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Partial differential equation (PDE)

• In mathematics, a differential equation is an equation that relates 

one or more functions and their derivatives.

- The functions generally represent physical quantities.

- The derivatives represent their rates of change.

- The differential equation defines a relationship between the above two.

(e.g.)

Let 𝑢(𝑡, 𝑥) denote the temperature at point 𝑥 at time 𝑡.

Governing equation (heat equation) :
𝜕𝑢 𝑡, 𝑥

𝜕𝑡
= 𝑘

𝜕2𝑢 𝑡, 𝑥

𝜕𝑥2
.

Initial condition (IC) :
𝑢 𝑡 = 0, 𝑥 = 𝑓 𝑥 .

Boundary condition (BC) :
𝑢 𝑡, 𝑥 = 0 = ℎ 𝑥 , 𝑢 𝑡, 𝑥 = 𝐿 = 𝑔 𝑥 .

https://math.libretexts.org/Bookshelves/Differential_Equations/Book%3A_Differential_Equations_for_Engineers_(Lebl)/4%3A_Fourier_series_and_PDEs/4.06%3A_PDEs_separation_of_variables_and_the_heat_equation

https://en.wikipedia.org/wiki/Equation
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Derivative


Deep Neural Network and Deep Learning

https://www.researchgate.net/publication/338190342_Convolutional_Neural_Network_Coupled_with_a_Transfer-Learning_Approach_for_Time-Series_Flood_Predictions/figures?lo=1



• PDE solver

- Using neural networks directly to parametrize the solution to PDEs.

- Solve one instance of PDE at a time.

- Models

– Deep Ritz Method (DRM)

– Physics Informed Neural Network (PINN)

Two mainstream on deep learning approach to PDEs

Find 𝒖(𝒕, 𝒙) satisfying

ℒ𝑃𝐷𝐸 = 𝑓 𝑢, 𝑢𝑡 , 𝑢𝑥, 𝑢𝑥𝑥, … = 0

ℒ𝐼𝐶 = 𝑢 0, 𝑥 − 𝑔 𝑥 = 0

ℒ𝐵𝐶 = 𝑢|𝜕Ω − ℎ 𝑡, 𝑥 |𝜕Ω = 0

𝑡

𝑥

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝑢𝑛𝑛(𝑡, 𝑥)



• Operator learning

- Learning a mapping from the parameters (e.g. external force, initial, 

and boundary conditions) of the PDEs to the corresponding solution.

- Learning a family of PDEs from data.

- Models

– Deep Operator Network (DeepONet)

– Fourier Neural Operator (FNO)

Two mainstream on deep learning approach to PDEs

Find a map 𝓖:𝒈 𝒙 ↦ 𝒖(𝒕, 𝒙) satisfying

ℒ𝑃𝐷𝐸 = 𝑓 𝑢, 𝑢𝑡 , 𝑢𝑥, 𝑢𝑥𝑥, … = 0

ℒ𝐼𝐶 = 𝑢 0, 𝑥 − 𝑔 𝑥 = 0

ℒ𝐵𝐶 = 𝑢|𝜕Ω − ℎ(𝑡, 𝑥)|𝜕Ω

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝑢𝑛𝑛(𝑡, 𝑥)𝑔(𝑥)
Neural Network
(function to function 

mapping)



Part 1. PDE solver



Physics-informed neural network (PINN)

“Here we revisit them using modern computational tools, and apply them to more challenging dynamic 
problems described by time-dependent nonlinear partial differential equations.”

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework 
for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computation
al physics, 378, 686-707.

Automatic differentiation and the back-propagation algorithm

[Schematic of a PINN ]

Lu, L., Meng, X., Mao, Z., & Karniadakis, G. E. (2021). DeepXDE: A deep learning library for solving differential equations. SIAM Review, 63(1), 208-228

.



Physics-informed neural network (PINN) – Forward problem

Eq : 𝑢𝑡 + 𝑢𝑢𝑥 − 0.01/𝜋 𝑢𝑥𝑥 = 0
IC : 𝑢 0, 𝑥 = − sin 𝜋𝑥
BC : 𝑢 𝑡, −1 = 𝑢 𝑡, 1 = 0

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial different
ial equations. Journal of Computational physics, 378, 686-707.

(e.g.) Burgers’ equation

𝑥 ∈ −1,1 , 𝑡 ∈ 0,1



Physics-informed neural network (PINN) – Forward problem

Data:
(𝑡𝑖 , 𝑥𝑖) ∈ 0,1 × −1,1
(𝑡𝑗 , 𝑥𝑗) ∈ {0} × −1,1

(𝑡𝑘 , 𝑥𝑘) ∈ 0,1 × {−1,1}

Eq : 𝑢𝑡 + 𝑢𝑢𝑥 − 0.01/𝜋 𝑢𝑥𝑥 = 0
IC : 𝑢 0, 𝑥 = − sin 𝜋𝑥
BC : 𝑢 𝑡, −1 = 𝑢 𝑡, 1 = 0

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial different
ial equations. Journal of Computational physics, 378, 686-707.

𝑳 𝜽

=
1

𝑁𝐸𝑞


𝑖=1

𝑁𝐸𝑞

|𝑢𝑡 𝑡𝑖 , 𝑥𝑖 + 𝑢 𝑡𝑖 , 𝑥𝑖 𝑢𝑥 𝑡𝑖 , 𝑥𝑖 − (0.01/𝜋)𝑢𝑥𝑥 𝑡𝑖 , 𝑥𝑖 ቚ
2
+

1

𝑁𝐼𝐶


𝑗=1

𝑁𝐼𝐶

|𝑢 𝑡𝑗 , 𝑥𝑗 + sin 𝜋𝑥𝑗 ቚ
2
+

1

𝑁𝐵𝐶


𝑘=1

𝑁𝐵𝐶

|𝑢 𝑡𝑘 , 𝑥𝑘 ቚ
2

(e.g.) Burgers’ equation

𝑥 ∈ −1,1 , 𝑡 ∈ 0,1

Loss function 



Physics-informed neural network (PINN) – Forward problem

Eq : 𝑢𝑡 + 𝑢𝑢𝑥 − 0.01/𝜋 𝑢𝑥𝑥 = 0
IC : 𝑢 0, 𝑥 = − sin 𝜋𝑥
BC : 𝑢 𝑡, −1 = 𝑢 𝑡, 1 = 0

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial different
ial equations. Journal of Computational physics, 378, 686-707.

(e.g.) Burgers’ equation

𝑥 ∈ −1,1 , 𝑡 ∈ 0,1

Data:
(𝑡𝑖 , 𝑥𝑖) ∈ 0,1 × −1,1
(𝑡𝑗 , 𝑥𝑗) ∈ {0} × −1,1

(𝑡𝑘 , 𝑥𝑘) ∈ 0,1 × {−1,1}

𝑳 𝜽

=
1

𝑁𝐸𝑞


𝑖=1

𝑁𝐸𝑞

|𝑢𝑡 𝑡𝑖 , 𝑥𝑖 + 𝑢 𝑡𝑖 , 𝑥𝑖 𝑢𝑥 𝑡𝑖 , 𝑥𝑖 − (0.01/𝜋)𝑢𝑥𝑥 𝑡𝑖 , 𝑥𝑖 ቚ
2
+

1

𝑁𝐼𝐶


𝑗=1

𝑁𝐼𝐶

|𝑢 𝑡𝑗 , 𝑥𝑗 + sin 𝜋𝑥𝑗 ቚ
2
+

1

𝑁𝐵𝐶


𝑘=1

𝑁𝐵𝐶

|𝑢 𝑡𝑘 , 𝑥𝑘 ቚ
2

Loss function 



My interest [1]
Hwang, H. J., Jang, J. W., Jo, H., & Lee, J. Y. (2020). Trend to equilibrium for the kinetic Fokker-Planck equation via the neural network a

pproach. Journal of Computational Physics, 419, 109665.

• Using PINN to the kinetic Fokker-Planck equation.

The kinetic Fokker-Planck equation in a bounded interval Ω = [−1,1] is written as 

𝜕𝑡𝑓 𝑡, 𝑥, 𝑣 + 𝑣 ⋅ 𝛻𝑥𝑓 = 𝜕𝑣 𝜎𝜕𝑣𝑓 + 𝛽𝑣𝑓 ,

subject to the initial condition

𝑓 0, 𝑥, 𝑣 = 𝑓0(𝑥, 𝑣)

where σ is the diffusion coefficient, β is the friction coefficient, and the f 𝑡, 𝑥, 𝑣 is the pro
babilistic density distribution of particles.

𝑥 = −1 𝑥 = 1

Ω = [−1,1]

• 𝑡 ∈ 0, 𝑇 where T=5 or 10.

• 𝑥 ∈ [−1,1]: unit ball in ℝ1.

• 𝑣 ∈ [−10,10].



My interest [1]
Hwang, H. J., Jang, J. W., Jo, H., & Lee, J. Y. (2020). Trend to equilibrium for the kinetic Fokker-Planck equation via the neural network a

pproach. Journal of Computational Physics, 419, 109665.

• Using PINN to the kinetic Fokker-Planck equation.

The kinetic Fokker-Planck equation in a bounded interval Ω = [−1,1] is written as 

𝜕𝑡𝑓 𝑡, 𝑥, 𝑣 + 𝑣 ⋅ 𝛻𝑥𝑓 = 𝜕𝑣 𝜎𝜕𝑣𝑓 + 𝛽𝑣𝑓 ,

subject to the initial condition

𝑓 0, 𝑥, 𝑣 = 𝑓0(𝑥, 𝑣)

where σ is the diffusion coefficient, β is the friction coefficient, and the f 𝑡, 𝑥, 𝑣 is the pro
babilistic density distribution of particles.

* Boundary conditions

- Ex) Specular reflection boundary condition

- 𝑓 𝑡, 𝑥, 𝑣 = 𝑓 𝑡, 𝑥, −𝑣 , for 𝑥 = −1 and 𝑥 = 1

𝑥 = −1 𝑥 = 1

Ω = [−1,1]

• 𝑡 ∈ 0, 𝑇 where T=5 or 10.

• 𝑥 ∈ [−1,1]: unit ball in ℝ1.

• 𝑣 ∈ [−10,10].



My interest [1]
Hwang, H. J., Jang, J. W., Jo, H., & Lee, J. Y. (2020). Trend to equilibrium for the kinetic Fokker-Planck equation via the neural network a

pproach. Journal of Computational Physics, 419, 109665.

• Using PINN to the kinetic Fokker-Planck equation.

The kinetic Fokker-Planck equation in a bounded interval Ω = [−1,1] is written as 

𝜕𝑡𝑓 𝑡, 𝑥, 𝑣 + 𝑣 ⋅ 𝛻𝑥𝑓 = 𝜕𝑣 𝜎𝜕𝑣𝑓 + 𝛽𝑣𝑓 ,

subject to the initial condition

𝑓 0, 𝑥, 𝑣 = 𝑓0(𝑥, 𝑣)

where σ is the diffusion coefficient, β is the friction coefficient, and the f 𝑡, 𝑥, 𝑣 is the pro
babilistic density distribution of particles.

* Boundary conditions

- Absorbing boundary condition: 𝑓 𝑡, 𝑥, 𝑣 |𝛾− = 0, for 𝑥=-1 and 1.

- Inflow boundary condition: 𝑓 𝑡, 𝑥, 𝑣 |𝛾− = 𝑔(𝑡, 𝑥, 𝑣), for 𝑥=-1 and 1 with a given function 𝑔(𝑡, 𝑥, 𝑣).

- Specular reflection boundary condition: 𝑓 𝑡, 𝑥, 𝑣 = 𝑓 𝑡, 𝑥, −𝑣 , for 𝑥=-1 and 1.

- Periodic boundary condition: 𝑓 𝑡, 𝑥, 𝑣 = 𝑓 𝑡, −𝑥, 𝑣 , for 𝑥=-1 and 1.

- Diffusive reflection boundary condition: 𝑓 𝑡, 𝑥, 𝑣 = 𝐶𝜇 𝑣 
𝑤⋅𝑛𝑥>0

𝑓 𝑡, 𝑥, 𝑤 𝑤 ⋅ 𝑛𝑥 𝑑𝑤, for 𝑥=-1 and 1, where 𝐶 =


𝑣⋅𝑛 <0

𝜇 𝑣 𝑣 ⋅ 𝑛 𝑑𝑣
−1

and 𝜇 𝑣 = 𝑒−
𝑣2

2 for both n = ො𝑥 and −ො𝑥

• 𝑡 ∈ 0, 𝑇 where T=5 or 10.

• 𝑥 ∈ [−1,1]: unit ball in ℝ1.

• 𝑣 ∈ [−10,10].



My interest [1]
Hwang, H. J., Jang, J. W., Jo, H., & Lee, J. Y. (2020). Trend to equilibrium for the kinetic Fokker-Planck equation via the neural network a

pproach. Journal of Computational Physics, 419, 109665.

• Using PINN to the kinetic Fokker-Planck equation.

- Easily changing the varied types of the physical boundary conditions.

- Include a term regarding the conservation of the total mass of the system in the t

otal loss function

- Long time behaviors of neural network solution and its physical quantities

– Apply various initial conditions and coefficients.

– Convergence to the global Maxwellian.

- Providing the theoretical supports for the pointwise convergence of the neural ne

twork solutions to the a priori analytic solutions.



My interest [1]
Hwang, H. J., Jang, J. W., Jo, H., & Lee, J. Y. (2020). Trend to equilibrium for the kinetic Fokker-Planck equation via the neural network a

pproach. Journal of Computational Physics, 419, 109665.

• Results : Specular boundary conditions which conserve the total mass

Video: The pointwise values of 𝑓𝑛𝑛(𝑡, 𝑥, 𝑣) as t varies at each x’s for the specular 
boundary condition. x = ±1 stand for the boundary points, and x = ±0.5 and = 0 are the 
points away from the boundary. 



Part 2. Operator learning 



• Operator learning

- Learning a mapping from the parameters (e.g. external force, initial, 

and boundary conditions) of the PDEs to the corresponding solution.

- Learning a family of PDEs from data.

- Models

– Deep Operator Network (DeepONet)

– Fourier Neural Operator (FNO)

Find a map 𝓖:𝒈 𝒙 ↦ 𝒖(𝒕, 𝒙) satisfying

ℒ𝑃𝐷𝐸 = 𝑓 𝑢, 𝑢𝑡 , 𝑢𝑥, 𝑢𝑥𝑥, … = 0

ℒ𝐼𝐶 = 𝑢 0, 𝑥 − 𝑔 𝑥 = 0

ℒ𝐵𝐶 = 𝑢|𝜕Ω − ℎ(𝑡, 𝑥)|𝜕Ω

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝑢𝑛𝑛(𝑡, 𝑥)𝑔(𝑥)
Neural Network
(function to function 

mapping)



Data-driven operator learning

• CNN encoder-decoder (Image-to-image regression)

- Image segmentation, Image Noise Reduction, Image coloring

https://towardsdatascience.com/convolutional-autoencoders-for-image-noise-reduction-32fce9fc1763



Data-driven operator learning

• Operator learning (function-to-function regression)

New models for operator learning : DeepONet(2019), Fourier Neural Operator (FNO) [2020]



My interest [2]

• Solving control problems using operator learning.

Poisson equation with zero Dirichlet boundary conditions

ቐ
−Δ𝑢 𝑥 −𝑚 𝑥 = 0, 𝑥 ∈ Ω,

𝑢 = 0, 𝑥 ∈ 𝜕Ω,
𝑚𝑎 ≤ 𝑚 ≤ 𝑚𝑏, 𝑥 ∈ Ω,

- Ω : domain of interest
- 𝑢 ∶ Ω → ℝ (unknown temperature)
- 𝑢𝑑 ∶ Ω → ℝ (desired temperature)
- 𝛼 ∶ (unknown temperature)
- 𝑚 ∶ Ω → ℝ (source term : control function)

Hwang, R., Lee, J. Y., Shin, J. Y., & Hwang, H. J. (2022, June). Solving pde-constrained control problems using operator learning. In Proceedings of the 
AAAI Conference on Artificial Intelligence (Vol. 36, No. 4, pp. 4504-4512).

Phase 1 : Operator learning
(Learning 𝑚 𝑥 ↦ 𝑢(𝑥))

Phase 2 : Solving control problem
(Minimize 𝐽𝑡𝑜𝑡𝑎𝑙 to find optimal 𝑚 𝑥 )

- We want to control 𝑚 𝑥 which minimize

𝐽𝑡𝑜𝑡𝑎𝑙(𝑚 𝑥 , 𝑢(𝑥))

= min
1

2
න
Ω

𝑢 − 𝑢𝑑
2 𝑑𝑥 +

𝛼

2
න
Ω

𝑚2𝑑𝑥



My interest [2]

Hwang, R., Lee, J. Y., Shin, J. Y., & Hwang, H. J. (2022, June). Solving pde-constrained control problems using operator learning. In Proceedings of the 
AAAI Conference on Artificial Intelligence (Vol. 36, No. 4, pp. 4504-4512).

• Solving control problems using operator learning.

- Our framework approximates a PDE solution with sufficiently high accur

acy to search optimal controls while taking significantly less time for infe

rence.



• PDE solver

Conclusion

Find 𝒖(𝒕, 𝒙) satisfying

ℒ𝑃𝐷𝐸 = 𝑓 𝑢, 𝑢𝑡 , 𝑢𝑥, 𝑢𝑥𝑥, … = 0

ℒ𝐼𝐶 = 𝑢 0, 𝑥 − 𝑔 𝑥 = 0

ℒ𝐵𝐶 = 𝑢|𝜕Ω − ℎ 𝑡, 𝑥 |𝜕Ω = 0

𝑡

𝑥

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝑢𝑛𝑛(𝑡, 𝑥)

• Operator learning

Find a map 𝓖:𝒈 𝒙 ↦ 𝒖(𝒕, 𝒙) satisfying

ℒ𝑃𝐷𝐸 = 𝑓 𝑢, 𝑢𝑡 , 𝑢𝑥, 𝑢𝑥𝑥, … = 0

ℒ𝐼𝐶 = 𝑢 0, 𝑥 − 𝑔 𝑥 = 0

ℒ𝐵𝐶 = 𝑢|𝜕Ω − ℎ(𝑡, 𝑥)|𝜕Ω

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝑢𝑛𝑛(𝑡, 𝑥)𝑔(𝑥)
Neural Network
(function to function 

mapping)
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Thank you


