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What is gravity?
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1. Mass deforms spacetime
2. Spacetime moves mass
3. More mass creates more deformation

4. More deformation moves mass more




What are gravitational waves?
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1. Asymmetric motion of mass creates ripples in
spacetime

2. Therefore obijects in orbit create gravitational
waves
‘

3. And more massive objects in orbit create larger
waves



How do we detect gravitational waves?

t, + dt o O

1. Deformations in spacetime changes the real distance
between freely floating points

2. If we can measure changes in the distance between two
freely floating points we can measure changes in
spacetime



How do we detect gravitational waves?
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Photodetector

1. We can do this using interferometers

2. A laser is split into two orthogonal cavities, and reflected back
to destructively interfere

3. A photodiode reads the resulting power



How do we detect gravitational waves?




Interferometer Locations




How do we detect find signals from noise?
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Frequency [Hz]

The output of the photodetector takes the form of a 1D timeseries at 16kHz

Care is taken to insulate detectors from noise, but noise is still present at various
frequencies

Thus a method is needed to extract real gravitational wave signals from
terrestrial noise



How do we detect find signals from noise?

Matched Filtering
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What about other signal types?
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Matched Filter

h L] L q

Coherence detection
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COHERENCE DETECTION

* *
C Doesn’t require prior 0 Is not as sensitive as
knowledge of (exact) signal matched filtering
shape . Existing pipelines can be
quite slow
‘
‘
‘
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Machine learning pipeline

Low-latency, unmodelled burst detection for use in Multi-
messenger astronomy

CNN for detection, basic PE, and localization
Currently in review for deployment in O4

Methods paper:
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https://arxiv.org/abs/2009.14611

CURRENT MLy ARCHITECTURE
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THE PROBLEM WITH CNNs

’

1 Conv Layer 1 Dense Layer

Input Size =4

*  OQOutput Size=3
Filter Size =3
Number of filters = 3
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A DRAWBACK OF CNNs

Examining one filter...

Conv layers are best for focusing
on local features not global
features

For multi-detector case unknown
arrival time difference between
detectors disrupts local features
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INTRODUCING TRANSFORMER MODELS

Output
* Probabilities

Add & Norm

Multi-Head
Attention

Add & Norm
Masked
Multi-Head
Attention

Positional Positional
Encoding Encoding

Inputs Outputs
(shifted right)

[1] https://arxiv.org/abs/1706.03762

Transformers embed global context locally using
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NATURAL LANGUAGE PROCESSING (NLP) @\Q
A quick foray... =

The quick brown jumped over the lazy dog

L
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NATURAL LANGUAGE PROCESSING (NLP)
A quick foray...

is brown  has jumped

The quick brown jumped over the lazy dog

is quick

L
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NATURAL LANGUAGE PROCESSING (NLP) @\Q
A quick foray... N

The quick brown fox jumped over the lazy dog

<4
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NATURAL LANGUAGE PROCESSING (NLP) @\Q
A quick foray... N

Matrix* uer
Value —— Word
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Matrix*

*weights matrices are learned,
identical for each token
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NATURAL LANGUAGE PROCESSING (NLP)
A quick foray...
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NATURAL LANGUAGE PROCESSING (NLP) @\Q
A quick foray... N
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NATURAL LANGUAGE PROCESSING (NLP) @\Q
A quick foray... N

0.98
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NATURAL LANGUAGE PROCESSING (NLP)
A quick foray...
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NATURAL LANGUAGE PROCESSING (NLP)
A quick foray...

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting ©~ matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix to
with weight matrices /K/V matrices produce the output of the layer

s

* In all encoders other than #0,

we don’'t need embedding.

We start directly with the output
of the encoder right below this one

—HH
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NATURAL LANGUAGE PROCESSING (NLP)
A quick foray...
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» Output

Dense

- Self-Auention

Input
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BACK TO GRAVITATIONAL WAVES
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SINGLE DETECTOR BBH DETECTION AS PROOF OF CONCEPT
EXPAND TO COHERENT CASE IN FUTURE WORK
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Positjonal Encoding
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+ Positional Encoding
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CNN* Transformer Conv Transformer@
HEEEE [ T [ 1 HEEEE . \Q
=

Transformer Encoder

Transformer Encoder

*Architecture from Gabbard et al.
https:/ljournals.aps.org/pri/abstract/10.1103/PhysRevLett.120.141103
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Preliminary Results
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Accuracy

Preliminary Results

cnn_10_10_1.0000e-03
skywarp_regular_c_10_10.3_1.0000e-03
skywarp_conv_c_10_10_1.0000e-03
skywarp_res_conv_1.0000e-03

SNR

Accuracy

cnn_10_10_1.0000e-04
skywarp_regular c 10 10.3 3.3154e-04
skywarp_conv_c_10_10_1.0000e-04
skywarp_res conv_9.9231e-05

SNR
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Preliminary Results

cnn_10 10 1.6923e-05
skywarp_regular ¢ 10 10.3 3.3154e-04
skywarp conv ¢ 10 10 5.3846e-06
skywarp res conv_2.4615e-05

Accuracy

SNR
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FUTURE PLANS

* Extend to multi detector case for coherent analysis
* Special encoding as well as temporal

* Detector agonistic - spatially and perhaps also
conditioned on PSD
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FUTURE PLANS - UNICRON

GEEass

+ Positional Encoding

GEEass

+ Positional Encoding

—

Vary detector positions during training

S,
S

Classification

Signal
reconstruction at
earth centre
coordinates? +
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