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Partial differential equation (PDE)

* In mathematics, a differential equation is an equation that relates
one or more functions and their derivatives.

- The functions generally represent physical quantities.
- The derivatives represent their rates of change.
- The differential equation defines a relationship between the above two.

(e.q.)

Let u(t, x) denote the temperature at point x at time t.

Governing equation (heat equation) :
ou(t,x)  0%u(t,x)

at 0x2 @ @
Initial condition (IC) : 0 )

u(t =0,x) = f(x). insulation
Boundary condition (BC) :
u(t,x = 0) = h(x), u(t,x =L) = g(x).

temperature u

https://math.libretexts.org/Bookshelves/Differential_Equations/Book%3A_Differential_Equations_for_Engineers_(Lebl)/4%3A_Fourier_series_and_PDEs/4.06%3A_PDEs_separation_of_variables_and_the_heat_equation


https://en.wikipedia.org/wiki/Equation
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Derivative

Deep Neural Network and Deep Learning
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(a) Deep neural network (b) Inner structure of the neuron

https://www.researchgate.net/publication/338190342_Convolutional_Neural_Network_Coupled_with_a_Transfer-Learning_Approach_for_Time-Series_Flood_Predictions/figures?lo=1



Two mainstream on deep learning approach to PDEs

* PDE solver
- Using neural networks directly to parametrize the solution to PDEs.

- Solve one instance of PDE at a time.

- Models
- Deep Ritz Method (DRM)
- Physics Informed Neural Network (PINN)

Find u(t, x) satisfying

Lppe = fu, U, Uy, Uy, ... ) = 0
Lic=u(0,x)— gx)=0 : -

Lpc = ulgg — h(t,x)]|go =0




Two mainstream on deep learning approach to PDEs

* Operator learning

- Learning a mapping from the parameters (e.g. external force, initial,
and boundary conditions) of the PDEs to the corresponding solution.

- Learning a family of PDEs from data.

- Models
- Deep Operator Network (DeepONet)

- Fourier Neural Operator (FNO)

Find a map G: g(x) = u(t, x) satisfying

L = f(u,us,uU,, Uyy,...) =20 "
Lic=u(0,x)— gx)=0

Lpc = ulgq — h(t, x)|aq




Part 1. PDE solver



Physics-informed neural network (PINN)

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework
for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computation
al physics, 378, 686-707.

utomatic differentiation and the back-propagation algorithm

“Here we revisit them using modern computational tools, and apply them to more challenging dynamic
problems described by time-dependent nonlinear partial differential equations.”

[Schematic of a PINN ]

PDE: L(u(x,t),0) = g
NN(w, b) Sy Y

MSE = MSE(, sc,ic; + MSEy |

Lu, L., Meng, X., Mao, Z., & Karniadakis, G. E. (2021). DeepXDE: A deep learning library for solving differential equations. SIAM Review, 63(1), 208-228



Physics-informed neural network (PINN) - Forward problem

(e.g.) Burgers' equation Eq:u, + uu, — (0.01/m)uy,, = 0
IC: u(0,x) = — sin(mwx) x € [-1,1],t € [0,1]
BC:u(t,—1) =u(t,1) =0

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial different
ial equations. Journal of Computational physics, 378, 686-707.



Physics-informed neural network (PINN) - Forward problem

(e.g.) Burgers' equation Eq:u, + uu, — (0.01/m)uy,, = 0
IC: u(0,x) = — sin(mwx) x € [-1,1],t € [0,1]

Loss Function BC:u(t,—1) =u(t,1) =0
L(O)
1 NEq ) 1 Nic , . Ngc ,
= gy 2 1) () = OOV () [ g ) el sin) [ 45 ) o)
Data:

(t;, x;) € [0,1] x [-1,1]
(tj, XJ) € {O} X [—1,1]
(te, x) € [0,1] x {-1,1}

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial different
ial equations. Journal of Computational physics, 378, 686-707.



Physics-informed neural network (PINN) - Forward problem

(e.g.) Burgers' equation Eq:u, + uu, — (0.01/m)uy,, = 0
IC: u(0,x) = — sin(mwx) x € [-1,1],t € [0,1]
Loss Function BC:u(t,-1) =ut,1) =0

L(0)

Ngq Nic Npc

1 . o . . 1 o . 1
= —z |ut(t‘,xl) + u(t‘,xl)ux(t‘,x‘) — (0.01/7t)uxx(t‘,x‘) |2 + —Z |u(t1,x1) + sin(nx’) |2 + —z |u(tk,xk) |2
Ngq e Nic = Ngc —

u(t, x)

Data: 1.0
(t;, x;) € [0,1] x [-1,1] 0.5 |
(t;, x;) € {0} x [-1,1] 800

0.75
0.50
0.25
0.00
-0.25

—0.5 —0.50
(tk»xk) € [0:1] X {_1'1} —0.75
—1.0
-1 0 1 -1 0 1 -1 0 1
Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networ L L z r partial different

ial equations. Journal of Computational physics, 378, 686-707. Exact === Prediction



My interest [1]

Hwang, H. J., Jang, J. W., Jo, H., & Lee, J. Y. (2020). Trend to equilibrium for the kinetic Fokker-Planck equation via the neural network a
pproach. Journal of Computational Physics, 419, 109665.

« Using PINN to the kinetic Fokker-Planck equation.

The kinetic Fokker-Planck equation in a bounded interval Q = [—1,1] is written as

o.f(t,x,v)+v-V.f =0,(c0,f + Bvf),
ef ( ) f v(@0vf + Bvf) € [0,T] where T=5o0r 10.
subject to the initial condition « x € [-1,1]: unit ball in R

fQ0,x,v) = fo(x,v) .« ve[-10,10].

where o is the diffusion coefficient, B is the friction coefficient, and the f(t, x, v) is the pro
babilistic density distribution of particles.

Q=[-11]
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« Using PINN to the kinetic Fokker-Planck equation.

The kinetic Fokker-Planck equation in a bounded interval Q = [—1,1] is written as

0cf(t, x,v) + v - Vyf = 0,(00,f + Bvf),

subject to the initial condition

€ [0,T] where T=5o0r 10.
x € [-1,1]: unit ball in R,
fQ0,x,v) = fo(x,v) .« ve[-10,10].

where o is the diffusion coefficient, B is the friction coefficient, and the f(t, x, v) is the pro
babilistic density distribution of particles.

* Boundary conditions

- Ex) Specular reflection boundary condition

- f(t,x,v) = f(t,x,—v),forx =—-1landx =1
Q=[-11]
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« Using PINN to the kinetic Fokker-Planck equation.

The kinetic Fokker-Planck equation in a bounded interval Q = [—1,1] is written as
0cf(t,x,0) + v - Vef = 0,(a0,f + vf), « t€[0,T] whereT=50r10.

subject to the initial condition « x € [-1,1]: unit ball in R
fQ0,x,v) = fo(x,v) .« ve[-10,10].

where o is the diffusion coefficient, B is the friction coefficient, and the f(t, x, v) is the pro
babilistic density distribution of particles.

* Boundary conditions
- Absorbing boundary condition: f(t, x,v)|,_ = 0, for x=-1and 1.

- Inflow boundary condition: f (¢, x,v)|,_ = g(t,x,v), for x=-1 and 1 with a given function g(t, x, v).
- Specular reflection boundary condition: f(t, x, v) = f(t,x,—v ), for x=-1and 1.

- Periodic boundary condition: f(t,x,v) = f(t,—x,v ), forx=-1and 1.

- Diffusive reflection boundary condition: f(t,x,v) = Cu(v) [,

— 2

(f,].n MWV -n |dv) and u(v) = ez forbothn = 2 and -2

nysof BXWw-nyldw, for x=-1 and 1, where C =



My interest [1]

Hwang, H. J., Jang, J. W., Jo, H., & Lee, J. Y. (2020). Trend to equilibrium for the kinetic Fokker-Planck equation via the neural network a
pproach. Journal of Computational Physics, 419, 109665.

« Using PINN to the kinetic Fokker-Planck equation.

- Easily changing the varied types of the physical boundary conditions.

- Include a term regarding the conservation of the total mass of the system in the t

otal loss function
- Long time behaviors of neural network solution and its physical quantities
- Apply various initial conditions and coefficients.
- Convergence to the global Maxwellian.

- Providing the theoretical supports for the pointwise convergence of the neural ne

twork solutions to the a priori analytic solutions.
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Hwang, H. J., Jang, J. W., Jo, H., & Lee, J. Y. (2020). Trend to equilibrium for the kinetic Fokker-Planck equation via the neural network a
pproach. Journal of Computational Physics, 419, 109665.

 Results : Specular boundary conditions which conserve the total mass

x=-1 x=-0.5 x=0 x=0.5 x=1
14 14 14 14 14
12 12 12 12 12
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velocity (v) velocity (v) velocity (v) velocity (v) velocity (v)

Video: The pointwise values of f™"*(t, x, v) as t varies at each x’s for the specular
boundary condition. x = 1 stand for the boundary points, and x = £0.5 and = 0 are the
points away from the boundary.




Part 2. Operator learning



« Operator learning

- Learning a mapping from the parameters (e.g. external force, initial,
and boundary conditions) of the PDEs to the corresponding solution.

- Learning a family of PDEs from data.

- Models

- Deep Operator Network (DeepONet)
- Fourier Neural Operator (FNO)

Find a map G: g(x) = u(t, x) satisfying

L = f(u,us,uU,, Uyy,...) =20 "
Lic=u(0,x)— gx)=0

Lpc = ulgq — h(t, x)|aq




Data-driven operator learning

* CNN encoder-decoder (Image-to-image regression)

- Image segmentation, Image Noise Reduction, Image coloring

https://towardsdatascience.com/convolutional-autoencoders-for-image-noise-reduction-32fce9fc1763



Data-driven operator learning

« QOperator learning (function-to-function regression)

m(xy, X,) u(xy, x,)
0.04
0.02
P 0.00
Ex) Poisson equation Goal) Find a solution u(x;, x,) for different source term m(x;, x,).
—Au—-m=0 inQ c R? (Learning operator from the source term to the solution)

=10 indQ m(x;, x,) = u(x;, x,)

Ex) Burgers' equation  Goal) For a fixed coefficient v, find a solution u(z, x) for different initial condition u(x).
.+ U, = vu (Learning operator from the initial condition to the solution)
f X Xy

H(X,O) — H{](X) ug(x) = ulx,t =7T) or up(x) = ulx,1)

New models for operator learning : DeepONet(2019), Fourier Neural Operator (FNO) [2020]




My interest [2]

Hwang, R,, Lee, J. Y., Shin, J. Y., & Hwang, H. J. (2022, June). Solving pde-constrained control problems using operator learning. In Proceedings of the
AAAI Conference on Artificial Intelligence (Vol. 36, No. 4, pp. 4504-4512).

* Solving control problems using operator learning.

Poisson equation with zero Dirichlet boundary conditions o  S— \‘ _J:._\

—Au(x) —m(x) = 0, x € Q, ! G T us M)y :;C:o_ta_l=
U= 0, x € aQ’ m ...E.ngc ....... >y i 3‘

mg <m<my, x € Q, i Gy () Joora

Q : domain of interest

u : 1 = R (unknown temperature)
- ug : Q) = R(desired temperature)
a : (unknown temperature)

Phase 1 : Operator learning
(Learning m(x) ~ u(x))

- m: Q — R (source term : control function) GG ug (M) 7t Leotar
|r m —| SGENC.ccc.r ::
“3 1 . ATram
. o . o ‘weorec ... > S
- We want to control m(x) which minimize i Gg™ > 1ig (M)~* Veotal
I ﬁ-r-

Jeotar(m(x), u(x))

Phase 2 : Solving control problem
(Minimize J;+4; to find optimal m(x))

1

a
=min—j (u—ud)zdx+—j m?dx
2Jq 2 Jq
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Hwang, R,, Lee, J. Y., Shin, J. Y., & Hwang, H. J. (2022, June). Solving pde-constrained control problems using operator learning. In Proceedings of the
AAAI Conference on Artificial Intelligence (Vol. 36, No. 4, pp. 4504-4512).

* Solving control problems using operator learning.

- Our framework approximates a PDE solution with sufficiently high accur
acy to search optimal controls while taking significantly less time for infe

rence.
o ———————————————— 9
------ L------ I
-
,’ \\| ==\
i |
: GSOl ==l pug(m) ..... -‘p I\Ltotall
-— L
I m }....ngc ....... >y | )
CO i A
I rec....|. Y I
: [ ‘G :’me(m) "|]total|
I L. & F §F R F & —l I



Conclusion

* PDE solver

Find u(t, x) satisfying

Lpopr = fU, Up, Uy, Uy, .. ) = 0
Lic=u(0,x)— gx)=0

Lpc = ulgq — h(t,x)|pgn =0

* Operator learning

Find a map G: g(x) = u(t, x) satisfying

Lppe = f(U Up, Uy, Uy, ) = 0
Lic=u(0,x)— gx)=0

Lpc = ulgq — h(t,x)|aq

el

u™(t, x)
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