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"High Performance Computing

* “Big data problem?”

* "Large computational problem?”



Typical digital computer?

New 8-Core Intel® Core™ i7
Processor Extreme Edition
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Intel® Core™ i7-5960X Processor Extreme Edition
Transistor count: 2.6 Billion
Die size: 17.6mm x 20.2mm

* 20MB of cache is shared across all 8 cores

https:/newsroom.intel.com/news-releases/intel-unleashes-its-first-8-core-desktop-processor/#gs.bsvihg
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Quantum Computer,

Experimental Computing
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Google’s Sycamore processor mounted in a cryostat, recently used to demonstrate quantum supremacy and the largest quantum chemistry simulation on a quantum computer. Credit: Rocco Ceselin




Development Roadmap

Model
Developers

Algorithm
Developers

Kernel
Developers

System
Modularity

2019 @

Run quantum circuits

on the IBM cloud

Falcon
27 qubits

©

2020 @

Demonstrate and
prototype quantum
algorithms and
applications

Executed by IBM o
On target )

2021 @ 2022

Run quantum Bring dynamic circuits to
programs 100x faster Qiskit Runtime to unlock
with Qiskit Runtime more computations

Quantum algorithm and application modules

Machine learning | Natural science | Optimization

Hummingbird
65 qubits

Dynamic circuits @

Eagle v Osprey @
127 qubits 433 qubits

IBM Quantum

2023 2024 PAOPAS Beyond 2026
Enhancing applications Improve accuracy of Scale quantum applica- Increase accuracy and
with elastic computing Qiskit Runtime with tions with circuit knitting speed of quantum

and parallelization of scalable error mitigation toolbox controlling workflows with integration
Qiskit Runtime Qiskit Runtime of error correction into

Qiskit Runtime

Prototype quantum software applications Quantum software applications

Machine learning | Natural science | Optimization

Quantum Serverless

Intelligent orchestration Circuit Knitting Toolbox Circuit libraries
Threaded primitives Error suppression and mitigation Error correction
Condor Flamingo Kookaburra Scaling to .
1,121 qubits 1,386+ qubits 4,158+ qubits 10K-100K qubits

with classical
and quantum
communication

Heron Crossbill
133 qubits x p 408 qubits

https:/research.ibm.com/blog/ibm-quantum-roadmap-2025




"High Performance Computing

* "Large computational problem?”



“Large computational problem”

* Need to choose algorithm —) necessary

number of floating point operations (N = FLOP)

* Hardware/software performance (P = FLOPS)
* How long does it take? (S = N/P)



computational speed of digital
computer

66199
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Shor’s Algorithm

* RSA algorithm —) integer factoring problem

* change integer factoring problem into order—finding

problem using a digital computer
* solve order—tfinding problem using a Quantum Computer

* P. Shor, proceedings of 35th annual symposium on the

foundations of computer science, 1994, p124-134



Fourier transform

https:/dev.to/trekhleb/playing-with-discrete-fourier-transform-algorithm-in-javascript-53n3



For digital computer,

the best Fourier transtorm algorithm
1s Cooley—Tukey algorithm and the
number of operations is

NNXlngN, N:2n



Cooley—Tukey tor the Discrete Fourier
Transform: sorting algorithm

| .
F(k) = — Idx f(x) e
27T

N—1 |
- F, = mee_%mk , N=2"

m=0(



Computational speed of
Quantum Computer

Probability for 0 1s 50%, and for 1 1s 50%
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Computational speed of
Quantum Computer

Bell state: Probability for 00 is 50%, and for 11 is 50 %

|
7(|OO>+|11>)
2

wire 1

wire 2



For Quantum computer,

the number of operations
for Fourier transform is



‘ZCn_1> l --—@—? \}5 (|0> QQWi[O.:cn_1:Cn] ‘1>)
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https://en.wikipedia.org/wiki/Quantum_Fourier transform



Fourier transtorm of the same signal
requires
~ 2" x log, 2" number of operations

for digital computer

~ n” number of operations

for quantum computer



Qubits?

quantum error, decoherence, **



Quantum Computing in noisy environment”

* Fighting quantum decoherence with

entanglement

* Quantum Error Correction (QEC)

ct. B.M Terhal, Rev. Mod. Phys. 87 (2015) 307



Digital computing in  noisy environment
y

* Low density parity check code
* Hamming code

* “duplicate data—bits” so that the

correct data can be reconstructed



Repetition code

e "11111111°=1 L.
"00000000" =0 L
[s "10001111°7 1 LorO L ?



Simple parity check

* Parity of 00" =0, 11" =0, 01" =
1’ 661099 — 1
* Form 3-bit data, "pdd”



Before discussing my work,

M. Rispler, D. Vodola, SK, M. Muller, “Fundamental Thresholds of
Realistic Quantum Error Correction Circuits from Classical Spin

Models”, Quantum 6 (2022), 618



a GHZ state generation Repetition code

Cycle 1 Cycle 2
1
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Detection events:
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cf. J. Kelly et al, “State preservation by

repetitive error detection in a

Detection events: Error correction

superconducting quantum circuit ot procesang

Nature 519 (2015) 66
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Figure 3 | Protecting the GHZ state from bit-flip errors. a, Quantum circuit
for generating the GHZ state and two cycles of the repetition code. CNOT
gates are physically implemented with controlled-phase (CZ) and single qubit
gates. b, Quantum state tomography on the input (top left ‘Input’, left of black
dashed line), and after the repetition code conditional on the detection events
(between black dashed lines): we input a GHZ state with a fidelity (F) of 82%,
and find, for the case of no detection events (top right ‘Output’, above grey
dashed line), a 78% fidelity GHZ state. For the detection event connecting
both measurement qubits (bottom left ‘Raw output’, below grey dashed line),
indicating a likely bit-flip error on the central data qubit, we find that through



Quantum error and statistical model

* Specitic quantum code
* Modeling quantum error pattern
* Mapping Q—error pattern to statistical model

* cf. simplest case: Dennis et al, J. Math. Phys. 43
(2002) 4452



Dennis et al, “Topological Quantum Memory~
J. Math. Phys. 43 (2002) 4452

* Toric Code
* Random 1 qubit error / measurement error

* 7—d quenched Ising Model or 3—-d
quenched lattice Z(2) gauge theory



Dennis et al,
Toric code

* Information on the data qubits 1s determined only after

“measurement’
* After measurement, entanglement is lost
* Data qubits, Ancilla qubits, and Logical qubits on 2d lattice

* Stabilizer formalism and syndrome measurement



FIG. 1. Check operators of the toric code. Each plaquette
operator is a tensor product of Z’s acting on the four links
contained in the plaquette. Each site operator is a tensor
product of X’s acting on the four links that meet at the site.



(a) (b)

FIG. 2. Cycles on the lattice. (a) A homologically trivial
cycle bounds a region that can be tiled by plaquettes. The
corresponding tensor product of Z’s lies in the stabilizer of
the toric code. (b) A homologically nontrivial cycle is not
a boundary. The corresponding tensor product of Z’s com-
mutes with the stabilizer but is not contained in it. It is a
logical operation that acts nontrivially in the code subspace.



Dennis et al,
Quantum Error Model

* Random single data qubit error
* With/without a random measurement error

* Syndrome from cross—type stabilizers and

plaquette—type stabilizers



FIG. 4. The highly ambiguous syndrome of the toric code.
The two site defects shown could arise from errors on either
one of the two chains shown. In general, error chains with the
same boundary generate the same syndrome, and error chains
that are homologically equivalent act on the code space in the
same way.



Dennis et al,
Statistical Model 1

®* Random data qubit error gives syndrome

® Given syndrome, deducing real error pattern should be done

probabilistically

* Random bond Ising Model on 2—d lattice (without measurement error)

or quenched Z(2) plaquette model on 3—d lattice (with measurement error)

® Quantum error is associated with anti—ferromagnetic coupling between

[sing spin



Dennis et al,
Statistical Model 11

* Ferromagnetic phase (ordered phase) —)
Quantum Error Correction (QEC) is possible
because quantum error pattern can be deduced

from syndrome

* Disordered phase —) QEC is not possible



Dennis et al,
Nishimori Condition

Data qubit error

—) anti—ferromagnetic coupling

Random distribution of anti—ferromagnetic coupling
—) quenching

“Thermal transition” and “Spin glass transition”

Nishimori condition (H. Nishimori, PTP 66 (1981) 1169) is the line,

“Thermal transition = Spin glass transition”



Dennis et al,
Statistical Model III

® There exists “threshold probability” above

which "magnetization” disappears

® This probability is crucial for quantum
computing with QEC because QC should have

error rate lower than this



M. Rispler, D. Vodola, SK, M. Muller, “Fundamental Thresholds of
Realistic Quantum Error Correction Circuits from Classical Spin

Models”, Quantum 6 (2022), 618



1—d repetition code and correlated error

* Protecting against phase flip error (Z—error)
* Realistic quantum circuit which implements the algorithm

* Analysis of the correlated quantum error from 1—qubit

error, 1—qubit gate error, 2—qubit gate error and etc

* Mapping into 2—d random bond Ising model on triangular

lattice



Scheme

- realistic quantum circuit diagram for 1-D repetition code
with phase flip error and mapping to a statistical model
(quenched 2-D Ising model on a triangular lattice)
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1—d repetition code
Quantum Code

* Protecting against phase flip error (Pauli

/. —error)

® 1-d array of data qubit and ancilla qubit



1—d repetition code
Error Pattern

* Realistic quantum circuits which implements the algorithm

® ]1—qubit error : data initialization error, phase—tlip error,

1dling error, measurement error, 1—qubit gate error
® 2—quibit error : CNOT gate error

®* Correlated error



1—d repetition code
Statistical Model

* Analysis of the correlated quantum error from various

1—qubit error, 1—qubit gate error, 2—qubit gate error

* Mapped into 2—d random bond Ising model on

triangular lattice



Monte Carlo simulation of
statistical physics model

* Standard Metropolis algorithm for Monte Carlo
* Parallel tempering

* Divergent correlation length near the critical

point and finite size scaling of the correlation length



Monte Carlo result

- phase diag

ram of quenched 2-D Ising model

corresponding to effective quantum error model
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Minimum-—Weight Perfect Matching

* (Given syndrome, find the shortest

distance between the syndrome sites

* QEC algorithm example



Comparison between a QEC algorithm
(MWPM) result and the Monte Carlo result

- threshold probability from Monte Carlo study and that
from MWPM
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Outlook

- similar technique can be applied to surface code, color code, and concatenated
code, and etc

- for more complex quantum circuits, there may be more complicated types of

correlated effective noise processes and more sophisticated statistical mechanics
model may be needed

- non-Clifford error dynamics

- ultimately, a target threshold probability for which a real quantum computer can
aim may be suggested



