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1 Introduction

In a relativistic quantum field theory, the dynamics of the system is usually
described as an evolution along a timelike direction, either explicitly in the
Hamiltonian formalism, or implicitly in the path integral approach. In these
cases, the quantization of the theory is said to be performed on the instant
form of relativistic dynamics. However, this is not the only possibility [1].
In particular, one can use instead the front form of relativistic dynamics, in
which the dynamics of the system is described as an evolution along a lightlike
direction. All of these approaches should be equivalent, even though detailed
proofs of equivalence are often difficult to obtain. All of these approaches are
also complementary, since they have different advantages and shortcomings.

For example, the quantization in the front form, (a.k.a. light-front quanti-
zation or light-cone quantization)[2, 3], typically leads to a simpler structure of
the vacuum of the theory, and gives a radically different account of spontaneous
symmetry breaking symmetry (see for example Ref. [4] for the scalar theory case,
and Ref. [5] for chiral symmetry breaking in QCD). Moreover, it leads in a very
intuitive way to the parton model picture of QCD. Light-cone perturbation the-
ory for QCD has also been one of the main methods for practical calculations in
the context of high-energy (or low x) QCD, from early studies of the dipole model
[6, 7, 8] and of the Color Glass Condensate effective theory [9, 10, 11], to recent
calculations of NLO corrections (see for example [12, 13, 14, 15, 16, 17, 18]) in
that context.

In these lectures, we will present the light-front quantization and light-front
perturbation theory first for scalar theories, and then for QCD and QED. Ap-
plications of this formalism to meson wavefunctions, high-energy scattering in
QCD, and jet quenching in heavy ions collisions will be covered by the other
lecturers.

Other useful lecture notes about the light-front quantization are Refs. [19],
[20] and [4]. The original papers [2, 3] are also very interesting to read, but
sometimes difficult to follow due to outdated notations.
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2 Poincaré invariance and covariance

2.1 Cartesian and Light-cone coordinates

In the usual cartesian coordinates (x0, x1, x2, x3), the metric of Minkowski space
writes

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (1)

When performing a general coordinates change

xµ 7→ x̃µ(x) , (2)

the metric transforms as

g̃µν =

(
∂xρ

∂x̃µ

) (
∂xσ

∂x̃ν

)
gρσ (3)

and, equivalently

g̃µν =

(
∂x̃µ

∂xρ

) (
∂x̃ν

∂xσ

)
gρσ , (4)

and such rules can be generalized to find the transformation of arbitrary tensor
quantities.

In the following, we will mostly use the light-cone coordinates (x+, x1, x2, x−),
defined as1

x± =
x0 ± x3

√
2

(5)

Then, the metric in light-cone coordinates (x+, x1, x2, x−) writes

gµν = gµν =


0 0 0 1
0 −1 0 0
0 0 −1 0
1 0 0 0

 , (6)

so that in particular x± = x∓.
In the following, we will always use i, j, · · · = 1, 2 for the transverse plane

indices , I, J, · · · = 1, 2, 3 for the space indices, and of course µ, ν, . . . for the
Minkowski spacetime indices. The transverse vectors will be written in bold, as
x ≡ (x1, x2).

1Note that two definitions are widespread in the literature, with or without the
√

2 in the
denominator. We choose that definition so that the change of variables between cartesian and
light-cone coordinates has a Jacobian equal to 1.
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2.2 Poincaré transformations in classical field theory

2.2.1 Coordinate transformations

The Lorentz group corresponds to the space-time transformations of the type

xµ 7→ x̃µ(x) = Λµν x
ν (7)

which preserve the metric, meaning

g̃µν = Λµρ Λνσ g
ρσ = gµν , (8)

or equivalently

(Λ−1)µν = gνρ Λρσ g
σµ . (9)

Such transformations include space rotations, for example the rotation of
angle θ within the (x1, x2) plane (or around the x3 axis), which writes

Λµν =


1 0 0 0
0 cos(θ) − sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1

 (10)

both in cartesian coordinates and in light-cone coordinates.
There are also the Lorentz boosts, which mix the x0 time direction with one

of the space directions. For example the Lorentz boost of rapidity ω along the
x3 writes

Λµν =


cosh(ω) 0 0 sinh(ω)

0 1 0 0
0 0 1 0

sinh(ω) 0 0 cosh(ω)

 (11)

in cartesian coordinates and

Λµν =


eω 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e−ω

 (12)

in light-cone coordinates.
For a generic infinitesimal transformation Λµν ' gµν+λµν , so that (Λ−1)µν '

gµν − λµν , the relation (9) gives

λµν = −λνµ . (13)

The space of anti-symmetric 4×4 matrices is of dimension 6, so that the Lorentz
algebra for a 4−dimensional space-time has 6 generators. There are 3 generators
for space rotations and 3 for Lorentz boosts. Hence, the Lorentz group is the
group formed by rotations and boosts only2.

The Poincaré group is defined as the extension of the Lorentz group which
includes space-time translations

xµ 7→ x̃µ(x) = xµ − aµ (14)

as well.
2In principle, two discrete symmetries, the time reversal and the space parity are also part

of the Lorentz group. But we will not discuss them further in these lectures, and focus instead
on the Lorentz algebra and on the component of the Lorentz group connected to the identity,
that we will call for simplicity the Lorentz group.
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2.2.2 Active transformations

So far, so the Poincaré transformations were considered as mere reparametriza-
tions of coordinates. This corresponds to passive transformations. Instead, one
can consider transformations acting on the physical system, but keeping the
same coordinate system. If the system is described by a scalar field ϕ(x) an
active Lorentz transformation acts as follows:

ϕ(x) 7→ ϕ̃(x) = ϕ
(
Λ−1x

)
. (15)

Indeed, the system is only displaced in spacetime by the Lorentz transforma-
tion, so that the value of the scalar field at x after the transformation is the
same as the value of the field before the transformation at the point which gets
transformed into x.

The case of a vector field V µ(x) is similar, except that in addition the direc-
tion of the field is changed by the Lorentz transformation, so that

V µ(x) 7→ Ṽ µ(x) = Λµν V
ν
(
Λ−1x

)
. (16)

For higher rank tensors, the Lorentz transformation acts on each index sepa-
rately, for example for a rank 2 tensor one has

Tµν(x) 7→ T̃µν(x) = Λµρ Λνσ T
ρσ
(
Λ−1x

)
. (17)

The action of the active version of the translation xµ 7→ xµ−aµ on a generic
local quantity O(x) writes

O(x) 7→ Õ(x) = O (x+ a) , (18)

for the same reason as in Eq. (15).
Hence, an active infinitesimal translation provokes a change

δO(x) ≡ Õ(x)−O(x) = O (x+ a)−O(x) ' aµ ∂µO(x) , (19)

to linear accuracy in aµ .
Similarly, an active infinitesimal Lorentz transformation Λµν ' gµν + λµν

gives

δϕ(x) ≡ ϕ̃(x)− ϕ(x) = ϕ
(
Λ−1x

)
− ϕ(x)

'
((

Λ−1
)µ
ν
xν − xµ

)
∂µϕ (x) ' −λµν xν ∂µϕ (x)

' λµν
2

(xµ ∂ν − xν ∂µ)ϕ (x) (20)

in the scalar field case, and

δV ρ(x) ≡ Ṽ ρ(x)− V ρ(x) = Λρσ V
σ
(
Λ−1x

)
− V ρ(x)

' −λµν xν ∂µV ρ (x) + λρσ V
σ(x)

' λµν
2

[
(xµ ∂ν − xν ∂µ) V ρ (x) + (Σµνvect.)

ρ
σ V

σ(x)

]
(21)

in the vector field case, with the definition

(Σµνvect.)
ρ
σ ≡ g

ρµ gνσ − gρν gµσ . (22)
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For higher rank tensors, there is a Σµνvect. term for each index, for example

δT ρσ(x) ' λµν
2

[
(xµ ∂ν − xν ∂µ) T ρσ(x) + (Σµνvect.)

ρ
η T

ησ(x) + (Σµνvect.)
σ
η T

ρη(x)

]
(23)

for rank 2 tensors.
Note that generic finite Lorentz transformations can then be parametrized

as

Λρσ ≡
(

exp

(
λµν
2

Σµνvect.

))ρ
σ

, (24)

where λµν is antisymmetric but otherwise arbitrary.
For a Dirac spinor field Ψ(x), active Lorentz transformations should have an

action of the form

Ψ(x) 7→ Ψ̃(x) = M(Λ) Ψ
(
Λ−1x

)
, (25)

with a matrix M(Λ) to be determined. Consider for simplicity a constant spinor
Ψ. Then, a Lorentz transformation gives

Ψ 7→M(Λ) Ψ (26)

Ψ = Ψ† γ0 7→ Ψ†M(Λ)† γ0 = Ψγ0M(Λ)† γ0 (27)

and thus

ΨγµΨ 7→ Ψγ0M(Λ)† γ0γµM(Λ) Ψ . (28)

On the other hand, ΨγρΨ should behave as a vector under Lorentz boosts,
meaning

ΨγρΨ 7→ Λρσ ΨγσΨ . (29)

The expressions (28) and (29) should be valid for any Dirac spinor Ψ. Hence,
one gets the constraint

γ0M(Λ)† γ0γρM(Λ) = Λρσ γ
σ . (30)

Looking for a solution of the form

M(Λ) ≡
(

exp

(
λµν
2

Σµνsp.

))
, (31)

one finds, at the linear level in λµν

λµν
2

(
γρ Σµνsp. + γ0

(
Σµνsp.

)†
γ0γρ

)
= λρσ γ

σ . (32)

This has to be true for any small Lorentz transformation, and thus for any
antisymmetric λµν , so that

γρ Σµνsp. + γ0
(
Σµνsp.

)†
γ0γρ = (Σµνvect.)

ρ
σ γ

σ . (33)
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Remembering that γµ† = γ0γµγ0, one finds that the constraint (33) is solved
by

Σµνsp. =
1

4
[γµ, γν ] . (34)

With this expression, it is possible to check that

γ0M(Λ)† γ0 = M(Λ−1) = M(Λ)−1 , (35)

and then that the constraint (30) is satisfied for all finite Lorentz transforma-
tions. Hence, a Dirac spinor field Ψ(x) transform as (25) under a finite Lorentz
transformation, and as

δΨ(x) ≡ Ψ̃(x)−Ψ(x) = M(Λ) Ψ
(
Λ−1x

)
−Ψ(x)

' λµν
2

[
(xµ ∂ν − xν ∂µ) Ψ(x) +

(
Σµνsp.

)
Ψ(x)

]
(36)

under an infinitesimal Lorentz transformation.
As a summary, for a field φR(x) in a representation R of the Lorentz group,

the action of a finite Lorentz transformation can be written as

φR(x) 7→ φ̃R(x) = MR(Λ)φR
(
Λ−1x

)
, (37)

with

MR(Λ) ≡ exp

(
λµν
2

ΣµνR

)
, (38)

and the action of an infinitesimal Lorentz transformation writes

δφR(x) ≡ φ̃R(x)− φR(x)

' λµν
2

[
(xµ ∂ν − xν ∂µ) φR(x) + (ΣµνR ) φR(x)

]
. (39)

The matrix ΣµνR is different depending on the representation, and is the only
data needed to determine the action of Lorentz transformations. Moreover, the
action of translations is given by Eqs. (18) and (19).

2.2.3 Noether’s theorem and currents

According to Noether’s theorem, for each continuous symmetry of a field theory,
one can construct a current which is conserved. The current associated with
translational invariance is the energy-momentum tensor

Tµν(x) =
∂L

∂(∂µφ(x))
∂νφ(x)− gµν L , (40)

and the one associated with Lorentz invariance is

Jρµν(x) = xµ T ρν(x)− xν T ρµ(x) +
∂L

∂(∂ρφR(x))
(ΣµνR ) φR(x) . (41)

Hence, a Poincaré invariant theory has the conservation laws

∂µ T
µν(x) = 0 (42)

and

∂ρ J
ρµν(x) = 0 . (43)
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2.2.4 Conserved charges

For each current Jµ(x) , one can define a charge either according to the cartesian
coordinates, as

Q(x0)cart. ≡
∫
d3~x J0(x) , (44)

or according to the light-cone coordinates, as

Q(x+)LC ≡
∫
dx−

∫
d2x J+(x) . (45)

In both cases, if the current is conserved, meaning ∂µ J
µ(x) = 0, the charged is

conserved as well, meaning ∂0Q(x0)cart. = 0 or ∂+Q(x+)LC = 0. Indeed, one
has for example

∂+Q(x+)LC =

∫
dx−

∫
d2x ∂+ J

+(x)

=

∫
dx−

∫
d2x

{
− ∂− J−(x)− ∂j Jj(x)

}
= 0 , (46)

assuming that the fields and thus the current decay fast enough in the space
directions (and in the x− direction) so that the boundary terms vanish. Note
that Qcart. and QLC are in principle different objects, even though they are built
from the same current.

Hence, thanks to the conservation of the Noether currents Tµν(x) and Jρµν(x),
one can define the constant charges associated with the translational and Lorentz
invariances either as

P νcart. ≡
∫
d3~x T 0ν(x) (47)

Mµν
cart. ≡

∫
d3~x J0µν(x) (48)

in cartesian coordinates or as

P νLC ≡
∫
dx−

∫
d2x T+ν(x) (49)

Mµν
LC ≡

∫
dx−

∫
d2x J+µν(x) (50)

in light-cone coordinates. The charges (47) and (48) are the ones used in the
instant form of relativistic dynamics, whereas the charges (49) and (50) are the
ones used in the front form [1], that we will mainly focus on, in the following.
The subscripts cart. and LC will usually be dropped to avoid cluttered notations,
and it should be clear according to the context if we are talking about the
cartesian or the light-cone version, or if the discussion is generic and applies to
both.

2.3 Poincaré algebra in quantum field theory

2.3.1 Generic case

When quantizing a field theory, both the fields and the conserved charges should
be promoted to operators. Moreover, the action of an infinitesimal transforma-
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tion on the fields and other quantities should now be encoded via their com-
mutation relations with the corresponding Noether charge. For example, for a
generic local operator Ô(x), the action of infinitesimal translations writes

δÔ(x) = aµ i
[
P̂µ, Ô(x)

]
(51)

and the action of infinitesimal Lorentz transformations writes

δÔ(x) =
λµν
2

i
[
M̂µν , Ô(x)

]
. (52)

These relations can be extended to finite Poincaré transformations. For finite
translations by aµ, one has

Ô(x) 7→ Ô(x+ a) = ei aµ P̂
µ

Ô(x) e−i aµ P̂
µ

(53)

For finite Lorentz transformations acting on an operator in a representation R,
one has

ÔR(x) 7→MR(Λ) ÔR
(
Λ−1x

)
= ei

λµν
2 M̂µν

ÔR(x) e−i
λµν
2 M̂µν

. (54)

By comparing the expressions (19) and (51), one finds that the commutation
relation of any local operator Ô(x) with P̂µ should be[

P̂µ, Ô(x)
]

= −i∂µÔ(x) . (55)

Similarly, by comparison of the Eqs. (39) and (52), the commutation relation
of an operator ÔR(x) in the representation R of the Lorentz group with M̂µν

should be [
M̂µν , ÔR(x)

]
= −i

[
(xµ ∂ν − xν ∂µ) + (ΣµνR )

]
ÔR(x) . (56)

Thanks to the Jacobi identity[
Â,
[
B̂, Ĉ

]]
+
[
B̂,
[
Ĉ, Â

]]
+
[
Ĉ,
[
Â, B̂

]]
= 0 , (57)

it is possible to show that, if P̂µ and M̂µν obey the commutation relations (55)
and (56) with any local operator ÔR(x), then they obey the Poincaré algebra[

P̂µ, P̂ ν
]

= 0 (58)[
M̂µν , P̂ ρ

]
= i
(
gνρ P̂µ − gµρ P̂ ν

)
(59)[

M̂µν , M̂ρσ
]

= i
(
gµσ M̂νρ + gνρ M̂µσ − gµρ M̂νσ − gνσ M̂µρ

)
, (60)

provided that iΣµνR satisfies (as R−matrices) the same commutation relations

(60) as M̂µν (as quantum operators).
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2.3.2 Poincaré algebra in the instant-form dynamics

The most common ways to quantize a field theory are based on the instant
form of relativistic dynamics [1]. In that case, the hamiltonian dynamics of
the system is formulated as an evolution along the timelike x0 axis, in some
particular inertial frame. Then, for each x0 = constant hypersurface one can
associate a state of the system, characterized by variables on that hypersurface
only.

Then, the Poincaré transformations leaving x0 = constant hypersurfaces in-
variant or not play a different role. The space translations as well as the space
rotations leave x0 = constant hyperplanes invariant, and thus have nothing to
do with the evolution of the system in the instant-form dynamics. These trans-
formations, and the corresponding generators P̂ I and M̂ IJ are called kinematic.
Obviously, they form form a subalgebra of the Poincaré algebra.

By contrast, x0 translations transforms any x0 = constant hyperplane into
a different one. Lorentz boosts mix the x0 direction with one of the space
directions, so that they are not leaving x0 = constant hyperplanes invariants.
The generators P̂ 0 of x0 translations and M̂0J of Lorentz boosts are called
dynamical, since they describe how the system change from a x0 = constant
hyperplane to another hypersurface. Hence, P̂ 0 and M̂0J can be considered as
generalized Hamiltonians.

As a summary, in the instant-form based on x0 = constant hyperplanes,
there are 6 kinematic Poincaré generators P̂ I and M̂ IJ , which are by definition
blind to the dynamics of the system, and 4 dynamic Poincaré generators P̂ 0

and M̂0J , which encode the dynamics of the system, as x0 changes.

2.3.3 Poincaré algebra in the front-form dynamics

Alternatively, one can use the front form of relativistic dynamics [1, 21], with
x+ as evolution variable. In that case, the states of the system are associated
to x+ = constant hyperplanes.

The translations along x− and along the transverse directions xj leave these
planes invariant, but obviously not the translations along x+.

Writing x+ = nµxµ, with nµ ≡ gµ+, Lorentz transformations leave x+ =
constant hyperplanes invariant if they leave the vector nµ invariant. Of course,
rotations within the transverse plane leave x+ = constant hyperplanes invariant,
so that M̂ ij = M̂ij = εij M̂12 is a kinematic generator. Moreover, one finds

that M̂+i = M̂i− also are kinematic generators. They are associated to some
combinations of transverse Lorentz boosts with rotations.

So far, there are 6 kinematic generators in the front form: P̂+, P̂ j , M̂ ij and
M̂+i.

By contrast, the 3 generators P̂− and M̂−i = M̂i+ are dynamical.
The last generator, M̂−+ = M̂+−, which corresponds to longitudinal Lorentz

boosts, has a peculiar status in the front-form dynamics. Indeed, under a lon-
gitudinal boost,

x+ 7→ eω x+

x 7→ x

x− 7→ e−ω x− , (61)
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so that an hyperplane x+ = constant is transformed into an hyperplane x+ =
e−ω constant. In general, this is a different hyperplane, meaning that M̂−+ is
dynamic. However, the hyperplane x+ = 0 is invariant under such longitudinal
boost. Hence, in the case of the plane x+ = 0, M̂−+ becomes kinematic, and
one obtains an enhanced kinematical Poincaré subalgebra with 7 generators.

The non-trivial commutation relations between the kinematic generators (for
generic x+) P̂+, P̂ j , M̂ ij and M̂+i are[

M̂ ij , P̂ l
]

= i
(
gjl P̂ i − gil P̂ j

)
(62)[

M̂ ij , M̂+l
]

= i
(
gjl M̂+i − gil M̂+j

)
(63)[

M̂+i, P̂ j
]

= i gij P̂+ . (64)

Interestingly, one obtains another closed subalgebra by adding the dynamic
generator P̂−, with the new non-trivial commutation relation[

M̂+i, P̂−
]

= −i P̂ i . (65)

That algebra formed by P̂µ, M̂+i and M̂ ij is isomorphic to the Galilean algebra
in 2 + 1 dimensions, with the following correspondences:

• P̂ j 7→ 2D momentum

• P̂− 7→ energy

• P̂+ 7→ mass

• M̂+i 7→ 2D Galilean boosts

• M̂12 7→ angular momentum.

Finally, one finds that the commutation relations of the generator M̂−+ of
longitudinal boosts with the others are such that longitudinal boosts simply
rescale the generators according to the number of + or − indices they have, as

ei ω M̂
−+

P̂+ e−i ω M̂
−+

= eω P̂+ (66)

ei ω M̂
−+

M+i e−i ω M̂
−+

= eωM+i (67)

ei ω M̂
−+

P̂ j e−i ω M̂
−+

= P̂ j (68)

ei ω M̂
−+

M̂ ij e−i ω M̂
−+

= M̂ ij (69)

ei ω M̂
−+

P̂− e−i ω M̂
−+

= e−ω P̂− (70)

ei ω M̂
−+

M̂−i e−i ω M̂
−+

= e−ω M̂−i . (71)

3 Light-front quantization of a scalar field the-
ory

Let us discuss the light-front quantization, using x+ as evolution variable, for a
generic real scalar field theory.
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3.1 Classical scalar field theory in the front form

Let us consider the Lagrangian density for a scalar theory

L =
1

2
(∂µϕ(x)) (∂µϕ(x))− V (ϕ(x))

= (∂+ϕ(x)) (∂−ϕ(x))− 1

2
(∂jϕ(x))

2 − V (ϕ(x)) , (72)

with a generic potential V (ϕ(x)). The momentum density conjugate to the
scalar field ϕ(x) is given by

π+(x) =
∂L

∂(∂+ϕ(x))
= ∂−ϕ(x) , (73)

and the Euler-Lagrange equation of motion for this model is

∂µ∂
µϕ(x) = − V ′(ϕ(x)) , (74)

or equivalently

∂−∂+ϕ(x) =
1

2

(
∆⊥ϕ(x)− V ′(ϕ(x))

)
. (75)

At this stage, there are already two crucial differences between this front
form of the dynamics of the scalar theory and its more usual instant form:

• The evolution equation (75) is of first order in x+ (parabolic) in the front
form, whereas in the instant form, one obtains a second order equation in
x0 (hyperbolic).

• In the front form, the conjugate momentum π+(x) = ∂−ϕ(x) can be
obtained from the knowledge of ϕ(x) restricted to the hyperplane of fixed
x+. By contrast, in the instant form, the conjugate momentum π0(x) =
∂0ϕ(x) cannot be determined from ϕ(x) restricted to the hyperplane of
fixed x0 alone: more initial data is required.

These two differences are closely related to each other obviously.
Concerning the conserved currents, from the Lagrangian density (72), one

finds

Tµν(x) =
∂L

∂(∂µϕ(x))
∂νϕ(x)− gµν L = (∂µϕ(x)) (∂νϕ(x))− gµν L , (76)

and thus the light-front version of Pµ as

P+ =

∫
dx−

∫
d2x T++(x) =

∫
dx−

∫
d2x (∂−ϕ(x)) (∂−ϕ(x)) , (77)

P j =

∫
dx−

∫
d2x T+j(x) = −

∫
dx−

∫
d2x (∂−ϕ(x)) (∂jϕ(x)) (78)

and

P− =

∫
dx−

∫
d2x T+−(x) , (79)

11



where

T+−(x) =
1

2
(∂jϕ(x)) (∂jϕ(x)) + V (ϕ(x)) . (80)

For a scalar theory,

Jρµν(x) = xµ T ρν(x)− xν T ρµ(x) , (81)

and thus one finds

M+i =

∫
dx−

∫
d2x J++i(x) =

∫
dx−

∫
d2x

(
x+ T+i(x)− xi T++(x)

)
=

∫
dx−

∫
d2x (∂−ϕ(x))

(
− x+ ∂iϕ(x)− xi ∂−ϕ(x)

)
, (82)

M ij =

∫
dx−

∫
d2x J+ij(x) =

∫
dx−

∫
d2x

(
xi T+j(x)− xj T+i(x)

)
=

∫
dx−

∫
d2x (∂−ϕ(x))

(
− xi ∂jϕ(x) + xj ∂iϕ(x)

)
, (83)

M−+ =

∫
dx−

∫
d2x J+−+(x) =

∫
dx−

∫
d2x

(
x− T++(x)− x+ T+−(x)

)
=

∫
dx−

∫
d2x

(
x− (∂−ϕ(x))

2 − x+ T+−(x)
)

(84)

and

M−i =

∫
dx−

∫
d2x J+−i(x) =

∫
dx−

∫
d2x

(
x− T+i(x)− xi T+−(x)

)
=

∫
dx−

∫
d2x

(
− x− (∂−ϕ(x)) (∂iϕ(x))− xi T+−(x)

)
. (85)

We can see that the expressions of the kinematical Poincaré charges P+,
P j , M+i and M ij are independent of the potential, and are thus identical to
the ones obtained in a free scalar theory. This justifies the name kinematical
charges: they are fixed by the kinematics, independently of the dynamics of the
theory.

By contrast, the dynamical charges P− and M−i depend on the potential,
and thus on the precise dynamics of the theory, through T+−(x). Moreover,
the charge M−+ associated with longitudinal boost depend in general of the
potential, except on the surface x+ = 0. This is consistent with the expectations
based on the action of boosts on the surfaces of constant x+.

3.2 Quantization of the scalar theory in the front form

At quantum level, both the scalar field and the Poincaré charges become quan-
tum operators: ϕ̂(x), P̂µ and M̂µν . Quantizing the theory basically means
specifying all the commutation relations between them in a consistent way. In
particular, one has the following requirements :
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• The commutation relations of the Poincaré charges P̂µ and M̂µν should
be the Poincaré algebra (58), (59), (60)

• The Poincaré transformations of the scalar field ϕ̂(x) should be encoded
by its commutations relations with P̂µ and M̂µν , as

∂µϕ̂(x) = i
[
P̂µ, ϕ̂(x)

]
(86)

(xµ ∂ν − xν ∂µ) ϕ̂(x) = i
[
M̂µν , ϕ̂(x)

]
(87)

• In particular, ∂+ϕ̂(x) = i
[
P̂−, ϕ̂(x)

]
should encode the equation of motion

(75) of the scalar field.

• The expression of the generators P̂µ and M̂µν in terms of the scalar field
should be obtained from the classical ones (77-85) by symmetrizing prod-
ucts of (bosonic) operators, so that for example

P̂ j = −1

2

∫
dx−

∫
d2x

(
(∂−ϕ̂(x)) (∂jϕ̂(x)) + (∂jϕ̂(x)) (∂−ϕ̂(x))

)
(88)

At this stage, the only thing left to be specified is the commutator of the
field with itself, [ϕ̂(x), ϕ̂(y)] at x+ = y+. The traditional way to derive this
commutator is to follow the Dirac-Bergmann method (see for example the ap-
pendix E of Ref. [20]). That method is powerful but rather cumbersome, in
particular in the case of interest. Indeed, it is constructed specially for theories
with second order equations of motion. When applied to a theory with first
order equation of motion, like the scalar theory (72) in the front form, the the-
ory is first reinterpreted as a constrained theory with second order equation of
motion, in order to proceed further.

Alternatively, one can follow the much simpler method [22, 23] proposed by
Floreanini, Faddeev and Jackiw (FFJ) for the quantization of systems with first
order equations of motions, which avoids to introduce unnecessary complica-
tions. Instead of following precisely one one these two systematic methods, let
us adopt a further simplified version of the FFJ method, which provides the
same result in this case.

Assuming that the unkown commutator [ϕ̂(x), ϕ̂(y)] at x+ = y+ is a c-
number (instead of an operator), the quantum version of the expression (77) for
P̂+ leads to[

P̂+, ϕ̂(x)
]

=

∫
d4y δ(y+−x+)

[
(∂−ϕ̂(y)) (∂−ϕ̂(y)) , ϕ̂(x)

]
= 2

∫
d4y δ(y+−x+)

[
(∂−ϕ̂(y)) , ϕ̂(x)

]
(∂−ϕ̂(y)) . (89)
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Similarly, one obtains from (88)[
P̂ j , ϕ̂(x)

]
= −1

2

∫
d4y δ(y+−x+)

[
(∂−ϕ̂(y)) (∂jϕ̂(y)) + (∂jϕ̂(y)) (∂−ϕ̂(y)) , ϕ̂(x)

]
= −

∫
d4y δ(y+−x+)

([
(∂−ϕ̂(y)) , ϕ̂(x)

]
(∂jϕ̂(y))

+
[

(∂jϕ̂(y)) , ϕ̂(x)
]

(∂−ϕ̂(y))

)
= −2

∫
d4y δ(y+−x+)

[
(∂−ϕ̂(y)) , ϕ̂(x)

]
(∂jϕ̂(y)) , (90)

assuming that one can neglect boundary terms when integrating by part in
yj or in y−. Hence, in order to recover the correct commutation relations

∂−ϕ̂(x) = i
[
P̂+, ϕ̂(x)

]
and ∂jϕ̂(x) = −i

[
P̂ j , ϕ̂(x)

]
, it is sufficient to postulate

the commutation relation[
ϕ̂(x), ∂−ϕ̂(y)

]
=
i

2
δ(x−−y−)δ(2)(x−y) (91)

for x+ = y+. Integrating that relation with respect to y−, one gets[
ϕ̂(x), ϕ̂(y)

]
=
i

2

(
θ(y−−x−) + constant

)
δ(2)(x−y) . (92)

The integration constant is determined by requiring the antisymmetry of the
commutator. One then finds[

ϕ̂(x), ϕ̂(y)
]

= − i
4
ε(x−−y−) δ(2)(x−y) , (93)

with the notation

ε(x−−y−) ≡ θ(x−−y−)− θ(y−−x−) , (94)

for the sign function.
Using the commutation relations (91) and (93), it is a simple exercise to

check that the other kinematical Poincaré generators M̂+i and M̂ ij satisfy the
correct commutation relations with the scalar field (neglecting again boundary
terms produced by the integrations by parts in yj or y−), meaning[

M̂+i, ϕ̂(x)
]

= −i(x+ ∂i − xi ∂+)ϕ̂(x) = i(x+ ∂i + xi ∂−)ϕ̂(x) (95)[
M̂ ij , ϕ̂(x)

]
= −i(xi ∂j − xj ∂i)ϕ̂(x) = i(xi ∂j − xj ∂i)ϕ̂(x) , (96)

and also that P̂+, P̂ j , M̂+i and M̂ ij have the correct commutation relations
between themselves. Hence, when quantizing the scalar theory (72) on a surface
of fixed x+ using the commutation relations (91) and (93), the symmetries
associated with the kinematical subalgebra are automatically preserved at the
quantum level, independently of the dynamics of the theory.

Concerning the generator M̂−+ of longitudinal boosts, one finds in the same
way [

M̂−+, ϕ̂(x)
]

= −ix− ∂−ϕ̂(x)− x+
[
P̂−, ϕ̂(x)

]
. (97)
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On the one hand M̂−+ has the proper commutation relation with ϕ̂(x) on the
x+ = 0 surface. On the other hand, if P̂− has the proper commutation relation
with ϕ̂(x) for any x+, so does M̂−+.

It remains now to study the dynamics of the theory at the quantum level,
given the commutator (93). From the classical expression of the Light-front
Hamiltonian P− (see eqs. (79) and (80)), one finds at the quantum level[

P̂−, ϕ̂(x)
]

=

∫
d4y δ(y+−x+)

[
1

2
(∂jϕ̂(y)) (∂jϕ̂(y)) + V (ϕ̂(y)), ϕ̂(x)

]
=

∫
d4y δ(y+−x+)

[
ϕ̂(y), ϕ̂(x)

](
−∆⊥ϕ̂(y) + V ′(ϕ̂(y))

)
, (98)

so that

∂x−i
[
P̂−, ϕ̂(x)

]
=

∫
d4y δ(y+−x+)i

[
ϕ̂(y), (∂−ϕ̂(x))

](
−∆⊥ϕ̂(y) + V ′(ϕ̂(y))

)
=

1

2

(
∆⊥ϕ̂(x)− V ′(ϕ̂(x)

)
. (99)

Hence, postulating that the x+ evolution of the field is defined by its commu-

tation with P̂− as ∂+ϕ̂(x) = i
[
P̂−, ϕ̂(x)

]
, one recovers from (99)

∂−∂+ϕ̂(x) =
1

2

(
∆⊥ϕ̂(x)− V ′(ϕ̂(x))

)
, (100)

which is indeed the quantum version of the classical equation of motion (75).
More precisely, the evolution of the field is then given by

∂+ϕ̂(x) = i
[
P̂−, ϕ̂(x)

]
=

1

4

∫
d4y δ(y+−x+) δ(2)(x−y) ε(x−−y−)

(
∆⊥ϕ̂(y)− V ′(ϕ̂(y))

)
=

1

2∂−

(
∆⊥ϕ̂(x)− V ′(ϕ̂(x))

)
, (101)

with 1/∂− defined as

1

∂−
f(x) ≡ 1

2

∫
dy− ε(x−−y−) f(x+,x, y−) (102)

so that ∂−(1/∂−) = 1. In the same way, one can find that[
M̂−i, ϕ̂(x)

]
= ix− ∂iϕ̂(x) + ixi

1

2∂−

(
∆⊥ϕ̂(x)− V ′(ϕ̂(x))

)
= ix− ∂iϕ̂(x) + ixi ∂+ϕ̂(x) . (103)

Hence, with the expression (93) found for the commutator [ϕ̂(x), ϕ̂(y)] at x+ =
y+, one obtains the correct commutation relations of ϕ̂(x) with the Poincaré
generators P̂µ and M̂µν , with in particular the commutation relations with
the dynamical generators encoding the correct equations of motion for ϕ̂(x).
Moreover, it is then possible [24] (but lengthy) to check explicitly that the com-
mutation relations of the Poincaré generators P̂µ and M̂µν form the Poincaré
algebra, see Eqs. (58), (59) and (60).
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3.3 Construction of the Fock space

From now on, for simplicity, let us assume that the scalar potential V (ϕ(x)) has
a unique and stable minimum at ϕ(x) = 0 classical level, so that in particular

V ′(0) = 0 , V ′′(0) > 0 , (104)

and there is no spontaneous symmetry breaking. Note that the conditions (104)
imply that the considered theory has a classical mass gap mgap =

√
V ′′(0).

3.3.1 Annihilation and creation operators

Within an hyperplane of fixed x+, an interacting scalar field ϕ̂(x) cannot be
distinguished from a free scalar field, since its dependence on x− and x is driven

by the kinematic generators P̂+ and P̂ j , independent of interactions. It is then
useful to Fourier transform the field with respect these variables, but keep the
non-trivial x+ dependence explicit. Hence, one can define

â(k, x+) = 2i

∫
dx−

∫
d2x eik·x∂−ϕ̂(x) (105)

â†(k, x+) = −2i

∫
dx−

∫
d2x e−ik·x∂−ϕ̂(x) (106)

for k+ > 0, with the notations k ≡ (k+,k) and k ·x ≡ k+x−−k·x. Equivalently,
the field ϕ̂(x) can be written as

ϕ̂(x) =

∫
d3k

(2π)3

θ(k+)

2k+

{
e−ik·x â(k, x+) + eik·x â†(k, x+)

}
. (107)

From the commutation relations (91) or (93) for ϕ̂(x), it is easy to find that[
â(k, x+), â†(k′, x+)

]
= 2k+ (2π)3 δ(3)(k−k′) (108)[

â(k, x+), â(k′, x+)
]

= 0 (109)[
â†(k, x+), â†(k′, x+)

]
= 0 , (110)

as well as [
P̂µ, â†(k, x+)

]
= kµ â†(k, x+) (111)[

P̂µ, â(k, x+)
]

= −kµ â(k, x+) (112)

for µ 6= −. From the commutation relations (108), (109), (110), (111) and (112)
it is clear that the operators â†(k, x+) and â(k, x+) correspond respectively to
creation and annihilation operators of a quantum of momentum k, at the time
x+.

For completeness, one can calculate as well their commutation relations with
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the remaining kinematical generators, and find[
M̂ ij , â†(k, x+)

]
= i
(
ki ∂kj − kj ∂ki

)
â†(k, x+) (113)[

M̂ ij , â(k, x+)
]

= i
(
ki ∂kj − kj ∂ki

)
â(k, x+) (114)[

M̂+i, â†(k, x+)
]

=
(
ik+ ∂ki + x+ kj

)
â†(k, x+) (115)[

M̂+i, â(k, x+)
]

=
(
ik+ ∂ki − x+ kj

)
â(k, x+) . (116)

3.3.2 Defining the vacuum

A consistent QFT should have a spectrum bounded from below, with one (or
several) ground state(s) (also called vacuum) of minimal energy P 0

vac, with a

vanishing momentum ~Pvac = 0. In the case of a potential with a unique and
stable minimum, that we are considering, the ground state of the quantum
theory should be unique as well.

A physical quantum excitation above the vacuum, with a cartesian momen-
tum ~k, corresponds to an increase of energy by k0 above the vacuum, and should
satisfy that kµkµ > 0 and k0 > 0. In light-cone coordinates, these conditions
imply k+ > 0 and k− > 0 for an excitation above the ground state.

In particular, in a theory with a mass gap, excitations above the ground
state obey 2k+k− > m2

gap + k2 > 0. Hence, there is no excitation of finite
k− which has k+ = 0, and vice-versa. Therefore, the vacuum can be defined
uniquely3 as the state of minimal P+, or equivalently of minimum P− . Since
the annihilation operators â(k, x+) lower the P+ of the state they act on, they
annihilate states of minimum P+, and thus the vacuum state |0〉, as

â(k, x+)|0〉 = 0 . (117)

Excited states are then obtained by acting with creation operators â†(k, x+) on
the vacuum |0〉. Of course the vacuum is chosen to be normalized as

〈0|0〉 = 1 . (118)

It is thus possible to construct, on each hypersurface of constant x+, a Fock
space for such an interacting scalar theory quantized in the front form. The
most crucial ingredient here is the existence of a lower bound on the k+ of
the physical excitations, which is entirely independent on interactions, since
P̂+ is a kinematic generator. The situation is quite remarkable, by comparison
to case of quantization in the instant form. In that case, none of the three
kinematic space components of P̂µ would have a bounded spectrum, but only
the dynamical component P̂ 0. For that reason, in the instant form, none of the
candidate annihilation operator that we could build from the interacting field at
a given x0 could annihilate the vacuum in a similar way as in eq. (117), and thus
the Fock space construction would fail. In the instant form, such a Fock space
can be constructed only for a free theory, and after Fourier transform to full
momentum space, including from x0 to k0, and moreover free and interacting
theory have different vacua.

3In the case of a theory without mass gap, like QED or perturbative QCD, the vacuum
state (or states) still have minimum P+ and P = 0. However, this does not characterize the
vacuum uniquely anymore.
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3.3.3 Normal ordering, vacuum energy and Poincaré invariance of
the vacuum

At this stage, it is useful to rewrite the Poincaré generators in terms of â(k, x+)
and â†(k, x+) by substituting ϕ̂(x) by its Fourier decomposition (107). As an
example, let us consider the case of P̂+. Its density becomes

T̂++(x) = (∂−ϕ̂(x)) (∂−ϕ̂(x)) =

∫
d3k

(2π)3

θ(k+)

2k+

∫
d3k′

(2π)3

θ(k′
+

)

2k′+
k+ k′

+

×
{
− e−i(k+k′)·x â(k′, x+) â(k, x+) + e−i(k−k

′)·x â†(k′, x+) â(k, x+)

+ ei(k−k
′)·x â(k′, x+) â†(k, x+)− ei(k+k′)·x â†(k′, x+) â†(k, x+)

}
. (119)

Due to the relation â(k, x+)|0〉 = 0, it is more convenient to work with normal-
ordered operators, meaning that all the â are on the right of all the â†. In
the expression (119), only the third term violates the normal ordering. Hence,
T̂++(x) differs from its normal-ordered version, noted : T̂++(x) :, by a c-number
term as

T̂++(x) = : T̂++(x) : +

∫
d3k

(2π)3

θ(k+)

2k+

∫
d3k′

(2π)3

θ(k′
+

)

2k′+
k+ k′

+

× ei(k−k
′)·x [â(k′, x+) , â†(k, x+)

]
= : T̂++(x) : +

∫
d2k

(2π)2

∫
dk+

2π

θ(k+)

2k+

(
k+
)2
. (120)

At first sight, the extra term looks awkward: if one evaluates the transverse
and k+ integrals separately, the first one is a pure quadratic UV divergence,
whereas the second one has a linear UV divergence for k+ → +∞. One might
invoke transverse dimensional regularization to argue that the transverse inte-
gral vanishes, but even then, one is lead to the product of a vanishing quantity
by a divergent one, which might be dangerous. The main issue here, is that by
evaluating the transverse and k+ integrals separately, one is lead to introduce
different UV regularization for each, which partially breaks Poincaré invariance.

The most elegant way to address this issue is to recognize in eq. (120) the
one-particle Lorentz invariant phase-space measure, after integrating over k−.
Restoring this integration over k−, with a mass m (which might be the physical
mass of the field or not), one can fully apply dimensional regularization, as

T̂++(x) = : T̂++(x) : +

∫
dDk

(2π)D
2πδ(k2−m2) θ(k0)

(
k+
)2
. (121)

However, one has∫
dDk

(2π)D
2πδ(k2−m2) θ(k0) kµ kν =

∫
dDk

(2π)D
2πδ(k2−m2) θ(k0)

gµν

D
k2

=
gµν

D
m2

∫
dDk

(2π)D
2πδ(k2−m2) θ(k0)

=
gµν

D

m4

(4π)2
Γ

(
1−D

2

) (
m2

4π

)D
2 −2

.

(122)
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The extra term in eq. (121) is then obtained by taking µ = ν = + in eq. (122),
which gives zero since g++ = 0. Hence, T̂++(x) is automatically normal-
ordered, provided the chosen UV regularization does not break Poincaré in-
variance.

Finally, P̂+ is obtained as

P̂+ =

∫
dx−

∫
d2x T̂++(x)

=

∫
d3k

(2π)3

θ(k+)

2k+

∫
d3k′

(2π)3

θ(k′
+

)

2k′+
k+ k′

+

×
{
− (2π)3δ(3)(k + k′) â(k′, x+) â(k, x+) + (2π)3δ(3)(k − k′) â†(k′, x+) â(k, x+)

+ (2π)3δ(3)(k − k′) â†(k, x+) â(k′, x+)− (2π)3δ(3)(k + k′) â†(k′, x+) â†(k, x+)

}
.

(123)

In the ââ and in the â†â† terms, k+ and k′
+

are constrained to be opposite,
whereas they are both positive. These terms thus vanish, and one is left with

P̂+ =

∫
d3k

(2π)3

θ(k+)

2k+
k+ â†(k, x+) â(k, x+) . (124)

Since â(k, x+)|0〉 = 0, it is now clear that P̂+|0〉 = 0.
The other kinematic Poincaré generators can be studied along the same

lines. One finds that all of them are automatically normal-ordered as well, and
that they annihilate the vacuum as well. Hence, the vacuum |0〉, that we have
constructed for the Fock space at x+ is invariant under the kinematic Poincaré
transformations at x+.

In order to discuss to case of the dynamical generators, let us focus on the
case of the ϕ4 theory as an example, which has the potential

V (ϕ̂(x)) =
λ

4!
ϕ̂(x)4 +

m2

2
ϕ̂(x)2 + Λ0 . (125)

Here, Λ0 is an arbitrary constant, which can be interpreted as a bare cosmologi-
cal constant. Indeed, it is always possible to add such constant in the Lagrangian
density, since it will have no effect on the equations of motions (at least in the-
ories without gravity). However, a Λ0 term will appear in the Hamiltonian
density T̂+−(x), via the potential, and thus in the expression of the dynamical
generators. It turns out that, by contrast to the kinematic generators, the dy-
namical Poincaré generators are not automatically normal-ordered, and do not
automatically annihilate the vacuum.

Quadratic terms in ϕ̂(x) can always be written as their normal-ordered ver-
sion plus a c-number term, as we have seen in the case of T++(x). In general,
interaction terms of degree higher than 2 in ϕ̂(x) are present in T̂+−(x). In
the example (125), this is the case of the quartic term. For interaction terms,
normal-ordering does not simply amount to extract a c-number term. For ex-
ample, one has

ϕ̂(x)4 =: ϕ̂(x)4 : +6 〈0|ϕ̂(x)2|0〉 : ϕ̂(x)2 : +〈0|ϕ̂(x)4|0〉 , (126)
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with an extra normal-ordered quadratic contribution. At this stage, T̂+−(x)
can be written as a sum of normal-ordered terms and of c-number terms. By
tuning Λ0, the total c-number contribution to T̂+−(x) can be removed, leading
to

T̂+−(x) =
1

2
: (∂jϕ̂(x)) (∂jϕ̂(x)) : +

m2

2
: ϕ̂(x)2 :

+
λ

4!
: ϕ̂(x)4 : +

λ

4
〈0|ϕ̂(x)2|0〉 : ϕ̂(x)2 : . (127)

Such tuning of Λ0 can be interpreted as renormalizing the vacuum energy (k−).
When integrating over T̂+−(x) over x− and x in order to obtain P̂−, terms
with only annihilation operators or only creation operators will drop, like in
eq. (123). For that reason, when written in terms of â†(k, x+) and â(k, x+),
each term in P̂− will contain a â(k, x+) as the rightmost operator, and thus
P̂−|0〉 = 0. The situation is the same when calculating M̂−i from (127).

All in all, it is sufficient to fix a single counterterm, Λ0, in order to obtain
the ten relations

P̂µ|0〉 = 0 (128)

M̂µν |0〉 = 0 , (129)

so that the vacuum |0〉 is fully Poincaré invariant. In particular, this means that
the same state |0〉 is the vacuum for all Fock spaces, contructed at each value
of x+.

3.3.4 Fock states

Now that the vacuum state |0〉 is understood, it is possible to construct Fock
states by acting with creation operators â†(k, x+) on |0〉. Hence, one has

• the vacuum |0〉,

• 1-particle states â†(k1, x
+)|0〉,

• 2-particles states â†(k1, x
+)â†(k2, x

+)|0〉,

• and so on.

The set of all of these Fock states form a basis of the Hilbert space of the theory.
That construction can be done for any value of x+ independently. However, the
basis obtained for each value of x+ are isomorphic to each other, with the
mapping provided by the action of the dynamical generator P̂−. In particular,
the vacuum is the same in any of these bases, but the other states can mix, in
an interacting theory.

For convenience, the base we will choose as reference is the one corresponding
to the Fock space at x+ = 0, and the notations will be simplified as follows

â†(k) ≡â†(k, x+ = 0)

â(k) ≡â(k, x+ = 0) . (130)
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A x+ = 0 Fock state will be generically noted |F〉, so that

|F〉 ≡
N∏
n=1

[
â†(kn)

]
|0〉 (131)

for some N > 0.
Using that x+ = 0 Fock state basis, the identity operator can be written as

1 =|0〉〈0|+
+∞∑
N=1

1

N !

∫ N∏
n=1

[ d3kn
(2π)3

θ(k+
n )

2k+
n

] N∏
n=1

[
â†(kn)

]
|0〉〈0|

N∏
n=1

[
â(kn)

]
≡
∑
F
|F〉〈F| . (132)

It is easy to check that ∑
F
|F〉〈F|F ′〉 =|F ′〉 (133)

as it should, thanks to the commutation relations (108), (109) and (110) of the
creation and annihilation operators. Note that the 1/N ! factor in Eq. (132) is
there to compensate the number of ways to associate an â† from |F ′〉 with an â
from 〈F| in Eq. (133).

3.4 Light-cone perturbation theory: LFWFs and S-matrix
elements

3.4.1 Heisenberg picture

So far, we have been using the light-front version of the Heisenberg picture, in
which the operators evolve in x+ according to

ÔH(x+) = ei x
+P̂− ÔH(0) e−i x

+P̂− . (134)

Since the evolution is already taken into account at the operator level, the
states upon which the operators act should have no explicit x+ dependence in
the Heisenberg picture.

In an interacting theory, the physical states
∣∣ iH〉 one considers are typically

not the Fock states constructed previously, but complicated linear combinations
of them, which can be written as∣∣ iH〉 =

∑
F

∣∣F〉 Φi→F , (135)

defining the light-front wave-function (LFWF) Φi→F as

Φi→F =
〈
F
∣∣ iH〉 . (136)

Here,
∣∣ iH〉 can typically be an eigenstate of P̂− corresponding to a dressed

1−particle state, for example a hadron in the QCD case. The LFWFs Φi→F
describe the content of the dressed particle

∣∣ iH〉 in terms of elementary partons.
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Moreover, at this stage, the S-matrix element for a scattering process with
initial state i and final state f is given by the overlap between these two states
in the Heisenberg picture, as

Sfi =
〈
fH
∣∣ iH〉 . (137)

Here, by contrast, the chosen
∣∣ iH〉 and

〈
fH
∣∣ are typically not eigenstates of P̂−,

but states containing two (or more) dressed particles.

3.4.2 Interaction picture

Usually, in an interacting theory, the P̂− operator can be decomposed as P̂− =
T̂ + V̂ , where T̂ is the part present in the corresponding free theory, whereas
V̂ collects the interaction terms. In order to formulate perturbation theory, it
is convenient to switch from the Heisenberg picture to the interaction picture,
defined as follows. In the interaction picture, the x+ evolution of the operators
is generated by the free term T̂ only, as

ÔI(x+) = ei x
+T̂ ÔI(0) e−i x

+T̂ . (138)

As a particular case, the interaction term V̂ evolves in the interaction picture
as

V̂I(x
+) = ei x

+T̂ V̂I(0) e−i x
+T̂ . (139)

In the interaction picture, the states are now x+ dependent, as

∣∣ iI(x+
2 )
〉

= P+ exp

(
−i
∫ x+

2

x+
1

dx+ V̂I(x
+)

) ∣∣ iI(x+
1 )
〉
. (140)

where P+ indicates the ordering of the operators V̂I(x
+) according to x+: from

smaller x+ on the right to larger x+ on the left.
By convention, the Heisenberg picture and the Interaction picture are matched

at x+ = 0, meaning

ÔI(0) = ÔH(0)∣∣ iI(0)
〉

=
∣∣ iH〉 , (141)

so that ∣∣ iH〉 = P+ exp

(
−i
∫ 0

−∞
dx+ V̂I(x

+)

) ∣∣ iI(−∞)
〉
. (142)

In the example of scalar ϕ4 theory (72), the light-front Hamiltonian density
is written in eq.(127), after vacuum energy renormalization. The Hamiltonian
P̂− can then be split into a free part T̂ ,

T̂ =

∫
dx−

∫
d2x

[1

2
: (∂jϕ̂(x)) (∂jϕ̂(x)) : +

m2

2
: ϕ̂(x)2 :

]
(143)

=

∫
d3k

(2π)3

θ(k+)

2k+

(k2 +m2)

2k+
â†(k, x+) â(k, x+) , (144)
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and an interaction part V̂I(x
+). Note that the Fock states are eigenstates of T̂ ,

with

T̂

N∏
n=1

[
â†(kn)

]
|0〉 =

[
N∑
n=1

k2
n +m2

2k+
n

]
N∏
n=1

[
â†(kn)

]
|0〉 . (145)

3.4.3 Light-cone perturbation theory for LFWFs

Using Eqs. (139) and (142) as well as the integral∫ +∞

0

dt eit∆ =
i

(∆ + iε)
, (146)

one finds the perturbative expansion for the LFWFs

Φi→F =〈F
∣∣P+ exp

(
−i
∫ 0

−∞
dx+ V̂I(x

+)

) ∣∣ iI(−∞)
〉

=〈F|iI(−∞)〉+

∞∑
N=1

∑
FN−1

· · ·
∑
F0

〈F|V̂I(0)|FN−1〉
(TF0

−TF + iε)

〈FN−1|V̂I(0)|FN−2〉(
TF0
−TFN−1 + iε

) · · ·
· · · 〈F1|V̂I(0)|F0〉

(TF0
−TF1

+ iε)
〈F0|iI(−∞)〉 , (147)

with the notation TFn for the eigenvalue of T̂ associated with the Fock state
| Fn〉, see for example Eq. (145). Intuitively, TFn is the estimate of the total k−

in | Fn〉, assuming the theory is free.
Since the interactions are taken into account perturbatively, down to x+ →

−∞, the initial state |iI(−∞)〉 is usually assumed to be a free Fock state, if the
theory is not confining. It is then not necessary to introduce F0. For example,
if one applies this formalism to the case of an electron LFWF in QED,

∣∣ iH〉
would correspond to a dressed electron state, and |iI(−∞)〉 to a free asymptotic
electron state. In the QCD case, the expansion (147) can be used at the parton
level, and instead is usually not very helpful for the case of an incoming hadron.

In Eq. (147), each interaction is ordered along the x+ direction, even though
their x+ have been integrated over. Hence, Eq. (147) cannot be represented by
standard Feynmann diagrams, but instead by diagrams with specific ordering
for the vertices, like in old-fashioned perturbation theory.

Instead of propagators, each term in the expansion Eq. (147) contain one
energy denominator for each intermediate Fock state, plus another one for the
final Fock state F . Each energy denominator is the difference of kinetic energy
T between the incoming state and the current (intermediate or final) Fock state.

In the particular case where
∣∣ iH〉 is a (perturbative) one-particle state, and

thus |iI(−∞)〉 is a one-particle Fock state, it is convenient to define the LFWFs
in a slightly different way [3], extracting the wave-function renormalization con-
stant Zi, as

∣∣ iH〉 =
√
Zi

{
|iI(−∞)〉+

∑
F6=i

|F〉 Ψi→F

}
, (148)
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where the sum over Fock states is now excluding the |iI(−∞)〉 Fock state. The
new LFWFs (for F 6= i) admit the perturbative expansion

Ψi→F =
〈F|V̂I(0)|iI(−∞)〉

(Ti−TF + iε)
+

∞∑
N=2

∑
FN−1 6=i

· · ·
∑
F1 6=i

〈F|V̂I(0)|FN−1〉
(Ti−TF + iε)

× 〈FN−1|V̂I(0)|FN−2〉(
Ti−TFN−1 + iε

) · · · 〈F1|V̂I(0)|iI(−∞)〉
(Ti−TF1

+ iε)
, (149)

where Ti = k−i ≡ (ki
2 +m2

i )/(2k
+
i ) is the eigenvalue of T̂ corresponding to the

Fock state |iI(−∞)〉.
The wave-function renormalization constant Zi can be determined be en-

forcing the proper normalization for both the dressed state
∣∣ iH〉 and the Fock

states simultaneously.

3.4.4 Light-cone perturbation theory for S-matrix elements

Similarly, S-matrix elements (137) can be calculated in pertubation theory in
the interaction picture as

Sfi =
〈
fI(+∞)

∣∣P+ exp

(
−i
∫ +∞

−∞
dx+ V̂I(x

+)

) ∣∣ iI(−∞)
〉

(150)

=
〈
fI(+∞)

∣∣iI(−∞)〉+

∞∑
N=1

∑
FN

· · ·
∑
F0

(−i)2πδ(TFN−TF0) 〈fI(+∞)|FN 〉

× 〈FN |V̂I(0)|FN−1〉
〈FN−1|V̂I(0)|FN−2〉(
TF0
−TFN−1 + iε

) · · · 〈F1|V̂I(0)|F0〉
(TF0−TF1 + iε)

〈F0|iI(−∞)〉 .

(151)

The main difference in the derivation of Eq. (151) compared to the LFWF case
Eq. (147), is that the integration range in x+ is not bounded in Eq. (150). Nev-
ertheless, the interactions are still ordered along x+. Hence, when integrating
over the x+s of the interaction insertions, a single integration is not bounded,
and thus not done thanks to Eq. (146), giving a delta function instead of an
energy denominator.

3.4.5 Interaction vertices: ϕ4 theory

The last ingredient to be specified in order to use the light-cone perturbative
expansions (147), (149) or (151) are the interaction vertices 〈F ′|V̂I(0)|F〉, which
obviously depend on the theory. As an illustration, let us come back to the scalar
theory case, and consider the ϕ4 theory as an example. After renormalizing the
vacuum energy as in eq. (127) and isolating the free part T̂ given in eq. (143),
one is left with the interaction part of the light-front Hamiltonian

V̂I(x
+) =

∫
dx−

∫
d2x

[
λ

4!
: ϕ̂(x)4 : +

λ

4
〈0|ϕ̂(x)2|0〉 : ϕ̂(x)2 :

]
. (152)

From the Fourier representation (107) of the scalar field, one finds the com-
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mutation relations [
â(k), ϕ̂(x)

]
= eik·x (153)[

ϕ̂(x), â†(k)
]

= e−ik·x (154)

at x+ = 0. With these, it is easy to get the 1-to-3 and the 3-to-1 vertices

〈0|â(k3)â(k2)â(k1)V̂I(0)â†(p)|0〉 =
λ

4!

∫
dx−

∫
d2x〈0|â(k3)â(k2)â(k1) : ϕ̂(x)4 : â†(p)|0〉

∣∣∣∣
x+=0

= λ (2π)3δ(3)(k1 + k2 + k3 − p) (155)

and

〈0|â(k) V̂I(0) â†(p
1
)â†(p

2
)â†(p

3
)|0〉 = λ (2π)3δ(3)(k − p

1
− p

2
− p

3
) . (156)

The integration over x− and x implies the k+ and k are conserved at each vertex.
Since all k+s are positive, all vertices between the vacuum and a non-trivial Fock
state vanish.

The connected 2-to-2 vertex is

λ

4!

∫
dx−

∫
d2x〈0|â(k2)â(k1) : ϕ̂(x)4 : â†(p

1
)â†(p

2
)|0〉 (157)

=λ (2π)3δ(3)(k1 + k2 − p1
− p

2
) . (158)

Note that here, only the first term in (152) is included. Indeed, the second term
in (152) would have produced disconnected contributions, with at least one a
spectator particle.

Finally, the second term in (152) leads to a 1-to-1 vertex

〈0|â(k) V̂I(0) â†(p)|0〉 =
λ

2

∫
dx−

∫
d2x ei(k−p)·x 〈0|ϕ̂(x)2|0〉

= (2π)3δ(3)(k − p) λ
2

[∫
d3q

(2π)3

θ(q+)

2q+

]
. (159)

This corresponds to a divergent 1-loop tadpole insertion, which typically con-
tributes only to mass renormalization.

References

[1] P. A. M. Dirac, Forms of Relativistic Dynamics, Rev. Mod. Phys. 21
(1949) 392–399.

[2] J. B. Kogut and D. E. Soper, Quantum Electrodynamics in the Infinite
Momentum Frame, Phys.Rev. D1 (1970) 2901–2913.

[3] J. Bjorken, J. B. Kogut, and D. E. Soper, Quantum Electrodynamics at
Infinite Momentum: Scattering from an External Field, Phys.Rev. D3
(1971) 1382.

25



[4] K. Yamawaki, Zero mode problem on the light front, in QCD, light cone
physics and hadron phenomenology. Proceedings, 10th Nuclear Summer
School and Symposium, NuSS’97, Seoul, Korea, June 23-28, 1997,
pp. 116–199, 1998. hep-th/9802037.

[5] S. R. Beane, Broken Chiral Symmetry on a Null Plane, Annals Phys. 337
(2013) 111–142, [arXiv:1302.1600].

[6] A. H. Mueller, Soft gluons in the infinite momentum wave function and
the BFKL pomeron, Nucl. Phys. B415 (1994) 373–385.

[7] A. H. Mueller and B. Patel, Single and double BFKL pomeron exchange
and a dipole picture of high-energy hard processes, Nucl. Phys. B425
(1994) 471–488, [hep-ph/9403256].

[8] Y. V. Kovchegov, Small-x F2 structure function of a nucleus including
multiple pomeron exchanges, Phys. Rev. D60 (1999) 034008,
[hep-ph/9901281].

[9] L. D. McLerran and R. Venugopalan, Computing quark and gluon
distribution functions for very large nuclei, Phys. Rev. D49 (1994)
2233–2241, [hep-ph/9309289].

[10] L. D. McLerran and R. Venugopalan, Gluon distribution functions for
very large nuclei at small transverse momentum, Phys. Rev. D49 (1994)
3352–3355, [hep-ph/9311205].

[11] L. D. McLerran and R. Venugopalan, Green’s functions in the color field
of a large nucleus, Phys. Rev. D50 (1994) 2225–2233, [hep-ph/9402335].

[12] G. A. Chirilli, B.-W. Xiao, and F. Yuan, Inclusive Hadron Productions in
pA Collisions, Phys.Rev. D86 (2012) 054005, [arXiv:1203.6139].

[13] M. Lublinsky and Y. Mulian, High Energy QCD at NLO: from light-cone
wave function to JIMWLK evolution, JHEP 05 (2017) 097,
[arXiv:1610.0345].

[14] G. Beuf, Dipole factorization for DIS at NLO: Loop correction to the
γ∗T,L → qq light-front wave functions, Phys. Rev. D94 (2016), no. 5
054016, [arXiv:1606.0077].

[15] G. Beuf, Dipole factorization for DIS at NLO: Combining the qq̄ and qq̄g
contributions, Phys. Rev. D96 (2017), no. 7 074033, [arXiv:1708.0655].

[16] H. Hanninen, T. Lappi, and R. Paatelainen, One-loop corrections to light
cone wave functions: the dipole picture DIS cross section, Annals Phys.
393 (2018) 358–412, [arXiv:1711.0820].

[17] G. Beuf, T. Lappi, and R. Paatelainen, Massive quarks in NLO dipole
factorization for DIS: Longitudinal photon, Phys. Rev. D 104 (2021),
no. 5 056032, [arXiv:2103.1454].

[18] G. Beuf, T. Lappi, and R. Paatelainen, Massive quarks in NLO dipole
factorization for DIS: Transverse photon, Phys. Rev. D 106 (2022), no. 3
034013, [arXiv:2204.0248].

26



[19] W.-M. Zhang, Light front dynamics and light front QCD, Chin. J. Phys.
32 (1994) 717–808, [hep-ph/9412244].

[20] S. J. Brodsky, H.-C. Pauli, and S. S. Pinsky, Quantum Chromodynamics
and Other Field Theories on the Light Cone, Phys. Rept. 301 (1998)
299–486, [hep-ph/9705477].

[21] H. Leutwyler and J. Stern, Relativistic Dynamics on a Null Plane, Annals
Phys. 112 (1978) 94.

[22] R. Floreanini and R. Jackiw, Selfdual Fields as Charge Density Solitons,
Phys. Rev. Lett. 59 (1987) 1873.

[23] L. D. Faddeev and R. Jackiw, Hamiltonian Reduction of Unconstrained
and Constrained Systems, Phys. Rev. Lett. 60 (1988) 1692–1694.

[24] S.-J. Chang, R. G. Root, and T.-M. Yan, Quantum field theories in the
infinite momentum frame. 1. Quantization of scalar and Dirac fields,
Phys. Rev. D7 (1973) 1133–1148.

27


