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Introduction

o past five years or so has seen a rapid rise of applications of machine learning (ML)

in fundamental science, particle physics, theoretical physics

o of course ML has been around for quite some time, especially in experimental
particle physics

o hevertheless, there is an exponential increase in activity
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Outline

a flavour of ideas and results in theoretical statistical physics
biased towards own work and interests in lattice field theory

o classification: order-disorder transition (by now classic application)
o transfer learning (widely used notion)
o inverse renormalisation group (new application and concepts)

o outlook



fruitful collaboration
with Dimitrios Bachtis

Based on the following papers: and Biagio Lucin

v Extending machine learning classification capabilities with histogram reweighting
Phys. Rev. E 102 (2020) 033303 [2004.14341 [cond-mat.stat-mech]]

v Mapping distinct phase transitions to a neural network
Phys. Rev. E 102 (2020) 053306 [2007.00355 [cond-mat.stat-mech]]

v Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration
Phys. Rev. Res. 3 (2021) 013134 [2010.00054 [hep-lat]]

v Quantum field-theoretic machine learning
Phys. Rev. D 103 (2021) 074510 [2102.09449 [hep-lat]]

v" Inverse renormalisation group in quantum field theory
Phys. Rev. Lett. 128 (2022) 081603 [2107.00466 [hep-lat]]

with Dimitrios Bachtis and Biagio Lucini and Francesco di Renzo



Classification of phases of matter

Published: 13 February 2017
Machine learning phases of matter
Juan Carrasquilla®™ & Roger G. Melko

Nature Physics 13, 431-434(2017) | Cite this article

> 1100 citations since 2017
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> ordered/disordered or cold/hot phases

/
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Classification of phases of matter

o matter can exist in different phases

o prototype: 2d Ising model

o task: determine phase a configuration is in, determine critical coupling or temperature
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ML excels in pattern finding

* supervised learning problem: use sets of configurations deep in the ordered and
in the disordered phase

* input: configurations <--> output: ordered/disordered

* “train the ML algorithm”, i.e. adjust parameters in the neural network so that it
reproduces the correct classification for the training set
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* new, unseen configurations -- > determine probability to be (dis)ordered



2d Ising model y,
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B.~ 0.440687

Probability to be in ordered phase

train NN away from the phase transition: § < 0.41 and § = 0.47

investigate unseen configurations at intermediate S on lattices of different sizes
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v Extending machine learning classification capabilities with histogram reweighting
Phys. Rev. E 102 (2020) 033303 [2004.14341 [cond-mat.stat-mech]]

What’s new?

by now well-established procedure, what can we add?

interpret output from a NN as an observable in a statistical system

input: configurations, distributed according to Boltzmann weight

output: observable, “order parameter” in statistical system
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Output of NN as physical observable

* opens up possibility to use “standard” numerical/statistical methods
mmm) histogram reweighting: extrapolation to other parameter values

* starting from computation at given [5,: extrapolate to other §§ values
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6P

Critical behaviour from NN observables

* Determine L dependent susceptibility 6P and its maximum at 5.(L)
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Intermediate summary

v proposed to identify NN outputs as observables in statistical physics
v" introduced histogram reweighting to employ in supervised machine learning

v" critical properties obtained from a finite-size scaling analysis using quantities derived

from NN alone (no need for explicit order parameter, knowledge of symmetries)

v quantitative studies of phase transitions based on a synergistic relation between

machine learning and statistical mechanics



Transfer learning with histogram reweighting

» NN has learned patterns, or features, in 2d Ising model

» are these sufficiently universal to predict the structure of phase transitions in
other systems?

» what about universality class, order of transition, type of degrees of freedom?

—> Transfer learning

> apply to g-state Potts model (withg = 3, ...,7), g04 scalar field theory



Transfer learning
>
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v Mapping distinct phase transitions to a neural network
Phys. Rev. E 102 (2020) 053306 [2007.00355 [cond-mat.stat-mech]]



Transter learning: g-state Potts model
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Under the hood: activation functions in NN

4
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mean activation functions in the 64 neurons in the fully connected (FC1) layer of
2d Ising-trained neural network, for:

o 2d Ising model
o g = 3 and g = 5 Potts model —
o ¢@*scalar field theory

universal features distinguish
ordered and disordered phases,
irrespective of e.g. order of transition



Intermediate summary: transfer learning

v enables the use of simplistic systems to study complicated models with partially
known behaviour

v combine with reweighting to scan parameter space and reconstruct effective
order parameters

v" locate (unknown) phase transitions

v' given this knowledge, train a new NN on configurations of the target system labelled
according to previous step

v" study infinite-volume limit in this new NN to make accurate predictions



Renormalisation Group (RG)

o standard renormalisation group: coarse-graining,

blocking transformation, integrating out degrees of freedom, ...

Ising model: Kadanoff block spin
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Renormalisation group

o generates flow in parameter space
o due to repeated blocking: run out of degrees of freedom
o need to start with large system to apply RG step muItipI?times
o large systems, close to a transition, —— sescn .
suffer from critical slowing down | 4 i * 7
O ) G §
| .- > 0

L'=L/2

8



Inverse renormalisation group

what if we could invert the RG?
add degrees of freedom, fill in the ‘details’
inverse flow in parameter space

can be applied arbitrary number of steps

O O O O O

evade critical slowing down

for Ising model: Inverse Monte Carlo Renormalization Group e
Transformations for Critical Phenomena, D. Ron, L. = b(.? —1) Lz
R. Swendsen, A. Brandt, Phys. Rev. Lett. 89, 275701 (2002) J



How to devise an inverse transformation?

= new degrees of freedom should be introduced
= |earn a set of transformations (transposed convolutions) to invert a standard RG step

= minimise difference between original and constructed configuration

Compare




Inverse renormalisation group

Transposed convolutions

Input

Transformations
local transformation

apply inverse transformations iteratively

evade critical slowing down

) Output
generate flow in parameter space g

invariance at critical point
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TABLE I. Values of the critical exponents y/v and f/v. The original system has lattice size L = 32 in each dimension and its action

has coupling constants 7 = —0.9515, 4; = 0.7, and x;, = 1. The rescaled systems are obtained through inverse renormalization group
transformations.

L/L; 32/64  32/128  32/256  32/512  64/128  64/256  64/512  128/256  128/512  256/512

y/v 1.735(5)  1.738(5) 1.741(5) 1.742(5) 1.742(5) 1.744(5) 1.744(5) 1.745(5) 1.745(5) 1.746(5)
Blv 0.132(2) 0.130(2) 0.128(2)  0.128(2) 0.128(2) 0.127(2) 0.127(2)  0.126(2) 0.126(2)  0.126(2)




GA, Bachtis, Lucini, di Renzo

PRL 128 (2022) 081603

Application to @* scalar field theory

O

start with lattice of size 322 and apply IRG steps repeatedly

322 5 644 > 128% > 256% — 5122

IRG flow towards critical point 1:
extract critical exponents > 17
y/v and /v from comparison "
between two volumes 172
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without critical slowing down 012
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Intermediate summary: inverse RG

v" flow to critical point without critical slowing down
v" reach large lattices from easy-to-simulate lattice sizes

v" relies on ‘reliable’ blocking step (nontrivial: scalar field majority rule is new)

v new concept for continuous field theories



Outlook

v machine learning has seen major boost in physical sciences
v" largely underexplored in statistical/lattice field theory
v new concepts introduced

v more progress can be found here:

Search...
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High Energy Physics - Lattice
[Submitted on 10 Feb 2022]
Applications of Machine Learning to Lattice Quantum Field Theory

Denis Boyda, Salvatore Cali, Sam Foreman, Lena Funcke, Daniel C. Hackett, Yin Lin, Gert Aarts, Andrei Alexandru, Xiao-Yong Jin, Biagio Lucini, Phiala E.
Shanahan

There is great potential to apply machine learning in the area of numerical lattice quantum field theory, but full exploitation of that potential will require new strategies. In
this white paper for the Snowmass community planning process, we discuss the unique requirements of machine learning for lattice quantum field theory research and
outline what is needed to enable exploration and deployment of this approach in the future.



