

Deep Learning for the detection of Unmodelled Gravitational-Wave Transients

A deep learning approach

What is gravity?

- 1. Mass deforms spacetime
- 2. Spacetime moves mass
- 3. More mass creates more deformation
- 4. More deformation moves mass more

What are gravitational waves?

- 2. Therefore objects in orbit create gravitational waves
- 3. And more massive objects in orbit create larger waves

How do we detect gravitational waves?

$$t_0 + dt$$

- 1. Deformations in spacetime changes the real distance between freely floating points
- If we can measure changes in the distance between two freely floating points we can measure changes in spacetime

How do we detect gravitational waves?

- 1. We can do this using interferometers
- 2. A laser is split into two orthogonal cavities, and reflected back to destructively interfere
- 3. A photodiode reads the resulting power

How do we detect gravitational waves?

Interferometer Locations

How do we detect find signals from noise?

The output of the photodetector takes the form of a 1D timeseries at 16kHz

Care is taken to insulate detectors from noise, but noise is still present at various frequencies

Thus a method is needed to extract real gravitational wave signals from terrestrial noise

How do we detect find signals from noise?

Matched Filtering

What about other signal types?

Matched Filter

COHERENCE DETECTION

Pros

 Doesn't require prior knowledge of (exact) signal shape

Cons

- Is not as sensitive as matched filtering
- Existing pipelines can be quite slow

MLy PIPELINE

- Team: Vasileios Skliris, Wasim Javed, Kyle Willets, Michael Norman, Patrick Sutton
- Machine learning pipeline
- Low-latency, unmodelled burst detection for use in Multimessenger astronomy
- CNN for detection, basic PE, and localization
- Currently in review for deployment in O4
- Methods paper: https://arxiv.org/abs/2009.14611

CURRENT MLy ARCHITECTURE

THE PROBLEM WITH CNNs

Tov example:

- Input Size = 4
- Output Size = 3
- Filter Size = 3
- Number of filters = 3

A DRAWBACK OF CNNs

Receptive field size = 3:

- Conv layers are best for focusing on local features not global features
- For multi-detector case unknown arrival time difference between detectors disrupts local features

[1] https://arxiv.org/abs/1706.03762

Transformers embed global context locally using attention

The quick brown fox jumped over the lazy dog

embedding

The quick brown fox jumped over the lazy dog

*weights matrices are learned, identical for each token

2686.0 h184.0 8726.0 f369.0 1886.0 t369.0	0.5446 0.6679 0.4814 0.9332 0.521 6 K 0.9261 0.3278 V 0.2621 0.3681	0.5446 0.6679 0.4814 0.9332 0.6722 88440 1.510 7711 0.9261 0.3478 0.2621 0.3681
266.0 9442.0 1896.0 1596.0 1896.0 1536.0	0.5446 0.6679 0.4814 0.9332 0.9261 0.3278 0.2621 0.3681	0.5446 0.6679 0.4814 0.9332 br63w 1.44 0 0.9261 0.32 x 0.2621 0.3681
6799.0 9442.0 0448.0 4184.0 8728.0 1369.0 1898.0 1236.0	0.5446 0.6679 0.4814 0.9332 0.663 8440 0.6 3 79711 0.9261 0.378 0.2621 0.3681	0.5446 0.6679 0.4814 0.9332 1.6221 0.8440 (6) 0.9711 0.9261 0.3278 0.2621 0.3681
6786.0 8442.0 1746 mw569 k 8726.0 1840.0 1886.0 1532.0	0.5446 0.6679 0.4814 0.9332 jumpedo 0.9261 0.3278 0.2621 0.3681	0.5446 0.6679 0.4814 0.9332 juñipel 40 0.9261 0.3278 0.2621 0.3681
6799.0 9442.0 0448.0 OXGL** 1176.0 OXGL** 8752.0 1626.0 1898.0 1535.0	0.5446 0.6679 0.4814 0.9332 0.4814 0.9332 0.714 0.711 0.9261 0.327 0.2621 0.3681	0.5446 0.6679 0.4814 0.9332 0.7216 6.8440 0.1711 0.9261 0.178 0.2621 0.3681
6785.0 8442.0 1178.0 875.0 1350.0 11885.0 1350.0 1885.0 1535.0	0.5446 0.6679 0.4814 0.9332 0.522 2.8140 0.9261 2.824 0.2621 0.3681	0.5446 0.6679 0.4814 0.9332 0.4814 0.9332 0.8440 0.9711 0.926 0.3278 0.2621 0.3681
96795.0 8442.0 9787.0 9787.0 9785.0 1292.0 1292.0 1292.0 1292.0 1292.0 1292.0 1292.0 1292.0 1292.0 1292.0 1292.0	0.5446 0.6679 0.4814 0.9332 0 0 1 0 711 0.9261 0.2681	0.5446 0.6679 0.4814 0.9332 0.8440 0.9261 0.3278 0.2621 0.3681

SINGLE DETECTOR BBH DETECTION AS PROOF OF CONCEPT EXPAND TO COHERENT CASE IN FUTURE WORK

CNN*

Transformer

Conv Transformer

Conv 64, 8

Conv 32, 8

Conv 32, 16

Conv 16, 16

Conv 16, 32

Conv 16, 32

Dense 64

Dense 2

Conv 1, 128

+ positional encoding

Transformer Encoder

Dense 512

Dense 2

Conv 64, 8

Conv 32, 8

Conv 32, 16

Conv 16, 16

Conv 16, 32

Conv 16, 128

+ positional encoding

Transformer Encoder

*Architecture from Gabbard et al. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.141103

Dense 512

Dense 2

Preliminary Results

Preliminary Results

Preliminary Results

FUTURE PLANS

- Extend to multi detector case for coherent analysis
- Special encoding as well as temporal
- Detector agonistic spatially and perhaps also conditioned on PSD

FUTURE PLANS – UNICRON

+ spacial token

+ Positional Encoding

+ spacial token

UNICRON

Classification

Signal reconstruction at earth centre coordinates?

Vary detector positions during training

ANY QUESTIONS?

