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• Supercomputer and Quantum Computer? 

• Computational speed? 

• Qubit? 

• Quantum Error correction  

                               and Threshold probability 

• Statistical Physics model and Threshold probability



High Performance Computer 



Columbia 64-node machine





“High Performance Computing”

•“Big data problem?” 

•“Large computational problem?”



https://newsroom.intel.com/news-releases/intel-unleashes-its-first-8-core-desktop-processor/#gs.bsvihg

Typical digital computer?





Quantum Computer,  

Experimental Computing 



Google’s Sycamore processor mounted in a cryostat, recently used to demonstrate quantum supremacy and the largest quantum chemistry simulation on a quantum computer. Credit: Rocco Ceselin



https://research.ibm.com/blog/ibm-quantum-roadmap-2025



“High Performance Computing”

•“Big data problem?” 

•“Large computational problem?”



“Large computational problem”

•Need to choose algorithm —> necessary 

number of floating point operations (N = FLOP) 

•Hardware/software performance (P = FLOPS) 

•How long does it take? (S = N/P)



“1”

computational speed of digital 
computer

wire 1

wire 2

“0”



Shor’s Algorithm

•RSA algorithm —> integer factoring problem 

•change integer factoring problem into order-finding 

problem using a digital computer 

•solve order-finding problem using a Quantum Computer 

•P. Shor, proceedings of 35th annual symposium on the 

foundations of computer science, 1994, p124-134



Fourier transform

https://dev.to/trekhleb/playing-with-discrete-fourier-transform-algorithm-in-javascript-53n5



For digital computer, 

the best Fourier transform algorithm 
is Cooley-Tukey algorithm and the 

number of operations is

∼ N × log2 N, N = 2n



Cooley-Tukey for the Discrete Fourier 
Transform: sorting algorithm

F(k) =
1

2π ∫ dx f(x) e−ikx

→ Fk =
N−1

∑
m=0

fm e− 2πi
N mk , N = 2n
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Computational speed of  
Quantum Computer

wire 1

Probability for 0 is 50%, and for 1 is 50%



1

2
( |00 > + |11 > )

wire 1

wire 2

Bell state: Probability for 00 is 50%, and for 11 is 50 % 

Computational speed of  
Quantum Computer



For Quantum computer, 

the number of operations  
for Fourier transform is

∼ n2



https://en.wikipedia.org/wiki/Quantum_Fourier_transform



Fourier transform of the same signal 
requires 
 number of operations 

for digital computer 
 number of operations  

for quantum computer

∼ 2n × log2 2n

∼ n2



Qubits? 

quantum error, decoherence, …  



Quantum Computing in “noisy environment”

•Fighting quantum decoherence with 

entanglement 

•Quantum Error Correction (QEC) 
cf. B.M Terhal, Rev. Mod. Phys. 87 (2015) 307 



Digital computing in “noisy environment”

•Low density parity check code 

•Hamming code 

•“duplicate data-bits” so that the 

correct data can be reconstructed



Repetition code

•“11111111” = 1_L ,  

     “00000000” = 0_L 

     Is “10001111” 1_L or 0_L ?



Simple parity check

•Parity of “00” = 0, “11” = 0, “01” = 

1, “10” = 1 

•Form 3-bit data, “pdd”



M. Rispler, D. Vodola, SK, M. Muller, “Fundamental Thresholds of 

Realistic Quantum Error Correction Circuits from Classical Spin 

Models”, Quantum 6 (2022), 618

Before discussing my work,



cf. J. Kelly et al, “State preservation by 
repetitive error detection in a 
superconducting quantum circuit”, 
Nature 519 (2015) 66



Quantum error and statistical model

•Specific quantum code 

•Modeling quantum error pattern 

•Mapping Q-error pattern to statistical model 

•cf. simplest case: Dennis et al, J. Math. Phys. 43 

(2002) 4452



Dennis et al, “Topological  Quantum Memory” 
J. Math. Phys. 43 (2002) 4452

•Toric Code 

•Random 1 qubit error / measurement error 

•2-d quenched Ising Model or 3-d 

quenched lattice Z(2) gauge theory



Dennis et al,  
Toric code

•Information on the data qubits is determined only after 

“measurement” 

•After measurement, entanglement is lost 

•Data qubits, Ancilla qubits, and Logical qubits on 2d lattice 

•Stabilizer formalism and syndrome measurement







Dennis et al, 
Quantum Error Model

•Random single data qubit error 

•With/without a random measurement  error 

•Syndrome from cross-type stabilizers and 

plaquette-type stabilizers





Dennis et al, 
Statistical Model I

•Random data qubit error gives syndrome 

•Given syndrome, deducing real error pattern should be done 

probabilistically 

•Random bond Ising Model on 2-d lattice (without measurement error) 

or quenched Z(2) plaquette model on 3-d lattice (with measurement error) 

•Quantum error is associated with anti-ferromagnetic coupling between 

Ising spin



Dennis et al, 
Statistical Model II

•Ferromagnetic phase (ordered phase) —> 

Quantum Error Correction (QEC) is possible 

because quantum error pattern can be deduced 

from syndrome 

•Disordered phase —> QEC is not possible



Dennis et al, 
Nishimori Condition

•Data qubit error  

     —> anti-ferromagnetic coupling 

•Random distribution of anti-ferromagnetic coupling  

     —> quenching 

•“Thermal transition” and “Spin glass transition” 

•Nishimori condition (H. Nishimori, PTP 66 (1981) 1169) is the line, 

                “Thermal transition = Spin glass transition” 



Dennis et al, 
Statistical Model III

•There exists “threshold probability” above 

which “magnetization” disappears 

•This probability is crucial for quantum 

computing with QEC because QC should have 

error rate lower than this



M. Rispler, D. Vodola, SK, M. Muller, “Fundamental Thresholds of 

Realistic Quantum Error Correction Circuits from Classical Spin 

Models”, Quantum 6 (2022), 618



1-d repetition code and correlated error

•Protecting against phase flip error (Z-error) 

•Realistic quantum circuit which implements the algorithm 

•Analysis of the correlated quantum error from 1-qubit 

error, 1-qubit gate error, 2-qubit gate error and etc 

•Mapping into 2-d random bond Ising model on triangular 

lattice



Scheme
• realistic quantum circuit diagram for 1-D repetition code 
with phase flip error and mapping to a statistical model 
(quenched 2-D Ising model on a triangular lattice)
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1-d repetition code  
Quantum Code

•Protecting against phase flip error (Pauli 

Z-error) 

•1-d array of data qubit and ancilla qubit



1-d repetition code  
Error Pattern

•Realistic quantum circuits which implements the algorithm 

•1-qubit error : data initialization error, phase-flip error, 

idling error, measurement error, 1-qubit gate error 

•2-quibit error : CNOT gate error 

•Correlated error



1-d repetition code  
Statistical Model

•Analysis of the correlated quantum error from various 

1-qubit error, 1-qubit gate error, 2-qubit gate error  

•Mapped into 2-d random bond Ising model on 

triangular lattice



Monte Carlo simulation of  
statistical physics model

•Standard Metropolis algorithm for Monte Carlo 

•Parallel tempering 

•Divergent correlation length near the critical 

point and finite size scaling of the correlation length



Monte Carlo result
• phase diagram of quenched 2-D Ising model 
corresponding to effective quantum error model
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Minimum-Weight Perfect Matching

•Given syndrome, find the shortest 

distance between the syndrome sites 

•QEC algorithm example



Comparison between a QEC algorithm 
(MWPM) result and the Monte Carlo result

• threshold probability from Monte Carlo study and that 
from MWPM

p = q

r

error correction feasible

p = q = 2
r

p =
q =

rp
=

q
=

r/
2

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.00

0.02

0.04

0.06

0.08

0.10
Stat Mech Model
MWPM



Outlook
• similar technique can be applied to surface code, color code, and concatenated 
code, and etc 

• for more complex quantum circuits, there may be more complicated types of 
correlated effective noise processes and more sophisticated statistical mechanics 
model may be needed 

• non-Clifford error dynamics 

• ultimately, a target threshold probability for which a real quantum computer can 
aim may be suggested


