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Introduction

o past five years or so has seen a rapid rise of applications of machine learning (ML)
in fundamental science, particle physics, theoretical physics

o of course ML has been around for quite some time, especially in experimental 
particle physics

o nevertheless, there is an exponential increase in activity



Introduction

o find title learning on the 
Inspire data base (high-
energy physics)

o exponential growth!



Outline

a flavour of ideas and results in theoretical statistical physics 
biased towards own work and interests in lattice field theory

o classification: order-disorder transition  (by now classic application)

o transfer learning (widely used notion)

o inverse renormalisation group (new application and concepts)

o outlook



Based on the following papers:
ü Extending machine learning classification capabilities with histogram reweighting

Phys. Rev. E 102 (2020) 033303 [2004.14341 [cond-mat.stat-mech]]

ü Mapping distinct phase transitions to a neural network
Phys. Rev. E 102 (2020) 053306 [2007.00355 [cond-mat.stat-mech]]

ü Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration
Phys. Rev. Res. 3 (2021) 013134 [2010.00054 [hep-lat]]

ü Quantum field-theoretic machine learning
Phys. Rev. D 103 (2021) 074510 [2102.09449 [hep-lat]]

ü Inverse renormalisation group in quantum field theory
Phys. Rev. Lett. 128 (2022) 081603 [2107.00466 [hep-lat]]
with Dimitrios Bachtis and Biagio Lucini and Francesco di Renzo

fruitful collaboration 
with Dimitrios Bachtis
and Biagio Lucini



Classification of phases of matter

> 1100 citations since 2017



Classification of phases of matter

o matter can exist in different phases
o prototype: 2d Ising model -> ordered/disordered or cold/hot phases
o task: determine phase a configuration is in, determine critical coupling or temperature

Ordered -- ? -- Disordered



ML excels in pattern finding
• supervised learning problem: use sets of configurations deep in the ordered and 

in the disordered phase
• input: configurations < -- > output: ordered/disordered 
• “train the ML algorithm”, i.e. adjust parameters in the neural network so that it 

reproduces the correct classification for the training set

• new, unseen configurations -- > determine probability to be (dis)ordered



2d Ising model
o 𝑍 = Tr 𝑒!"# with 𝐸 = −∑$%&' 𝑠%𝑠& (𝑠% = ±1)

o critical coupling or inverse temperature 𝛽(

o correlation length 𝜉, magnetic susceptibility 𝜒 diverge at transition

o critical exponents      𝜉~|𝑡|!) 𝜒~|𝑡|!* reduced temperature 

o 𝜈 = 1, ⁄𝛾 𝜈 = ⁄7 4 , 𝛽( =
+
, ln(1 + 2) ≈ 0.440687

o finite-size scaling 𝜒 ~ 𝐿 ⁄* )



Probability to be in ordered phase
train NN away from the phase transition: 𝛽 ≤ 0.41 and 𝛽 ≥ 0.47

investigate unseen configurations at intermediate 𝛽 on lattices of different sizes 

𝛽!~ 0.440687

probability behaves as an approximate order parameter



What’s new?

• by now well-established procedure, what can we add?
• interpret output from a NN as an observable in a statistical system
• input: configurations, distributed according to Boltzmann weight
• output: observable, “order parameter” in statistical system
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üExtending machine learning classification capabilities with histogram reweighting
Phys. Rev. E 102 (2020) 033303 [2004.14341 [cond-mat.stat-mech]]



Output of NN as physical observable

• opens up possibility to use “standard” numerical/statistical methods
• histogram reweighting: extrapolation to other parameter values
• starting from computation at given 𝛽.: extrapolate to other 𝛽 values 

< 𝑃 > 𝛽 =
∑𝑃%𝑒! "!"" #!

∑𝑒! "!"" #!

ü filled diamond at 𝛽.
ü line obtained by reweighting in 𝛽
ü open diamonds are independent cross checks 



Critical behaviour from NN observables

• Determine 𝐿 dependent susceptibility 𝛿𝑃 and its maximum at 𝛽((𝐿)

Extract critical properties from 
NN observables only 



Intermediate summary

ü proposed to identify NN outputs as observables in statistical physics

ü introduced histogram reweighting to employ in supervised machine learning

ü critical properties obtained from a finite-size scaling analysis using quantities derived 
from NN alone (no need for explicit order parameter, knowledge of symmetries) 

ü quantitative studies of phase transitions based on a synergistic relation between
machine learning and statistical mechanics



Transfer learning with histogram reweighting 

Ø NN has learned patterns, or features, in 2d Ising model
Ø are these sufficiently universal to predict the structure of phase transitions in 

other systems?
Ø what about universality class, order of transition, type of degrees of freedom? 

Ø apply to 𝑞-state Potts model (with 𝑞 = 3,… , 7), 𝜑/ scalar field theory

Transfer learning



Transfer learning

ü Mapping distinct phase transitions to a neural network
Phys. Rev. E 102 (2020) 053306 [2007.00355 [cond-mat.stat-mech]]



Transfer learning: 𝑞-state Potts model

o training on Ising model, not Potts model
o continuous lines using histogram reweighting
o vertical dashed lines indicate expected transition at 𝛽( = ln 1 + 𝑞
o 𝑞 = 3, 4: 2nd order transition, 𝑞 = 5, 6, 7: 1st order transition  



𝜑! scalar field theory 

• reweight in mass parameter, 𝜇,

• identify regions where phase is clear
• retrain NN using 𝜇, < −1.0 and  𝜇, > −0.9
• repeat finite-size scaling analysis as in 2d Ising model

symmetry-broken symmetric

• same universality class as 2d Ising model
• critical mass in agreement with results 

obtained with standard methods 
(Binder cumulant, susceptibility)



Under the hood: activation functions in NN

mean activation functions in the 64 neurons in the fully connected (FC1) layer of 
2d Ising-trained neural network, for:

o 2d Ising model 
o 𝑞 = 3 and 𝑞 = 5 Potts model
o 𝜑/ scalar field theory

disordered

ordered

universal features distinguish 
ordered and disordered phases, 
irrespective of e.g. order of transition   



Intermediate summary: transfer learning

ü enables the use of simplistic systems to study complicated models with partially
known behaviour

ü combine with reweighting to scan parameter space and reconstruct effective 
order parameters

ü locate (unknown) phase transitions

ü given this knowledge, train a new NN on configurations of the target system labelled
according to previous step

ü study infinite-volume limit in this new NN to make accurate predictions



Renormalisation Group (RG)

o standard renormalisation group: coarse-graining, 
blocking transformation, integrating out degrees of freedom, …

o Ising model: Kadanoff block spin
o majority rule
o reduction of degrees of freedom
o study critical scaling 

o not invertible: semi-group

21



Renormalisation group

o generates flow in parameter space
o due to repeated blocking: run out of degrees of freedom
o need to start with large system to apply RG step multiple times
o large systems, close to a transition,

suffer from critical slowing down



Inverse renormalisation group

o what if we could invert the RG? 
o add degrees of freedom, fill in the ‘details’
o inverse flow in parameter space
o can be applied arbitrary number of steps
o evade critical slowing down

for Ising model: Inverse Monte Carlo Renormalization Group 
Transformations for Critical Phenomena, D. Ron, 
R. Swendsen, A. Brandt, Phys. Rev. Lett. 89, 275701 (2002)



How to devise an inverse transformation?

§ new degrees of freedom should be introduced
§ learn a set of transformations (transposed convolutions) to invert a standard RG step
§ minimise difference between original and constructed configuration



Inverse renormalisation group

§ local transformation
§ apply inverse transformations iteratively
§ evade critical slowing down
§ generate flow in parameter space
§ invariance at critical point



Application to 𝜑!
scalar field theory 

§ repeated steps
§ locking in on critical point



Application to 𝜑! scalar field theory 

o start with lattice of size 32, and apply IRG steps repeatedly
o 32, → 64, → 128, → 256, → 512,

o IRG flow towards critical point 
o extract critical exponents
𝛾/𝜐 and 𝛽/𝜐 from comparison 
between two volumes

o constructed a large (512,) lattice 
very close to criticality 
without critical slowing down
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Intermediate summary: inverse RG

ü flow to critical point without critical slowing down  

ü reach large lattices from easy-to-simulate lattice sizes

ü relies on ‘reliable’ blocking step (nontrivial: scalar field majority rule is new)

ü new concept for continuous field theories



Outlook
ü machine learning has seen major boost in physical sciences

ü largely underexplored in statistical/lattice field theory

ü new concepts introduced 

ü more progress can be found here:


