Deep Learning for the detection of Unmodelled Gravitational-Wave Transients A deep learning approach # What is gravity? - 1. Mass deforms spacetime - 2. Spacetime moves mass - 3. More mass creates more deformation - 4. More deformation moves mass more # What are gravitational waves? - 2. Therefore objects in orbit create gravitational waves - 3. And more massive objects in orbit create larger waves ### How do we detect gravitational waves? $$t_0 + dt$$ - 1. Deformations in spacetime changes the real distance between freely floating points - If we can measure changes in the distance between two freely floating points we can measure changes in spacetime ### How do we detect gravitational waves? - 1. We can do this using interferometers - 2. A laser is split into two orthogonal cavities, and reflected back to destructively interfere - 3. A photodiode reads the resulting power # How do we detect gravitational waves? # **Interferometer Locations** ### How do we detect find signals from noise? The output of the photodetector takes the form of a 1D timeseries at 16kHz Care is taken to insulate detectors from noise, but noise is still present at various frequencies Thus a method is needed to extract real gravitational wave signals from terrestrial noise # How do we detect find signals from noise? #### Matched Filtering # What about other signal types? #### **Matched Filter** ### **COHERENCE DETECTION** #### **Pros** Doesn't require prior knowledge of (exact) signal shape #### Cons - Is not as sensitive as matched filtering - Existing pipelines can be quite slow # MLy PIPELINE - Team: Vasileios Skliris, Wasim Javed, Kyle Willets, Michael Norman, Patrick Sutton - Machine learning pipeline - Low-latency, unmodelled burst detection for use in Multimessenger astronomy - CNN for detection, basic PE, and localization - Currently in review for deployment in O4 - Methods paper: https://arxiv.org/abs/2009.14611 # **CURRENT MLy ARCHITECTURE** # THE PROBLEM WITH CNNs #### Tov example: - Input Size = 4 - Output Size = 3 - Filter Size = 3 - Number of filters = 3 ### A DRAWBACK OF CNNs #### Receptive field size = 3: - Conv layers are best for focusing on local features not global features - For multi-detector case unknown arrival time difference between detectors disrupts local features [1] https://arxiv.org/abs/1706.03762 **Transformers embed global context locally using attention** # The quick brown fox jumped over the lazy dog # embedding The quick brown fox jumped over the lazy dog *weights matrices are learned, identical for each token | 2686.0 h184.0
8726.0 f369.0
1886.0 t369.0 | 0.5446 0.6679
0.4814 0.9332
0.521 6 K
0.9261 0.3278 V
0.2621 0.3681 | 0.5446 0.6679
0.4814 0.9332
0.6722 88440
1.510 7711
0.9261 0.3478
0.2621 0.3681 | |--|---|--| | 266.0 9442.0
1896.0 1596.0
1896.0 1536.0 | 0.5446 0.6679
0.4814 0.9332
0.9261 0.3278
0.2621 0.3681 | 0.5446 0.6679
0.4814 0.9332
br63w 1.44 0
0.9261 0.32 x
0.2621 0.3681 | | 6799.0 9442.0
0448.0 4184.0
8728.0 1369.0
1898.0 1236.0 | 0.5446 0.6679
0.4814 0.9332
0.663 8440
0.6 3 79711
0.9261 0.378
0.2621 0.3681 | 0.5446 0.6679
0.4814 0.9332
1.6221 0.8440
(6) 0.9711
0.9261 0.3278
0.2621 0.3681 | | 6786.0 8442.0
1746 mw569 k
8726.0 1840.0
1886.0 1532.0 | 0.5446 0.6679
0.4814 0.9332
jumpedo
0.9261 0.3278
0.2621 0.3681 | 0.5446 0.6679
0.4814 0.9332
juñipel 40
0.9261 0.3278
0.2621 0.3681 | | 6799.0 9442.0
0448.0 OXGL**
1176.0 OXGL**
8752.0 1626.0
1898.0 1535.0 | 0.5446 0.6679
0.4814 0.9332
0.4814 0.9332
0.714 0.711
0.9261 0.327
0.2621 0.3681 | 0.5446 0.6679
0.4814 0.9332
0.7216 6.8440
0.1711
0.9261 0.178
0.2621 0.3681 | | 6785.0 8442.0
1178.0 875.0 1350.0
11885.0 1350.0
1885.0 1535.0 | 0.5446 0.6679
0.4814 0.9332
0.522 2.8140
0.9261 2.824
0.2621 0.3681 | 0.5446 0.6679
0.4814 0.9332
0.4814 0.9332
0.8440
0.9711
0.926 0.3278
0.2621 0.3681 | | 96795.0 8442.0 9787.0 9787.0 9785.0 1292.0 1292.0 1292.0 1292.0 1292.0 1292.0 1292.0 1292.0 1292.0 1292.0 1292.0 | 0.5446 0.6679
0.4814 0.9332
0 0 1 0 711
0.9261 0.2681 | 0.5446 0.6679
0.4814 0.9332
0.8440
0.9261 0.3278
0.2621 0.3681 | SINGLE DETECTOR BBH DETECTION AS PROOF OF CONCEPT EXPAND TO COHERENT CASE IN FUTURE WORK # CNN* Transformer Conv Transformer Conv 64, 8 Conv 32, 8 Conv 32, 16 Conv 16, 16 Conv 16, 32 Conv 16, 32 Dense 64 Dense 2 Conv 1, 128 + positional encoding **Transformer Encoder** Dense 512 Dense 2 Conv 64, 8 Conv 32, 8 Conv 32, 16 Conv 16, 16 Conv 16, 32 Conv 16, 128 + positional encoding **Transformer Encoder** *Architecture from Gabbard et al. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.141103 Dense 512 Dense 2 # **Preliminary Results** # **Preliminary Results** # **Preliminary Results** ### **FUTURE PLANS** - Extend to multi detector case for coherent analysis - Special encoding as well as temporal - Detector agonistic spatially and perhaps also conditioned on PSD #### **FUTURE PLANS – UNICRON** + spacial token + Positional Encoding + spacial token UNICRON Classification Signal reconstruction at earth centre coordinates? Vary detector positions during training # ANY QUESTIONS?