calibrated across different energies.

100 132) Ee (132 214 Ee (214 420 4517

0. 1 0 0 0 1
Theoret[cal Uniform Quantlles

Actual Quantile:




Recall:

Estimating Critical Values Cy, ,

log(A(D))
a

N\

Ceo, a

To control Type | error at level a:
Reject Hy : 0 = 0y when A(D;0y) < Cy, o, Where

Coy,0 = Arg sup {C’ Ppig, (A(D;00) < C) < a} :

CeR

Problem: Need to compute P (A(D;0) < C) for every 0 € ©.

Solution: Fy(C | 0) = Pp)p(A(D;0) < C | 0) is a conditional CDF, so
we can estimate its a-quantiie via quantiie regression >\|0(O“9)




Recall:

Estimating Critical Values Cy, ,

log(A(D))
a

N\

Ceo, a

To control Type | error at level a:
Reject Hy : 0 = 0y when A(D;0y) < Cy, o, Where

Coy,0 = Arg sup {C’ Ppig, (A(D;00) < C) < a} :

CeR

Problem: Need to compute P (A(D;0) < C) for every 0 € ©.
Solution: Fy(C | 0) = Pp)p(A(D;0) < C | 0) is a conditional CDF, so

we can estimate its a-quantile via quantile regression F) (alf).

1. Now use BF/posteriors instead of LRT as test statistic.
2. Learn the entire ROC as a function of POl and NPs




1=1>°
composite hypothesis test:

{(us,%;)}2. |, we reformulate the gamma/hadron discrimination problem as a composite-versus-

Hy:0€ 06, versus H; : 0 € ©, (D
where ©g = {0} x M and ©; = {1} x N. As test statistic, we exploit
P (i = 0[x) P'(1s = 0)

2)

") = B = 1) Pla = 1)
which is equivalent to the Bayes factor for the fmfn see Ampndwl_c{ This quantity can be estimated

directly from the pre-trained classifier based on B; there is no need for an extra step to, e.g., try to

learn the likelihood function £(x; i, V) or the assoc1ated likelihood ratio statistic from simulated data

WO(C;V):zIP( ( )<C|C:U‘ OV) ]Ex|,u OV(IC(X)|C“ OV) 3)
Wl(c;y) :P( ( )SClC,,LL:].,V) :-'Exm:l,u(IC'(x)|Ca.u’_]-7y)7 4)

for all C € Rand all v € N. At fixed v, the ROC curve is defined as the true positive rate (TPR;
W1) vs false positive rate (FPR; W) over the space of cutoffs C. Appendix |C|details our procedure
for estimating W, (C; v) using calibration data 7} = {(61,x}),..., (0%,%xg)} ~ r(8)L(x; ).




Classification Under Systematic Uncertainties

@ Using a new version of LF2| calibration, we can estimate the entire set of
ROC’s for all 8=(p,n), where p is the class, and n are hyper-parameters.

ROC Curves, Tomographic Binning Examples of Estimated ROC Curves

— — Al Energies .
— = Ein (100 TeV, 167 Tev) ’ - = E =130 TeV
Ein (167 Tev, 353 Tev) : E=235TeV
+ Ein (353 Tev, 1384 Tev) ' : - E =684 TeV
+ Ein (1384 Tev, 10 PeV) : -+ E=2,748 TeV

Gamma, Gamma, Gamma, Gamma,
E € (103 269) E € (269 957) E € (957 2746) E € (2746 9577)

10 OO 10 00 10 00

Right: Q-Q plots of prob of rejection ==
curves for direct classification (orange) vs
with LF2I calibration (blue)

Hadron Hadron Hadron Hadron
E € (100 132) E € (132 214) E € (214 420) E€E (420 4517)

05

0.0 10 00 0.5 10 00 0. 10 00

Actual Quantiles

« Calibrate dApp ach
Direct Prediction Theoretical Uniform Quantiles




Construct Confidence Set via Neyman Inversion

R(D) = {9 c O | \D;6) > ég,a}

Critical or Odds and
p-Value Test Statistics
Hypothesis Confidence
( Lol ) '( testing } ’[ set for 6 J




Construct Confidence Set via Neyman Inversion

1. Now POl is a discrete class p
2. We learn confidence distributions for all levels a, rather
than a confidence set for a fixed o. Fully amortized

R(D) = {9 c O | \D;6) > ég,a}

Critical or Odds and
p-Value Test Statistics
Hypothesis Confidence
( Lol ) '[ testing ' ’[ set for 6 J




Construct Set-Valued Classifiers from Pr(u=pg | x)

® Some instances are "ambiguous” and hence difficult to label

correctly. Set-valued classifiers output sets of plausible labels
rather than a single label.

H, : x +— {0,1,{0,1}}

@ With LF2| calibration, the set-valued classifiers have nominal
confidence (1-a), even under systematic uncertainties.

P(pe Hy(x) | (u,v)=1—a, Vue{0,1}, veN

® Amortized inference w.r.t. both observation x and level o




Set-Valued Classification Output Compared to
'‘BayesOpt’ Under Systematic Uncertainties

3 SetCLF Decision Regions Predicted Gamma Showers True Gamma Showers

——&— BayesOpt Boundary . . = SetCLF = {1}
SetCLF = {0}

- SetCLF={0,1}
——&— BayesOpt=1
BayesOpt =0

SetCLF = {0}

— SetCLF={1},u=1
SetCLF = {1},u=0
—— BayesOpt=1,u=1
BayesOpt=1,u=0

Proportion
o
B

o
N

o
o

06 0.7 0.8 0.9 '0.5 0.6 0.7 0.8 0.9 05 0.6 0.7 0.8 0.9
Confidence Level (1 — a) Confidence Level (1 — a) Confidence Level (1 — a)

@ Left: Decision regions as a function of confidence level
@ Center: Higher precision and lower FDR than BayesOpt

@ Right: Lower miss rate but also lower recall than BayesOpt



Take-Away: LF2l is a practical procedure for
Neyman construction of confidence sets

Equivalence of Tests and Confidence Sets

@ Data D ={Xy,.... X, } ~ Fy
@ Test statistic A\(D; 0)

@ Critical values

Reject Hy: 0 =0y <= \(D;0p) < Coo,a

Theorem (Neyman 1937)

Constructing a 1 — « confidence set for 6 is equivalent to testing
H01(9=(90 VS. HAZH#QO

for every 6y € ©.




Construct Confidence Set via Neyman Inversion

R(D) = {9 c O | \D;6) > ég,a}

Critical or Odds and
p-Value Test Statistics
Hypothesis Confidence
( Lol ) '[ testing I ’[ set for 6 ]




Take-Away: LF2|

@ Validity and Diagnostics: LF2I bridges ML and classical
statistics to create valid confidence sets and run diagnostics.

@ Prior Independence: LF2I guarantees (approximate)
conditional coverage regardless of the prior and the sample
size. Well-specified prior => higher power

@ Power: Hardest to achieve in practice. Area where most
statistical and computational advances will take place.

@ ACORE (Approximate Computation via Odds Ratio Estimation):

i [Ti, O(X5": 6o)
suppee [17=1 O(X*;6)

A(D;0y) := log

@ BFF (Bayesian Frequentist Factor):

A(Di0y) = T OXE™60)
’ Jo TTiy O(X$5s; 6) dr.(6)




@ LF2lis a fully modular framework. We'd love to collaborate on
code/science-problems! Please email annlee@andrew.cmu.edu

https://github.com/lee-group-cmu/If2i
Likelihood-Free Frequentist Inference

Critical or Odds and 5 "
P-Value Test Statistics lagnostics

Hypothesis Confidence
Tesing || Setforo
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Finally, if you are instead interested in calibrated PDs and
posteriors (consistent with a chosen prior)...
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where 77 is the regression estimator of the PIT-CDF (Equation 4). ) y

(b) Cal-PIT by Mapping Probabilities
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Xi1,..., Xn ~05N(8,1) + 0.5N(=6,1)

LR with Monte Carlo samples Chi-square LRT LR with Cg via Quantile Regression
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What Can We Say about Power?

Suppose we are testing
Ho:(9:(90 VS. HAZQ%QO

and assume that the critical values are well estimated (that is, B’ is large
enough).

Consider
° ¢~ (D) =1(78(D;0p) < Cyy,p): decision of approximate test
(

o ¢.(D) =1(7(D;60y) < Cp,): decision of exact test

Theorem
If the probabilistic classifier for learning the odds is consistent, and
Co.B SN Cy, then, for every 6 € ©:

B—00

P00 (,(D) = 1)

B—




Ex: Power of BFF (n=1)

Theorem 3 Let ¢-(D) = I(7(D;bp) < c) and ¢7,(D) = L(7(D;b) < c) be the testing
procedures for testing Hy : 0 = 0y obtained using T and 7. Under Assumptions 3-5, there
exists K' > 0 such that, for every 0 < e < 1,

K'-1/L(0,0
Ppig, 1 (¢-(D) # ¢7,(D)) < ©.0) te

€

Assumption 6 (Convergence rate of the probabilistic classifier) The probabilistic clas-
sifier trained with T, P(Y = 1|x,0) is such that

Er, [ / (JT»(Y = 1|x,0) — P(Y = 1|x, 9))2dH(x, 9)] -0 (B—a/(a+d)) |

for some a > 0 and d > 0, where H(x,0) is a measure over X x ©.

Theorem 4 Under Assumptions 3-7, there exists K" > 0 such that

Pp,7310(67(D) # b2 (D)) < 2VK"B~/(Hetd)),




Nuisance-Parameterized LF2I

Test composite vs composite hypotheses:
HO,HO :0 €Oy vs Hl,uo : 0 € ©4,
where(©g = {(uo,v) | v € N},)and ©; = 6§,
@ ACORE test statistic (by maximizing estimated odds)

sup,ex [T O(XE"; (1o, )

A(D; po) = log h
supgee [ 11— O(X2s; 6)

@ BFF test statistic (by integrating estimated odds)

n L OXES; (ug,v)) dmo(v)
Jo, T, O(X$b5;0) drmy(6)

where 7 (v) is a distribution over N, the nuisance parameter space.

A(D; o) 1=



For BFF confidence sets, we can analyze the power further
for a special case...

Suppose
@ Simple null hypotheses, ©¢ = {0y}
@ X°bs — D-je. XS contains all observations

e (G(x) is the marginal distribution of Fy(x) w.r.t. 7(8)

Jo, Ty O 00) dmo(6)  O(X2™;0y)
Jo =1 O(X:0) dma(0)  Jo O(XE*;0) dr(0)

L o(xs™; 6y)

7(D;Op) :=

We can then relate the power of BFF to an integrated odds loss:

/ (B(X;0) — O(X;:6))” dg(X)dn(6).




Power of BFF (cont'd)

Theorem 3 Let ¢-(D) = [(7(D;6) < ¢) and ¢, (D) = L(7p(D;00) < c) be the testing
procedures for testing Hy : 0 = 0y obtained using T and 7. Under Assumptions 3-5, there
exists K' > 0 such that, for every 0 < e < 1,

K'-1/L(0,0
Ppig, 15 (07 (D) # ¢7,(D)) < +) te

@ The probability that hypothesis tests based on the Bayes
factor versus the BFF statistic lead to different conclusions
is bounded by the integrated odds (which is easy to

estimate in practice and also depends on the choice of
probabilistic classifier)
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Power of BFF (cont'd)

Theorem 3 Let ¢-(D) = I(7(D;bp) < c) and ¢7,(D) = L(7(D;b) < c) be the testing
procedures for testing Hy : 0 = 0y obtained using T and 7. Under Assumptions 3-5, there
exists K' > 0 such that, for every 0 < e < 1,

K'-1/L(0,0
Ppig, 1 (¢-(D) # ¢7,(D)) < ©.0) te

€

Assumption 6 (Convergence rate of the probabilistic classifier) The probabilistic clas-
sifier trained with T, P(Y = 1|x,0) is such that

Er, [ / (JT»(Y = 1|x,0) — P(Y = 1|x, 9))2dH(x, 9)] -0 (B—a/(a+d)) |

for some a > 0 and d > 0, where H(x,0) is a measure over X x ©.

Theorem 4 Under Assumptions 3-7, there exists K" > 0 such that

Pp,7310(67(D) # b2 (D)) < 2VK"B~/(Hetd)),




