### Hypergames and Cybersecurity

#### Tonicha Crook 1915995@swansea.ac.uk

Swansea University

October 2022





. . . . . . .

### Outline

### Introduction

2 Background in Game Theory

### 3 Hypergames

#### 4 Using Hypergames

- Hyper-Nash Equilibrium
- Stable Hyper-Nash Equilibrium

### 5 Applications in Cybersecurity

Hypergames are a system comprised of a set of games with incomplete information.

Hypergames help find solutions to situations where there are miscommunications of events or strategies available.

Some key elements to describe a game:

The amount of players

Some key elements to describe a game:

- The amount of players
- Possible actions available to players

Some key elements to describe a game:

- The amount of players
- Possible actions available to players
- **③** A rule determining the outcome of every possible ending

#### Complete Information

Complete Information means the structure of the game and the payoffs/utility functions of the players are common knowledge.

#### **Complete Information**

Complete Information means the structure of the game and the payoffs/utility functions of the players are common knowledge.

#### Perfect Information

Perfect Information is when all players know every move that has been previously made.

### Strategic-Form

A game in *strategic-form* is an ordered triple,  $G = (N, (S_i)_{i \in N}, (u_i)_{i \in N})$  in which:

- $N = \{1, 2, ..., n\}$  is a finite set of players.
- S<sub>i</sub> is the set of strategies of player i, for every i ∈ N.
  Denote the set of all vectors of strategies by S = S<sub>1</sub> × S<sub>2</sub> × ... × S<sub>n</sub>.
- $u_i: S \to \mathbb{R}$  is a utility function.

### Strategic-Form

A game in *strategic-form* is an ordered triple,  $G = (N, (S_i)_{i \in N}, (u_i)_{i \in N})$  in which:

- $N = \{1, 2, ..., n\}$  is a finite set of players.
- S<sub>i</sub> is the set of strategies of player i, for every i ∈ N.
  Denote the set of all vectors of strategies by S = S<sub>1</sub> × S<sub>2</sub> × ... × S<sub>n</sub>.
- $u_i: S \to \mathbb{R}$  is a utility function.



#### Nash Equilibrium

A strategy vector  $s^* = (s_1^* \dots s_n^*)$  is a *Nash Equilibrium* if for each player  $i \in N$  and each strategy  $s_i \in S_i$ ,  $u_i(s^*) \ge u_i(s_i, S_i^*)$  is satisfied.



• If Player I plays strategy  $A_I$ , player II's best reply is  $A_{II}$ .



• If Player I plays strategy  $B_I$ , player II's best reply is  $B_{II}$ .



• If Player II plays strategy  $A_{II}$ , player I's best reply is  $B_I$ .



• If Player II plays strategy  $B_{II}$ , player I's best reply is  $B_I$ .



#### Hypergames

A simple hypergame H is given by  $(N, (G^i)_{i \in N})$ , where:

- $N = \{1, \ldots, n\}$  is a set of agents involved in the situation,
- $G^{i} = (N^{i}, S^{i}, u^{i})$  is the subjective game of agent *i*, where:
  - $N^i$  is a set of agents perceived by agent *i*.
  - S<sup>i</sup> = ×<sub>j∈N<sup>i</sup></sub>S<sup>i</sup><sub>j</sub> is a set of strategies perceived by agent i, where S<sup>i</sup><sub>j</sub> is a set of strategies of agent j perceived by agent i.
  - $u^i = (u^i_j)_{j \in N^i}$  is a profile of utility functions perceived by agent *i*, where  $u^i_j : S^i \to \mathbf{R}$  is agent *j*'s utility function perceived by agent *i*.





German game:

AML, AN, RML, MN = As in Allies' game

AA = Attack through Ardennes

N + C = Go North, but then counterattack behind Ardennes





German game:

AML, AN, RML, MN = As in Allies' game

AA = Attack through Ardennes

N + C = Go North, but then counterattack behind Ardennes

$$H = (N, (G^i)_{i \in N}), N = \{1, 2\}$$





German game:

AML, AN, RML, MN = As in Allies' game

AA = Attack through Ardennes

N + C = Go North, but then counterattack behind Ardennes

$$H = (N, (G^i)_{i \in N}), N = \{1, 2\}$$
  
 $G^1 = (N^1, S^1, u^1)$  where  $N^1 = \{2\}, S^1 = S_2^1 = \{RML, MN, N + C\}$ 





German game:

AML, AN, RML, MN = As in Allies' game

AA = Attack through Ardennes

N + C = Go North, but then counterattack behind Ardennes

$$\begin{array}{l} \mathcal{H} = (\mathcal{N}, (G^{i})_{i \in \mathcal{N}}), \ \mathcal{N} = \{1, 2\} \\ \mathcal{G}^{1} = (\mathcal{N}^{1}, \mathcal{S}^{1}, u^{1}) \text{ where } \mathcal{N}^{1} = \{2\}, \mathcal{S}^{1} = \mathcal{S}^{1}_{2} = \{\mathcal{RML}, \mathcal{MN}, \mathcal{N} + C\} \\ \mathcal{G}^{2} = (\mathcal{N}^{2}, \mathcal{S}^{2}, u^{2}) \text{ where } \mathcal{N}^{2} = \{1\}, \mathcal{S}^{2} = \mathcal{S}^{2}_{1} = \{\mathcal{AML}, \mathcal{AN}\} \end{array}$$

#### Hyper-Nash Equilibrium

There exists a hyper Nash equilibrium,  $(s_i^{i*})_{i \in N} \in \times_{j \in N} S_j^j$ , of a hypergame H iff  $\forall i \in N, s_i^{i*} \in \mathbf{N}(G^i)_i$ .

#### Set of Hyper-Nash Equilibrium

 $\mathbf{HN}(H) = \times_{i \in N} \mathbf{N}(G^i)_i$  of hypergame H.





German game:

AML, AN, RML, MN = As in Allies' game

AA = Attack through Ardennes

N + C = Go North, but then counterattack behind Ardennes

Figure: A simple two-player hypergame

 $N(G^1)_1 = \{AN, N + C\}, N(G^2)_2 = \{AN, MN\},\$ 



|              |     | Allied<br>RML | Strat<br>MN | egies:<br>N+C |
|--------------|-----|---------------|-------------|---------------|
| n<br>Jies    | AML | 1,4           | 2,3         | 2,3           |
| 'ma<br>ateç  | AN  | 4,1           | 3,2         | 3,2           |
| Stra<br>Stra | AA  | 3,2           | 5,0         | 2,3           |

German game:

AML, AN, RML, MN = As in Allies' game

AA = Attack through Ardennes

N + C = Go North, but then counterattack behind Ardennes

$$N(G^1)_1 = \{AN, N + C\}, N(G^2)_2 = \{AN, MN\},\$$
  
 $HN(H) = N(G^1)_1 \times N(G^2)_2 = \{AN, MN\}$ 

#### Stable Hyper-Nash Equilibrium

There exists a stable hyper Nash equilibrium,  $(s_i^{j**})_{i \in N} \in \times_{j \in N} S_j^j$ , of a hypergame H iff  $\forall k \in N, (s_i^{j**})_{i \in N} \in \mathbf{N}(G^k)$ .

#### Set of Stable Hyper-Nash Equilibrium

 $\mathsf{SHN}(H) = \cap_{i \in N} \mathsf{N}(G^i).$ 





German game:

AML, AN, RML, MN = As in Allies' game

AA = Attack through Ardennes

N + C = Go North, but then counterattack behind Ardennes

Figure: A simple two-player hypergame

No stable Nash equilibria exists in this game as  $\mathbf{SHN}(H) = \mathbf{N}(G^1) \cap \mathbf{N}(G^2) = \emptyset$ .





German game:

AML, AN, RML, MN = As in Allies' game

AA = Attack through Ardennes

N + C = Go North, but then counterattack behind Ardennes

Figure: A simple two-player hypergame

No stable Nash equilibria exists in this game as  $\mathbf{SHN}(H) = \mathbf{N}(G^1) \cap \mathbf{N}(G^2) = \emptyset$ . This means that the hypergame H is an unstable hypergame.



Figure: The Cyber attack graph from the Defenders Perspective

A ∃ ≥ A



Figure: The Cyber attack graph from the Defenders Perspective

Attackers: V1V3, V2V3 Defenders: Host1, Host2, Target



Attackers Expected Values; V1:  $3 \times 0.8 = 2.4$ , V2:  $10 \times 0.4 = 4$ , V3:  $10 \times 0.9 = 9$ . Overall: V1V3: 11.4, V2V3:13



Figure: The Cyber attack graph from the Defenders Perspective

Attackers Expected Values; V1:  $3 \times 0.8 = 2.4$ , V2:  $10 \times 0.4 = 4$ , V3:  $10 \times 0.9 = 9$ . Overall: V1V3: 11.4, V2V3:13 Attackers Costs; V1: 4, V2: 6, V3:3. Overall: V1V3: 7, V2V3:9



Figure: The Cyber attack graph from the Defenders Perspective

Attackers Expected Values; V1:  $3 \times 0.8 = 2.4$ , V2:  $10 \times 0.4 = 4$ , V3:  $10 \times 0.9 = 9$ . Overall: V1V3: 11.4, V2V3:13 Attackers Costs; V1: 4, V2: 6, V3:3. Overall: V1V3: 7, V2V3:9 Defenders Expected Values; Host1: 6, Host2: 7, Target: 10



Figure: The Cyber attack graph from the Defenders Perspective

Attackers Expected Values; V1:  $3 \times 0.8 = 2.4$ , V2:  $10 \times 0.4 = 4$ , V3:  $10 \times 0.9 = 9$ . Overall: V1V3: 11.4, V2V3:13 Attackers Costs; V1: 4, V2: 6, V3:3. Overall: V1V3: 7, V2V3:9 Defenders Expected Values; Host1: 6, Host2: 7, Target: 10 Defenders Costs; Host1: 5, Host2: 6, Target: 9

Attackers Expected Values; V1:  $3 \times 0.8 = 2.4$ , V2:  $10 \times 0.4 = 4$ , V3:  $10 \times 0.9 = 9$ . Overall: V1V3: 11.4, V2V3:13 Attackers Costs; V1: 4, V2: 6, V3:3. Overall: V1V3: 7, V2V3:9 Defenders Expected Values; Host1: 6, Host2: 7, Target: 10 Defenders Costs; Host1: 5, Host2: 6, Target: 9

V1V3 and Host1; Defender: 6 + 7 + 10 - 5 = 18, Attacker: -4



Figure: The Hypergame from the Defenders Perspective

Attackers Expected Values; V1:  $3 \times 0.8 = 2.4$ , V2:  $10 \times 0.4 = 4$ , V3:  $10 \times 0.9 = 9$ . Overall: V1V3: 11.4, V2V3:13 Attackers Costs; V1: 4, V2: 6, V3:3. Overall: V1V3: 7, V2V3:9 Defenders Expected Values; Host1: 6, Host2: 7, Target: 10 Defenders Costs; Host1: 5, Host2: 6, Target: 9

V1V3 and Host2; Defender: 7 - 6 = 1, Attacker: 11.4 - 7 = 4.4



Figure: The Hypergame from the Defenders Perspective

Attackers Expected Values; V1:  $3 \times 0.8 = 2.4$ , V2:  $10 \times 0.4 = 4$ , V3:  $10 \times 0.9 = 9$ . Overall: V1V3: 11.4, V2V3:13 Attackers Costs; V1: 4, V2: 6, V3:3. Overall: V1V3: 7, V2V3:9 Defenders Expected Values; Host1: 6, Host2: 7, Target: 10 Defenders Costs; Host1: 5, Host2: 6, Target: 9

V1V3 and Target; Defender; 7 + 10 - 9 = 8, Attacker: 2.4 - 7 = -4.6

Attacker

|          |        | V1V3   | V2V3  |
|----------|--------|--------|-------|
| Defender | Host1  | 18,-4  | 1,4   |
|          | Host2  | 1,4.4  | 17,-6 |
|          | Target | 8,-4.6 | 7,-5  |

Figure: The Hypergame from the Defenders Perspective



Figure: The Cyber attack graph from the Attackers Persective

イロト イボト イヨト イヨト



Figure: The Cyber attack graph from the Attackers Persective

Attackers: V1V3, V2V3, V10V3 Defenders: Host1, Host2, Host3, Target

- E - - E



Figure: The Cyber attack graph from the Attackers Persective

Attackers Expected Values; V1: 2.4, V2: 4, V10:  $5 \times 0.7 = 3.5$ , V3: 9. Overall: V1V3: 11.4, V2V3:13, V10V3: 8 Attackers Costs; V1: 4, V2: 6, V10: 5, V3:3. Overall: V1V3: 7, V2V3:9, V10V3: 8



Figure: The Cyber attack graph from the Attackers Persective

Attackers Expected Values; V1: 2.4, V2: 4, V10:  $5 \times 0.7 = 3.5$ , V3: 9. Overall: V1V3: 11.4, V2V3:13, V10V3: 8 Attackers Costs; V1: 4, V2: 6, V10: 5, V3:3. Overall: V1V3: 7, V2V3:9, V10V3: 8 Defenders Expected Values; Host1: 6, Host2: 7, Host3:9, Target: 10 Defenders Costs; Host1: 5, Host2: 6, Host3:7, Target: 9

Tonicha Crook (Swansea University)

Attackers Expected Values; V1: 2.4, V2: 4, V10:  $5 \times 0.7 = 3.5$ , V3: 9. Overall: V1V3: 11.4, V2V3:13, V10V3: 8

Attackers Costs; V1: 4, V2: 6, V10: 5, V3:3. Overall: V1V3: 7, V2V3:9, V10V3: 8

Defenders Expected Values; Host1: 6, Host2: 7, Host3:9, Target: 10 Defenders Costs; Host1: 5, Host2: 6, Host3:7, Target: 9

|          |        | Attacker |       |         |  |
|----------|--------|----------|-------|---------|--|
|          |        | V1V3     | V2V3  | V10V3   |  |
| Delender | Host1  | 27,-4    | 10,4  | 8,4.5   |  |
|          | Host2  | 10,4.4   | 26,-6 | 7,4.5   |  |
|          | Host3  | 9,4.4    | 8,4   | 25,-3   |  |
|          | Target | 17,-4.6  | 16,-5 | 14,-4.5 |  |

#### Figure: The Hypergame from the Attackers Perspective - E - 00

Tonicha Crook (Swansea University)

Hypergames



Figure: The Hypergame

# Thank You Any Questions?