Two Approaches using Deep Learning to solve Partial Differential Equation

PDE solver and operator learning

Center for AI and Natural Sciences Korea Institute for advanced Study(KIAS) JaeYong Lee

Workshop for Korea-UK AI/ML Research in Fundamental Sciences 2022.11.01

Index

- PDE solver
	- Physics Informed Neural Network (PINN)
	- My interests on PDE solver
- Operator learning
	- CNN encoder-decoder
	- My interests on operator learning

Partial differential equation (PDE)

- In mathematics, a **differential equation** is an [equation](https://en.wikipedia.org/wiki/Equation) that relates one or more [functions](https://en.wikipedia.org/wiki/Function_(mathematics)) and their [derivatives.](https://en.wikipedia.org/wiki/Derivative)
	- The functions generally represent **physical quantities.**
	- The derivatives represent **their rates of change.**
	- The differential equation defines a **relationship between the above two**.

(e.g.)

Let $u(t, x)$ denote the temperature at point x at time t.

Deep Neural Network and Deep Learning

(a) Deep neural network

(b) Inner structure of the neuron

Two mainstream on deep learning approach to PDEs

- PDE solver
	- Using neural networks directly to parametrize the solution to PDEs.
	- Solve one instance of PDE at a time.
	- Models
		- Deep Ritz Method (DRM)
		- Physics Informed Neural Network (PINN)

Two mainstream on deep learning approach to PDEs

• Operator learning

- Learning a mapping from the parameters (e.g. external force, initial, and boundary conditions) of the PDEs to the corresponding solution.
- Learning a family of PDEs from data.
- Models
	- Deep Operator Network (DeepONet)
	- Fourier Neural Operator (FNO)

Find a map $\mathcal{G}: g(x) \mapsto u(t, x)$ satisfying $\mathcal{L}_{PDE} = f(u, u_t, u_x, u_{xx}, ...) = 0$ $\mathcal{L}_{IC} = u(0, x) - g(x) = 0$ $\mathcal{L}_{BC} = u|_{\partial\Omega} - h(t, x)|_{\partial\Omega}$

Noural Notwo $g(x)$ (function to function) $u^{nn}(t,x)$ Neural Network (function to function mapping)

Part 1. PDE solver

Physics-informed neural network (PINN)

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. *Journal of Computation al physics*, *378*, 686-707.

"Here we revisit them using modern computational tools, and apply them to more challenging dynamic problems described by time-dependent nonlinear partial differential equations."

Automatic differentiation and the back-propagation algorithm

[Schematic of a PINN]

Lu, L., Meng, X., Mao, Z., & Karniadakis, G. E. (2021). DeepXDE: A deep learning library for solving differential equations. *SIAM Review*, *63*(1), 208-228

Physics-informed neural network (PINN) – Forward problem

(e.g.) Burgers' equation Eq:
$$
u_t + uu_x - (0.01/\pi)u_{xx} = 0
$$

\nIC: $u(0, x) = -\sin(\pi x)$
\nBC: $u(t, -1) = u(t, 1) = 0$
\nIC: $u(t, -1) = u(t, 1) = 0$

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial different ial equations. *Journal of Computational physics*, *378*, 686-707.

Physics-informed neural network (PINN) – Forward problem

(e.g.) Burgers' equation Eq:
$$
u_t + uu_x - (0.01/\pi)u_{xx} = 0
$$

\nIC: $u(0, x) = -\sin(\pi x)$
\n $x \in [-1, 1], t \in [0, 1]$
\nLoss function
\nBC: $u(t, -1) = u(t, 1) = 0$

$$
\bm{L}(\bm{\theta})\n= \frac{1}{N_{Eq}}\sum_{i=1}^{N_{Eq}}\left|u_t(t^i,x^i) + u(t^i,x^i)u_x(t^i,x^i) - (0.01/\pi)u_{xx}(t^i,x^i)\right|^2 + \frac{1}{N_{IC}}\sum_{j=1}^{N_{IC}}\left|u(t^j,x^j) + \sin(\pi x^j)\right|^2 + \frac{1}{N_{BC}}\sum_{k=1}^{N_{BC}}\left|u(t^k,x^k)\right|^2
$$

Data: $(t_i, x_i) \in [0,1] \times [-1,1]$ $(t_j, x_j) \in \{0\} \times [-1, 1]$ $(t_k, x_k) \in [0,1] \times \{-1,1\}$

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial different ial equations. *Journal of Computational physics*, *378*, 686-707.

Physics-informed neural network (PINN) – Forward problem

(e.g.) Burgers' equation Eq:
$$
u_t + uu_x - (0.01/\pi)u_{xx} = 0
$$

\nIC: $u(0, x) = -\sin(\pi x)$
\n $x \in [-1,1], t \in [0,1]$
\nLoss function
\nBC: $u(t, -1) = u(t, 1) = 0$

 $\bm{L}(\bm{\theta})$ N_{Eq} N_{IC} N_{BC} 1 1 1 2 2 2 $|u_t(t^i, x^i) + u(t^i, x^i)u_x(t^i, x^i) - (0.01/\pi)u_{xx}(t^i, x^i)|$ $|u(t^j, x^j) + \sin(\pi x^j)|$ $|u(t^k, x^k)|$ = \sum + \sum + \sum N_{Eq} N_{IC} N_{BC} $i=1$ $j=1$ $k=1$ $u(t,x)$ 1.0 Data: 0.75 Data (100 points) × 0.5 0.50 $(t_i, x_i) \in [0,1] \times [-1,1]$ 0.25 \boldsymbol{x} 0.0 0.00 $(t_j, x_j) \in \{0\} \times [-1, 1]$ -0.25 $(t_k, x_k) \in [0,1] \times \{-1,1\}$ -0.5 -0.50 -0.75 -1.0 0.2 0.4 0.6 0.8 0.0 \boldsymbol{t} $t = 0.25$ $t = 0.50$ $t = 0.75$ $\boldsymbol{u}(t,\boldsymbol{x})$ $u(t,x)$ $\boldsymbol{u}(t,x)$ -1 $\overline{0}$ -1 $\mathbf 0$ Ω $\mathbf{1}$ $^{-1}$ $\mathbf{1}$ $\mathbf{1}$ Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networ
ial equations forward of Computational physics 378, 686-707

ial equations. *Journal of Computational physics*, *378*, 686-707.

Hwang, H. J., Jang, J. W., Jo, H., & **Lee, J. Y.** (2020). Trend to equilibrium for the kinetic Fokker-Planck equation via the neural network a pproach. *Journal of Computational Physics*, *419*, 109665.

Using PINN to the kinetic Fokker-Planck equation.

The kinetic Fokker-Planck equation in a bounded interval $\Omega = [-1,1]$ is written as $\partial_t f(t, x, v) + v \cdot \nabla_x f = \partial_v (\sigma \partial_v f + \beta v f),$

subject to the initial condition

$$
f(0,x,v)=f_0(x,v)
$$

- $t \in [0, T]$ where T=5 or 10.
- $x \in [-1,1]$: unit ball in \mathbb{R}^1 .
- $v \in [-10, 10]$.

where σ is the diffusion coefficient, β is the friction coefficient, and the $f(t, x, v)$ is the pro babilistic density distribution of particles.

Hwang, H. J., Jang, J. W., Jo, H., & **Lee, J. Y.** (2020). Trend to equilibrium for the kinetic Fokker-Planck equation via the neural network a pproach. *Journal of Computational Physics*, *419*, 109665.

Using PINN to the kinetic Fokker-Planck equation.

The kinetic Fokker-Planck equation in a bounded interval $\Omega = [-1,1]$ is written as $\partial_t f(t, x, v) + v \cdot \nabla_x f = \partial_v (\sigma \partial_v f + \beta v f),$

subject to the initial condition

$$
f(0,x,v)=f_0(x,v)
$$

- $t \in [0, T]$ where T=5 or 10.
- $x \in [-1,1]$: unit ball in \mathbb{R}^1 .

$$
\bullet \quad v \in [-10,10].
$$

where σ is the diffusion coefficient, β is the friction coefficient, and the $f(t, x, v)$ is the pro babilistic density distribution of particles.

- * Boundary conditions
- **Ex)** Specular reflection boundary condition

-
$$
f(t, x, v) = f(t, x, -v)
$$
, for $x = -1$ and $x = 1$

Hwang, H. J., Jang, J. W., Jo, H., & **Lee, J. Y.** (2020). Trend to equilibrium for the kinetic Fokker-Planck equation via the neural network a pproach. *Journal of Computational Physics*, *419*, 109665.

Using PINN to the kinetic Fokker-Planck equation.

The kinetic Fokker-Planck equation in a bounded interval $\Omega = [-1,1]$ is written as $\partial_t f(t, x, v) + v \cdot \nabla_x f = \partial_v (\sigma \partial_v f + \beta v f),$

subject to the initial condition

$$
f(0,x,v)=f_0(x,v)
$$

- $t \in [0, T]$ where T=5 or 10.
- $x \in [-1,1]$: unit ball in \mathbb{R}^1 .
- $v \in [-10, 10]$.

where σ is the diffusion coefficient, β is the friction coefficient, and the $f(t, x, v)$ is the pro babilistic density distribution of particles.

* Boundary conditions

- Absorbing boundary condition: $f(t, x, v)|_{\gamma} = 0$, for $x = -1$ and 1.
- **Inflow** boundary condition: $f(t, x, v)|_{\gamma} = g(t, x, v)$, for $x = -1$ and 1 with a given function $g(t, x, v)$.
- **Specular reflection** boundary condition: $f(t, x, v) = f(t, x, -v)$, for $x=-1$ and 1.
- **Periodic** boundary condition: $f(t, x, v) = f(t, -x, v)$, for $x=-1$ and 1.
- **Diffusive** reflection boundary condition: $f(t, x, v) = C\mu(v) \int_{w \cdot n_x > 0} f(t, x, w) |w \cdot n_x| dw$, for $x = -1$ and 1, where $C =$ $\int_{v\cdot n < 0} \mu(v) |v\cdot n| dv$ −1 and $\mu(v) = e^{-\frac{v^2}{2}}$ \overline{z} for both $n = \hat{x}$ and $-\hat{x}$

Hwang, H. J., Jang, J. W., Jo, H., & **Lee, J. Y.** (2020). Trend to equilibrium for the kinetic Fokker-Planck equation via the neural network a pproach. *Journal of Computational Physics*, *419*, 109665.

- Using PINN to the kinetic Fokker-Planck equation.
	- Easily changing the varied types of the physical boundary conditions.
	- Include a term regarding the conservation of the total mass of the system in the t otal loss function
	- Long time behaviors of neural network solution and its physical quantities
		- Apply various initial conditions and coefficients.
		- Convergence to the global Maxwellian.
	- Providing the theoretical supports for the pointwise convergence of the neural ne twork solutions to the a priori analytic solutions.

Hwang, H. J., Jang, J. W., Jo, H., & **Lee, J. Y.** (2020). Trend to equilibrium for the kinetic Fokker-Planck equation via the neural network a pproach. *Journal of Computational Physics*, *419*, 109665.

• Results : Specular boundary conditions which conserve the total mass

Video: The pointwise values of $f^{nn}(t, x, v)$ as t varies at each x's for the **specular boundary condition.** $x = \pm 1$ stand for the boundary points, and $x = \pm 0.5$ and $= 0$ are the points away from the boundary.

Part 2. Operator learning

• Operator learning

- Learning a mapping from the parameters (e.g. external force, initial, and boundary conditions) of the PDEs to the corresponding solution.
- Learning a family of PDEs from data.
- Models
	- Deep Operator Network (DeepONet)
	- Fourier Neural Operator (FNO)

Data-driven operator learning

- CNN encoder-decoder (Image-to-image regression)
	- Image segmentation, Image Noise Reduction, Image coloring

Data-driven operator learning

• Operator learning (function-to-function regression)

Ex) Poisson equation Goal) Find a solution $u(x_1, x_2)$ for different source term $m(x_1, x_2)$. $-\Delta u - m = 0$ in $\Omega \subset \mathbb{R}^2$ (Learning operator from the source term to the solution) $m(x_1, x_2) \mapsto u(x_1, x_2)$ $u = 0$ in $\partial\Omega$

Ex) Burgers' equation Goal) For a fixed coefficient ν , find a solution $u(t, x)$ for different initial condition $u_0(x)$. (Learning operator from the initial condition to the solution) $u_t + uu_x = \nu u_{xx}$ $u_0(x) \mapsto u(x, t = T)$ or $u_0(x) \mapsto u(x, t)$ $u(x,0) = u_0(x)$

New models for operator learning : DeepONet(2019), Fourier Neural Operator (FNO) [2020]

Hwang, R., **Lee, J. Y.**, Shin, J. Y., & Hwang, H. J. (2022, June). Solving pde-constrained control problems using operator learning. In *Proceedings of the AAAI Conference on Artificial Intelligence* (Vol. 36, No. 4, pp. 4504-4512).

• Solving control problems using operator learning.

Poisson equation with zero Dirichlet boundary conditions

$$
\begin{cases}\n-\Delta u(x) - m(x) = 0, & x \in \Omega, \\
u = 0, & x \in \partial\Omega, \\
m_a \le m \le m_b, & x \in \Omega,\n\end{cases}
$$

- Ω : domain of interest
- $u : \Omega \to \mathbb{R}$ (unknown temperature)
- $u_d : \Omega \to \mathbb{R}$ (desired temperature)
- α : (unknown temperature)
- $m : \Omega \to \mathbb{R}$ (source term : control function)

- We want to control $m(x)$ which minimize

 $J_{total}(m(x), u(x))$

$$
= \min \frac{1}{2} \int_{\Omega} (u - u_d)^2 dx + \frac{\alpha}{2} \int_{\Omega} m^2 dx
$$

Phase 2 : Solving control problem (Minimize J_{total} to find optimal $m(x)$)

Hwang, R., **Lee, J. Y.**, Shin, J. Y., & Hwang, H. J. (2022, June). Solving pde-constrained control problems using operator learning. In *Proceedings of the AAAI Conference on Artificial Intelligence* (Vol. 36, No. 4, pp. 4504-4512).

- Solving control problems using operator learning.
	- Our framework approximates a PDE solution with **sufficiently high accur acy** to search optimal controls while taking significantly **less time for infe rence.**

Conclusion

• PDE solver

Find $u(t, x)$ satisfying $\mathcal{L}_{PDE} = f(u, u_t, u_x, u_{xx}, ...) = 0$ $\mathcal{L}_{IC} = u(0, x) - g(x) = 0$ $\mathcal{L}_{BC} = u|_{\partial\Omega} - h(t, x)|_{\partial\Omega} = 0$

• Operator learning

[1] Hwang, H. J., Jang, J. W., Jo, H., & **Lee, J. Y.** (2020). Trend to equilibrium for the kinetic Fokker-Planck equation via the neural network approach. *Journal of Computational Physics*, *419*, 109665.

[2] Hwang, R., **Lee, J. Y.**, Shin, J. Y., & Hwang, H. J. (2022, June). Solving pde-constrained control problems using o perator learning. In *Proceedings of the AAAI Conference on Artificial Intelligence* (Vol. 36, No. 4, pp. 4504-4512)

Thank you