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Problem Setting — Historical

« Sequential Decision Making
 Relatively new problem?

A SEQUENTIAL DECISION PROBLEM WITH A FINITE MEMORY*

By HErRBERT ROBBINS
COLUMBIA UNIVERSITY

. Communstcated by Paul A. Smith, October 1, 1966

1. Summary.—We consider the problem of successively choosing one of two
ways of action, each of which may lead to success or failure, in such a way as to
maximize the long-run proportion of successes obtained, the choice each time being
based on the results of a fixed number of the previous trials.

« Actually, it's a problem of the entire (human?) history
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Problem Setting — Modern =
» Sequential Decision Making — .

« Sounds similar to ...
* Reinforcement Learning

environment

« Control Theory agent
actions
' _ rewards >
» How to make “best” decision? obsevatons )|

environment

 Now, and also later
 Based on finite interactions |
« With the aim of optimizing some fn.

reinforcement

learning
algorithm
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Problem Setting — Everyday

 Decision: what to eat for lunch on n-th day
 E.g. represented by a finite set X ={0,1,2,3,4}
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Problem Setting — Everyday

* Reward / response: R(x)
« “reward” for choosing x for lunch (a random var.)
» Choose x™ = x, and then observe a realization R"*1
e VYn: R"*1 = R(x™) ~? (unknown dist.)

r AR L —_——

R(2)

AIMLGE@K
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Canonical Problem Formulation

 Decision: finite set X
* Time horizon / budget: N

environment
ANE L
AIML @K
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Knowledge Gradient in Online Problems

* Ryzhov and Powell, 2009
The Knowledge Gradient Algorithm For Online Subset Selection

Ilya O. Ryzhov and Warren Powell

* Lee and Powell, 2022

Online Learning with
Regularized Knowledge Gradients

Donghun Lee(><)!* and Warren B. Powell?
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The Knowledge Gradient Algorithm For Online Subset Selection

Ilya O. Ryzhov and Warren Powell

Ryzhov and Powell, 2009
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Problem Definition

 (Admissible) Subset Selection Problem
* Given afiniteset U, find X c U s.t.vie{l,-«-, k}: c; =T

« Wherevi e {1,:,k},c;:pow(U) - {T, F}
« “constraints”
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Problem Definition

 (Admissible) Subset Selection Problem
* Given afiniteset U, find X c U s.t.vie{l,-«-, k}: c; =T

« Wherevi e {1,:,k},c;:pow(U) - {T, F}
« “constraints”

The Knowledge Gradient Algorithm For Online Subset Selection

Ilya O. Ryzhov and Warren Powell

* (Online) “Subset Selection Problem”

* Given a finite set of choices and a number N,
find "best” length-N-sequence of choices
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Problem Definition

The Knowledge Gradient Algorithm For Online Subset Selection

Ilya O. Ryzhov and Warren Powell

* Given a finite set of choices and a number N,
find "best” length-N-sequence of choices

 Free variables: allocate N measurements
* Objective: maximize the sum of rewards from all N measurements
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Problem Definition

The Knowledge Gradient Algorithm For Online Subset Selection

Ilya O. Ryzhov and Warren Powell

* Given a finite set of choices and a number N,
find "best” length-N-sequence of choices

 Free variables: allocate N measurements
* Objective: maximize the sum of rewards from all N measurements
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Problem Definition

The Knowledge Gradient Algorithm For Online Subset Selection

Ilya O. Ryzhov and Warren Powell

* Given a finite set of arms and a finite horizon N,
find "best” length-N-sequence of choices

 Free variables: allocate N measurements
* Objective: maximize the sum of rewards from all N measurements

AIMLGE@K
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Online KG Policy

* Online KG policy (Ryzhov and Powell 2009):
KGn

m9%G(s™) = argmax u? + (N — n)v,
xXeX

I
KOREA
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Online KG Policy

* Online KG policy (Ryzhov and Powell 2009):
KGn

m9%G(s™) = argmax u? + (N — n)v,
XEX
 Key idea: given state s™ = {(u%, 0/ },.ey (at iteration n)
« Expected reward (at n) of choosing x € X: u?
« Expected reward (at n) of choosing "best” x (w/ belief at n): max u
X
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Online KG Policy

* Online KG policy (Ryzhov and Powell 2009):
KGn

m9%G(s™) = argmax u? + (N — n)v,
xXeX

 Key idea: given state s™ = {(u%, 0/ },.ey (at iteration n)
« Expected reward (at n) of choosing x € X: u?
« Expected reward (at n) of choosing "best” x (w/ belief at n): max u
X

 Expected total reward (from n till end of horizon) of choosing "best” x
(w/ belief at n): (N —n + 1)me%é< ul
X

e Let VEB(s™):= (N —n + 1)max ut (“ " policy)
X

AIMLGE@K
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©,

Online KG Policy

* Derivation

chance to learn.” Suppose now that we are at time n, with
N-n+1 rewards left to collect, but only the (n + 1)st reward
can be used to update our beliefs. That is, s = st for all
n’ > n+ 1. Then, we need to make one decision about what
to measure at time n, and we will switch to the empirical
Bayesian policy starting at time n+ 1. The KG decision rule
that follows from this assumption is

XEGn (s") = arg max [ + E"yEBntl (s”“) . (D
xr

If ties occur, they can be broken by randomly choosing one
of the alternatives that achieve the maximum.
The expectation on the right-hand side of (7) can be

written as

PI. Frazier, W.B. Powell and S. Dayanik, “A knowledge-gradient
policy for sequential information collection,” SIAM J. on Control and =

Optimization, 2008, to appear.

01/11/2022 KR-UK Al/ML Workshop @ Sejong Univ. 18

where the

EnVEB,n+1 (8n+1)

n+1
:L.I

(N = n) E" max s
(N - n) IEmax{rrllgqu,,uZ +o, - Z}
(N = n) (maxplh ) + (N - n)vEE™ (8)

computation of E" max,: ;" comes f“’m@ NI

AIMLGE@K

% KOREA

UNIVERSITY




chance to learn.” Suppose now that we are at time n, with

o o N-n+1 rewards left to collect, but only the (n + 1)st reward
O n I I n e KG PO I I Cy can be used to update our beliefs. That is, s = st for all
n’ > n+ 1. Then, we need to make one decision about what

to measure at time n, and we will switch to the empirical
Bayesian policy starting at time n+ 1. The KG decision rule

° Derivation that follows from this assumption is
« Substitute (8) to (7) XHC™ (") = argmax py + EMVEEHL (7)o (7)
« Remove constants If ties occur, they can be broken by randomly choosing one

of the alternatives that achieve the maximum.
The expectation on the right-hand side of (7) can be
XEG™ (") = argmax p” + (N = n) vXE™, (11) written as

It is now easy to see that (7) can be rewritten as

EnVEB,n+1 (Sn+1)

n+1
:L.I

= (N = n)E"maxpu

= (N-n) IEmax{ir};aé);u;‘,,uZ +o, - Z}

@P.I. Frazier, W.B. Powell and S. Dayanik, “A knowledge-gradient n KGon
policy for sequential information collection,” SIAM J. on Control and = (N - n) (mé}x ,ux/) + (N - n) vV, (8)
Optimization, 2008, to appear. z

where the computation of E" max,’ pz," comes from@ I
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chance to learn.” Suppose now that we are at time n, with

o o N-n+1 rewards left to collect, but only the (n + 1)st reward
O n I I n e KG Po I I Cy can be used to update our beliefs. That is, s = st for all
n’ > n+ 1. Then, we need to make one decision about what

to measure at time n, and we will switch to the empirical
Bayesian policy starting at time n+ 1. The KG decision rule

° Derivation that follows from this assumption is
« Substitute (8) to (7) XHC™ (") = argmax iy + EMVEEMH (7)o (7)
« Remove constants If ties occur, they can be broken by randomly choosing one

of the alternatives that achieve the maximum.
The expectation on the right-hand side of (7) can be
XEG™ (") = argmax p” + (N = n) vXE™, (11) written as

It is now easy to see that (7) can be rewritten as

EnVEB,n+1 (8n+1)

= (N-n)E" max pt

= (N-n) IEma,x{ir}%uﬁ,,uZ—i—&;‘-Z}

@P.I. Frazier, W.B. Powell and S. Dayanik, “A knowledge-gradient n KGon
policy for sequential information collection,” SIAM J. on Control and = (N - n) (mé}x ,ux/) + (N - n) v, (8)
Optimization, 2008, to appear. z

where the computation of E" max,’ pi5,"" comes fmm@ I
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Online KG Policy, Revisited

» Online KG policy (Ryzhov and Powell 2009): [;{;easy ?,,]
7_l_OKG (Sn) = argmax ‘u;} + (N — Tl)Vi{G'n
xXeX

 Key idea: given state s™ = {(u%, 0/ },.ey (at iteration n)
« Expected reward (at n) of choosing x € X: u?
« Expected reward (at n) of choosing "best” x (w/ belief at n): max u
X

« Expected total reward (from n till end of horizon) of choosing "best” x
(w/ belief atn): (N —n + 1)m€%g( u
X

e Let VEB(s™):= (N —n + 1)max ut (“ " policy)
X

AIMLGE@K
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Online KG Policy, Correlated Belief

* Online KG policy (Ryzhov and Powell 2009):
mO9KG(s™) = argmax ul + (N — n)v,S o™
XEX

 Substitute update rule for s™
from independent belief to correlated belief

work byalso gives an efficient algorithm for computing
vEGC exactly, and can be used to solve the decision problem
in (16). If we introduce a discount factor into the problem,
the decision rule becomes as in (12) or (13), with v¥G¢
instead of vXGC.

P.i. Frazier, W.B. Powell and S. Dayanik, “The knowledge gradient
policy for correlated normal rewards,” 2008, submitted for publication.

01/11/2022 KR-UK Al/ML Workshop @ Sejong Univ.
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Can't We Do Better?

* Online KG policy (Ryzhov and Powell 2009):
KGn

m9%G(s™) = argmax u? + (N — n)v,
xXeX

I
KOREA
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Online Learning with
Regularized Knowledge Gradients

Donghun Lee(P<)'* and Warren B. Powell?

Lee and Powell, 2022

Most work done in 2019-2020

AIMLGE@K

% KOREA
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Reward and Regret

« Reward (of choosing action x given belief B,)

 True reward Vt,Vx € X: R(x) ~ N(u*, (6%)?)
 Stationary stochastic MAB, Gaussian arms

- Surrogate reward Vt,Vx € X: R(B;,x) ~ N(ii¥, (6{)%)
» Based on current belief B;

AIMLGE@K
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Reward and Regret

* Regret defined as "sum of missed rewards”

01/11/2022

The regret of choosing zg,z1,--- ,x7_1 over T' time steps can be written as the
expected sum of difference between the counterfactual rewards from choosing
the best decision z* and the observed rewards from the actual decisions. Hence,
the regret up to time 71" can be considered as the sum of one-time regrets over
T time steps as:

T-1

Rr:=) (C(z*) - C (zv)). (A.36)

t=0

We denote the one-step regret of choosing an alternative x; at time ¢ as
ri+1 = C(z*) — C(x¢), where z* is the same as in (A.36), which is the unknown
best alternative after observing all randomness up to time 7. We bound the

KR-UK Al/ML Workshop @ Sejong Univ.
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Online Regularized KG (ORKG)

* Online KG policy (Ryzhov and Powell 2009):

mOKG (s™) = argmax{u + (N —n)vy =™}
XEX

* Online Regularized KG policy (Lee and Powell 2022):

") = argmax{u® + Lygreny

XEX

T[ORKG(S

I
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Online Regularized KG (ORKG)

* Online KG policy (Ryzhov and Powell 2009):

mOKG (s™) = argmax{u + (N —n)vy =™}
XEX

* Online Regularized KG policy (Lee and Powell 2022):

RKGn
mORKG (™) = argmax{ul + C Y }
xX€EX
— RKG,x
Ce. Ty = arg max {ut + pvg } , (4)
rxeX
where p; = \/2ln(2<5|:|)max{,€g,n}inmex <77, in which § € (0,1) and 7; is a
sequence satisfying > ,°m = 1, for example, m; := L 5.

(t—+—1)2 2
LT

AIMLGE@K
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Online Regularized KG (ORKG)

* Algorithm for
online learning

 Using regularized KG

01/11/2022

Algorithm 1 ORKG with Independent Gaussian Belief

1: Initialize belief state: {f§, a5 }

rEX

2: fort=0,1,2,--- do

KG,z

3: Compute standardized KG: kf + “t > Compute v} “* by (1)
t
4: Compute regularized KG: v**%* « 5F max (kr, 7)
5 Compute coefficient p; < 4/21In (%IXI) L —
Uy max{nR,mmweX K3 }
6: Choose action: z; < arg max {ﬁf + ptVtRKG’x}
rzeX
7 Observe Ciy1 ~ C(z¢)
8: Update ff,,,5¢,, for x = x; using observation C;;; > Use update rules in [§|
I
KR-UK Al/ML Workshop @ Sejong Univ. 29 == KO REA
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ORKG

Algorithm 1 ORKG with Independent Gaussian Belief

1: Initialize belief state: {fag, 50

rzEX

2: fort=0,1,2,--- do

3:
4.
5}

6:

7:
8:

KG,x
Compute standardized KG: kf + “t > Compute v;*%* by (1)
t
Compute regularized KG: v/**“* « 5¥ max (kg, %)

Compute coefficient p; < \/ 21n (2|X|) 1

Sy max{nR,minweX ng’}

) _ K
Choose action: z; ¢ arg max {uf <+ ptI/tR G’x}

reX

Observe Ciy1 ~ C(x¢)
Update ff,,,5¢,, for x = x; using observation C:;+1 > Use update rules in [§|

« ... that has sublinear regret bound (first in KG algorithms)

01/11/2022

Theorem 1. In stochastic MAB problems with bounded independent Gaussian
arms, ORKG algorithm with independent Gaussian belief has regret upper bound:

Rr <, \/8 |X| T In (M)LRKGGE,

Omr-1

with probability 1 - 6, where 0 < § < 1, and L®XC < 0o is a constant uniformly
bounding smoothness of reqularized KG surface.

KR-UK Al/ML Workshop @ Sejong Univ. 30
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How?

» Add suitable properties to KG
« Standardize KG
« Regularize KG

 Get probabilistic bounds given KG-based choices
« Bound one-step reward deviation w/ high probability
* Bound one-step regret
» Bound sum of regrets over T-steps

AIMLGE@K
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Prep Work

/
7L 7L
Y = MaXys £y [y

R

Ot

(2)

where 67 := a7/ \/ 1+ (0¢/5%)* . ¢ is the standard deviation of the zero-mean
Gaussian measurement noise assumed to be found on all observed reward C(z)

for all x € X. Most KG-based algorithms have o€ as a hyperparameter.

» Standardize KG

01/11/2022

Definition 1. k¥, standardized knowledge gradient of an action x € X at time
t is defined for all x € X as:

VKG,:I}
KT = L ; (5)

—24 H
O

where knowledge gradient I/tK G s computed from belief state B;.

ki is “standardized” KG, in a sense that it has the same unit as :

T oy T T T
Ky = ‘ (&P (&) + (&), (6)
V(@) + (09 ™ g
) Tt g P same unit as &7
unitless

where &7 is as defined in (2), @ is the cumulative distribution function, and ¢ is
the probability density function of standard normal distribution.

KR-UK Al/ML Workshop @ Sejong Univ.
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Regularization

* Regularize KG

Definition 2. VtR KG"”, the reqularized KG for making a decision x at time t
given belief state By, is defined as

RKGx . ~
v, " =07y max {kg,Kk{}, (7)
where kg > 0 is the reqularizing parameter, which is a small arbitrary constant

uniform lower bound on ki for all x,t, and k7 is standardized KG computed at
time t given belief state By according to Definition 1.

e Given belief at time t : C(x) ~ NV (ii¥, (6{)?)
« Where k{ is standardized KG

01/11/2022

KR-UK Al/ML Workshop @ Sejong Univ.
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Bound Step 1

* Bound one-step reward deviation w/ high probability

Lemma A.5. For § € (0,1), p: := \/2 In (2|X|) 1 —~ satisfies

oy max{nR,minm/GX K }
P [|(J (z) — | < ptl/fKG’x,‘v’:v,Vt] >1-4§, (A.15)

for allz € X for allt =0,1,---, where Y, m =1

AIMLGE@K

% KOREA

=/ UNIVERSITY
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Bound Step 2

» Bound one-step regret
Lemma A.7. For 6 € (0,1), ORKG algorithm with independent Gaussian be-

lief algorithm with parameter p; := \/ 21n <2|X|) 1 satisfies the

- T
0m¢ ) max{kr,mingecx K7}

following one-step regret bound
P [Tt+1 < 2pt1/tRKG’xt] >1-— 6, (A37)

for allt =0,1,--- with high probability.

AIMLGE@K

% KOREA

=/ UNIVERSITY
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Bound Step 3

« Bound sum of regrets over T-steps

Theorem 1. In stochastic MAB problems with bounded independent Gaussian
arms, ORKG algorithm with independent Gaussian belief has regret upper bound:

2|X|T
Rr <, \/8|X|Tln ((Ser—l_l)LRKGae,

with probability 1 — §, where 0 < § < 1, and LEXG < 0o is a constant uniformly
bounding smoothness of reqularized KG surface.

AIMLGE@K

% KOREA
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Comparison Against Other KG's

Table 1: Comparison of algorithms used in section 5.1

i Hyperpa ams Decision Rule Belief State Hyperparameters Regret Bound
e-greedy ai w.p. 1- ¢ JTid e(t) N/A
KG Tl .52 e N/A
OKG i+ (T-tw "  pf,6¢ e, T N/A
ORKG % + pRKG= s, 5% e, 8, KR 0 (\/|X| Thn|X] T)

Table 2: Cumulative Regrets in Gaussian Stochastic MAB. Lower is Better.

° Regrets MAB Setting Algorithms
Arms Variance ORKG OKG KG e-greedy
5 High 215+ 102 204 +£96 33100 £256 8830 4 8200
5 Low 17+9 12 +12 33200 £235 65704 8110
10 High 1060 =85 2580 4+ 3210 39600 + 355 14700 4 11100
10 Low 40+ 9 1020 £ 2840 40600 £ 241 17400 % 11900
20 High 2210+ 105 5950 £3900 39900 £ 774 19600 % 10500
20 Low 96 + 10 6210 4+ 4690 44400 + 264 21100 4 14500
ANE L
AIML @K
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Sensitivity Analysis on xp

* Reg. hyperparam.

 Gaussian MAB

« 10 arms
 Low variance

t

D mEio[T(®)]

tu*

Regret R,

s=1 k=1

103

102

10!

Cumulative regrets for different bandit algorithms, averaged 100 times

10 arms, s=5: [N(3.18), N(—1.36), N(—0.455), N(2.27), \’(4.09)“,N(—2.27),]\’(1.36),;\’(—4.09),N(—3.18),
N(0.455)],02 =1
- KG »
OKG /
RKG (kz =0.0001) ’/
RKG (kp = 0.001)
RKG (kg =0.01) o
- RKG (kg =0.1) ok
- RKG (kp=1) .
/’.///
X 2
-~
- F —rk::::::.:A:::::::.:L—::::::.:A::::__
et
B el
o
101 102 103

Time steps t=1...T, horizon T=1000

Fig. 1: Sensitivity of ORKG to kg in Gaussian MAB (K = 10,02 =1, 6 = 0.01).

01/11/2022
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Sensitivity Analysis on 6

Cumulative regrets for different bandit algorithms, averaged 100 times
10 arms, s = 5: [N(—3.18), N(3.18), N(0.455), N(4.09) * , N(1.36), N(—4.09), N(—2.27), N(—0.455), N(2.27),
N(—1.36)],02 =1

 Probabilistic regret T
bound hyperparam. RKG (5 0000)

[
o
vl

= (
E RKG (5=0.001) i 5
G g RKG (§=0.01) e
e 5 i MAB L e RKG(=0) r s
ausSsian :Nf --A-- RKG (6=0.9) 1
@ ‘/ A
* 10 arms , 1O 1=
. Iw - -
* Low variance E e
= 10 I N P e el W W=
[ e H
o i p T
10! ‘:32’:’:==::'
10° 10t 102 103 10* 10°

Time steps t=1...T, horizon 7= 100000

Fig. 2: Sensitivity of ORKG to ¢ in Gaussian MAB (K = 10,02 = 1, kg = 0.01).
[TV
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5. UCB: Upper Confidence Bound (UCB) algorithm [13], which solves bounded
° multi-armed bandits with logarithmic regret upper bound. This decision rule
M A B C o m a rI S o n of this algorithm is intuitively given as an exploitation term plus an explo-
ration term, and this “optimism under uncertainty” principle affected a lot
of other algorithms.
6. kI-UCB: KL-UCB algorithm [9], a horizon-free online learning algorithm
whose regret bound is uniformly better than original UCB algorithm. This
algorithm has O(InT") regret upper bounds for exponential family distribu-

® SOme ClaSSiCS tions, and better constants than the original UCB algorithm. We include

kl-UCB as a modern improvement of the classic UCB.

° UCB 7. EXP3++: EXP3++ algorithm [18]. This algorithm improves EXP3 algo-
rithm which is originally designed for adversarial bandits [2] and achieves
® T S near-optimal regret bounds with matching lower bounds. The improvement

gives a boost for EXP3++ such that also enjoys polylogarithmic regret
bound in stochastic bandits, which makes EXP3++ have O(VKT InT) re-
gret bound for either stochastic or adversarial MABs, even without knowl-
edge of the horizon [18].

¢ S O m e re C e ntS 8. TS: Thompson Sampling algorithm [20]. This classic algorithm solves bounded
stochastic bandit problems using Bayesian optimization with different prior
o kI -U C B models. Despite its age, this algorithm often performs much better than other
algorithms eventually, as it is built around solid Bayesian inference model —
° EXP3++ especially when the algorithm has matching conjugate prior distribution of
underlying reward’s distribution. We ensure Thompson Sampling to perform
° BG well in Gaussian MAB problem by giving Gaussian prior distribution.

9. BG: Boltzmann-Gumbel exploration algorithm [4]. This algorithm improves
UCB with careful design of exploration bonus term, and enjoys distribution-
free regret bound of O(v KT In K) (assuming reward distribution is subgaus-
sian). This regret bound is tighter than the corresponding distribution-free
regret bound from UCB, so we include BG as a modern algorithm with great
regret bound and robustness against model-specific algorithms.
[
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MAB Comparison

* Regrets

01/11/2022

Table 3: Cumulative Regrets in Gaussian Stochastic MAB. Lower is Better.

MAB Setting Algorithms
Arms Variance ORKG UCB kl-UCB TS (G) EXP3++ BG

5 High 215+102 247+90 573 £+ 2320 246 94 1090 £113 235 +105
) Low 17+9 30+ 10 15+10 41 + 37 919 + 67 36 =12
10 High 1060 =85 1060 +88 1920+ 2590 1420+698 2920+ 198 1070 £ 99
10 Low 40+9 75+ 11 41 +£10 644 + 1240 1920 4+ 138 85+ 12
20 High 2210+ 105 2260+ 68 324041930 4590 £+ 2210 5480+ 212 2240 + 72
20 Low 96 + 10 182+9 91+ 10 3010 #2490 34704226 181412
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Cumulative regrets for different bandit algorithms, averaged 100 times

I h e Re g rets 5 arms, s=2: [N(1.67), N(—1.67), N(—3.33), N(0), N(3.33)*], 02 =1

--o-- ORKG
OKG
— 10° KG
* Gaussian MAB & e-greedy
" UCB
e Sarms i KI-UCB
: N1 10° e (G)
* Low variance Sl S
==e EXP3+t et
'5 -9-- BG ’,,——""
I SR
= 102 e
oh ,,-*",, ___________ :;::*::.::'
< T PP e - o oo S
107 ==
100 10! 102 103 104
Time steps t=1...T, horizon T'= 10000
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The Regrets

 Gaussian MAB

« 10 arms
 Low variance

01/11/2022

Cumulative regrets for different bandit algorithms, averaged 100 times
10 arms, s=>5: [N(—4.09), N(4.09) *, N(—2.27), N(—0.455), N(2.27), N(0.455), N(—3.18), N(1.36), N(—1.36),
N(3.18)],0% =1
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The Regrets

 Gaussian MAB

e 20 arms
 Low variance

01/11/2022

Cumulative regrets for different bandit algorithms, averaged 100 times
20 arms, s=10: [N(—4.05), N(2.62), N(—2.62), N(2.14), N(3.57), N(—3.1), N(—0.238), N(—0.714), N(1.19),
N(—-1.67), N(4.52) *, N(3.1), N(0.714), N(0.238), N(—3.57), N(—4.52), N(—2.14), N(—1.19),
N(1.67), N(4.05)],0% =1
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Conclusion

* Regularized KG allows regret analysis on KG-based algs
* First result for KG-based algorithms

* Online Regularized KG algorithm (ORKG), adaptation of
regularized KG for MAB problems
» Has provable sublinear regret bound
« Shows good performance in Gaussian MAB
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Questions?

>> holy@korea.ac.kr
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