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This lecture note is written for “Courses on Light-Cone Techniques applied to QCD”, Nov 21-25,

IGFAE. It is intended to provide the basic knowledge and selective perspectives on the application

of light-front Hamiltonian approach to mesons in two 1.5-hour lectures. This is part 1(of 2).

Studying mesons, the bound states of quantum chromodynamics (QCD), is crucial to increase our com-

prehension of the strong interaction and the constitution of matter. The meson system has attracted extensive

experimental investigations, including the mass spectrum, transitions between excited and low-lying states,

and photoproduction of the vector mesons in heavy-ion collisions. Theoretical efforts contribute from an

array of complementary perspectives, both Euclidean and Minkowskian formalisms. Euclidean formula-

tions of quantum field theories such as Dyson-Schwinger equations and lattice gauge theory offer methods

of performing a first-principles computation. Here, we take the path of a Minkowskian formalism, the

light-front(LF) Hamiltonian method, in which the light-front wavefunctions(LFWFs) play a central role in

describing the bound states and computing physical observables.

In this Part I of the lecture, we will first derive the QCD Hamiltonian on the light front, then we can

treat mesons as its eigenstates, lastly, we review two phenomenological approaches in addressing the meson

LFWFs.

I. CANONICAL QUANTIZATION OF THE QCD HAMILTONIAN ON THE LIGHT FRONT (0.75 H’)

[Comment] The content of this section is mainly based on Chapter 2 of Ref. [1] (the review paper on

light front field theories by Brodsky, Pauli, and Pinsky). The lecture notes by Harindranath could also be

helpful [2].

A. Light-front dynamics

From the viewpoint that the quantum field theory is formulated to reconcile quantum mechanics with

special relativity, let us first study how symmetries like Lorentz invariance appear in quantum setting. In
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particular, we would like to combine the principle of relativity with the Hamiltonian formulation of dynam-

ics.

Einstein’s principle of relativity requires that physical laws shall be invariant under transformations from

one space-time coordinate system to another, or in other words, invariant in all inertial frames of reference.

The whole group of the transformations is the inhomogeneous Lorentz group, also known as the Poincaré

group. Quantum theory postulates that physical states are represented by rays 1 in Hilbert space. Therefore

we need to implement a representation of the Poincaré group. The Poincaré algebra is the Lie algebra of the

Poincaré group, and it is given by the commutation relations:

[Pµ, Pν] = 0 ,

[Pµ,Mαβ] = i(gµαPβ − gµβPα) ,

[Mµν,Mρσ] = i(gµσMνρ − gνσMµρ + gνρMµσ − gµρMνσ) .

(1)

It has ten generators, four generators of translations Pµ = (P0, P1, P2, P3) and six generators of Lorentz

transformations Mµν. The latter can be further split into the three generators of rotations Ji = 1/2ϵi jkM jk

and 3 generators of boosts Ki = M0i. 2

In quantum mechanics, and also in the quantum field theory, the dynamical evolution of a quantum state

satisfies the Schrödinger equation,

i
∂

∂t
|ψ(t)⟩ = H |ψ(t)⟩ . (2)

For stationary states,

|ψ(t)⟩ = e−iEt |ψ(0)⟩ , (3)

and it leads to the bound-state equation

H |ψ(0)⟩ = E |ψ(0)⟩ , (4)

where E is the bound state energy. Though in its original form the time t is the regular time, there are

actually multiple choices of the time variable as a foliation of spacetime. 3 P. A. M. Dirac brought up three

forms of relativistic dynamics, namely the instant form, the point form, and the front form [4].

In the instant form, one works with dynamical variables referring to physical conditions at some instant

of time, x0. The Hamiltonian is P0. The transformations of coordinates associated with the momenta P1,

1 A ray is a set of normalized vectors differed by multiplying an arbitrary scalar of unit magnitude [3].
2 The cyclic symbol ϵ i jk is 1 if the indices i jk are in cyclic order, and 0 otherwise.
3 By foliation it means that the manifold of spacetime is decomposed into hypersurfaces and there exists a smooth scalar field (the

“time”) which is regular in the sense that its gradient never vanishes, such that each hypersurface is a level surface of this scalar

field.



3

P2, P3 and the rotations J1, J2, J3, leave the instant invariant, and are thus kinematic. The energy P0, and

the boosts K1, K2, K3 are dynamical. The instant form seems most intuitive since its time variable is the

regular time. Although it is the conventional choice for quantizing field theories, it has many disadvantages.

The experiment determining the wavefunction ψ(t, x⃗) solved from the evolution equation of Eq. (2) requires

the simultaneous measurement of all positions of the state. A more practical experimental measurement

scatters one plane-wave laser beam, and the signal reaches each part of the object at the same light-front

time x+ = t + z/c (this is the same with the definition x+ = x0 + x3 with the unit c = 1).

The point form of dynamics describes physical conditions on the three-dimensional surface, τ =√
xµxµ − a2 =

√
(x0)2 − (x1)2 − (x2)2 − (x3)2 − a2 with x0 > 0. The energy P0, and the momenta P1,

P2, P3 are all dynamical. The kinematic group consists of the boosts K1, K2, K3 and the rotations J1,

J2, J3, which leave the origin point invariant. The point form of relativistic quantum mechanics has been

advocated as an appropriate framework for calculating the electroweak structure of mesons and baryons

within the scope of constituent-quark models [5–7].

The front form considers the three-dimensional surface in space-time formed by a plane wave front

advancing with the velocity of light. The theory describes physical conditions at some constant light-front

time x+ = x0 + x3. The front form has the largest number(seven) of kinematic generators that leaves the

light front invariant. They are, the transverse momentum P1, P2, the longitudinal momentum P+ = P0 +P3,

the transverse boosts E1 = K1 + J2, E2 = K2 − J1, the rotation in the x-y plane J3, and the boost in the

longitudinal direction K3.4 The remaining generators {P− = P0 − P3, F1 = J1 + K2, F2 = J2 − K1} are

dynamical. P− is the light-front Hamiltonian. It is usually convenient to use the light-front coordinates

when implementing the light-front dynamics. We include the conventions of the light-front coordinates in

Appendix A 1.

A visualization of the “time” in these three forms is presented in Fig. 1. Be aware that there also

exists two other forms of dynamics, with the time defined as τz =
√

(x0)2 − (x3)2 − a2 with x0 > 0 and

τ⊥ =
√

(x0)2 − (x1)2 − (x2)2 − a2 with x0 > 0 respectively, though they have a rather small kinematical

group and are not commonly used [8].

The quantum field theory quantized on the light-front surface x+ = 0 is the light front quantum field

theory. In the next section, we will carry out the canonical quantization of QCD on the light front.

4 The longitudinal boost is actually a scale transformation, seeing that x± → x̃± = e±ϕx± with the Lorentz factor γ = cosh ϕ. It

therefore leaves the x+ = 0 plane invariant.
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(a)instant form (b)front form (c)point form

FIG. 1. “Time” in the three forms of dynamics. The gray cones are the reference surfaces of the light cones, t =√
(x0)2 + (x3)2. The equal-“time” surfaces are in red. In (a), the instant form, time is defined as x0 and the shown

equal-time surface is x0 = 0. In (b), the front form, time is defined as x+ = x0 + x3 and the shown equal-light-

front-time surface is x+ = 0. In (c), the point form, time is defined as τ =
√

xµxµ − a2 with x0 > 0 and the shown

equal-point-time surface is τ = 0.

B. The light-front QCD Hamiltonian

The strong interaction between quarks and gluons is described by the non-Abelian gauge theory with

symmetry group SU(3), known as quantum chromodynamics (QCD), and the Lagrangian reads

LQCD = −
1
4

Fµν
aFa

µν + Ψ̄(iγµDµ − m)Ψ . (5)

Aνa is color vector potential, with the gluon index a = 1, 2, . . . , 8. The quark fieldΨα,c, carries the Dirac index

α = 1, 2, . . . , 4 and the color index c = 1, 2, 3, which are usually suppressed in expressions like Ψ̄γµDµΨ =

Ψ̄cγ
µ(Dµ)cc′Ψc′ . m = mI3 = mδcc′ is diagonal in color space. The vector potential can be parameterized

as (Aµ)cc′ = T a
cc′A

µ
a by the color matrices T a

cc′ , and its matrix form can be found in Appendix A 3. Fµν
a ≡

∂µAνa − ∂
νAµa − g f abcAµbAνc is the field tensor, and Dµ ≡ ∂µI3 + igAµ is the covariant derivative. We follow the

convention of the covariant derivative from Ref. [1], such that g is the chromo-electric charge of the anti-

fermion. Note that there exists another widely used convention that assigns g to the chromo-electric charge

of the fermion instead [9]. The structure constants f abc are complete anti-symmetric, f abc = f cab = − f acb.

In the following derivations, we will drop the identity operator in the color space, I3, for simplicity. Let us

now derive the canonical QCD Hamiltonian according to the procedure in Ref. [1].

The QCD Lagrangian is a functional of the twelve components Aµ, Ψα, Ψ̄α and their space-time deriva-

tives. We can denote them collectively as L = L[ϕr, ∂µϕr]. The equations of motion are

∂κΠ
κ
r − δL/δϕr = 0 , (6)
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where the generalized momentum fields are Πκr ≡ δL/δ(∂κϕr). Let us write out the equation of motions for

each field.

1. Aµa and the color-Maxwell equations

The variational derivatives and the generalized momentum fields of the vector field are

δL

δAs
κ
= −

1
4

Fκµ
a (−g f ascAc

µ) × 4 + Ψ̄(iγκ(igT s))Ψ = −g f sacFκµ
a Ac

µ − gΨ̄γκT sΨ, ΠλAs
κ
= −Fλκ

s .

(7)

The first four equations of motion give the color-Maxwell equations,

∂λFλκ
s = gJκs , (8)

with the current density Jκs ≡ f sacFκµ
a Ac

µ + Ψ̄γ
κT sΨ. In the light-cone gauge of A+a = 0, the κ = +

component of Eq. (8) does not contain time derivatives, and can be written as

gJ+a = ∂λFλ+
a = −∂

+∂−A−a − ∂
+∂iAi

a . (9)

By inverting the above equation, we get

1
2

A−a = −g
1

(∂+)2 J+a −
1
∂+
∂iAi

a . (10)

We define the free solution Ãµa such that limg→0 Aµa = Ãµa. According to Eq. (10), the free field reads,

Ãµa = (0, Ã−a , A
i
a), with

1
2

Ã−a ≡
1
2

A−a + g
1

(∂+)2 J+a = −
1
∂+
∂iAi

a . (11)

Ãµa is thereby purely transverse.

2. Ψα and the (adjoint) color-Dirac equations

The variational derivatives and the generalized momentum fields of the fermion field are

δL

δΨ
= −gΨ̄γµAµ − mΨ̄ −

i
2
Ψ̄γµ
←−
∂ µ, ΠλΨ =

i
2
Ψ̄γλ . (12)

Note that the second term of the Lagrangian in Eq. (5) written more explicitly is

1
2

[
Ψ̄(iγµDµ − m)Ψ + h.c.

]
=

1
2

[
Ψ̄(iγµDµ − m)Ψ + Ψ̄(−iγµ

←−
Dµ − m)Ψ

]
, (13)

in which
←−
Dµ ≡

←−
∂ µI3 − igAµ.

The equations of motion for Ψ give the adjoint color-Dirac equation,

Ψ̄[iγµ(
←−
∂ µ − igAµ) + m] = 0 . (14)
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Take Hermitian conjugate on the equation and use the relation Ψ̄ = Ψ†γ0, we have

[−iγµ†(∂µ + igAµ) + m]γ0Ψ = 0 . (15)

By moving γ0 to the left, we arrive at the color-Dirac equation,

[iγµ(∂µ + igAµ) − m]Ψ = 0 . (16)

Similar to the gluon field, we also want to separate the dynamical components of the fermion field.

Define the projected spinors Ψ± = Λ±Ψ, with Λ± = 1
2γ

0γ±, see more definitions of Λ± in Ap-

pendix A 2. First multiply Eq. (16) by γ0 on the left,

[i(γ0γ+D+ + γ0γ−D− + αiDi) − mβ]Ψ = 0 ,

which is, [i(2Λ+D+ + 2Λ−D− + αiDi) − mβ]Ψ = 0 .
(17)

Then multiply the equation by Λ+(Λ−) on the left, and bring it to the right,

[i(2D±Λ± + αiDiΛ
∓) − mβΛ∓]Ψ = 0 . (18)

One thereby obtains a coupled set of spinor equations,

2i∂+Ψ+ = (−iαiDi + mβ)Ψ− + 2gA+Ψ+ , (19)

2i∂−Ψ− = (−iαiDi + mβ)Ψ+ + 2gA−Ψ− . (20)

Then, in the light-cone gauge, 2A− = A+ = 0. Equation (20) does not contain time derivatives, and

can be written as a constraint relation,

Ψ− =
1

2i∂−
(mβ − iαiDi)Ψ+ . (21)

By substituting Eq. (21) into Eq. (19), we get

2iD+Ψ+ = (mβ − iαiDi)
1

2i∂−
(mβ − iαiDi)Ψ+ . (22)

In analogy to the free solution Ã, we define the free spinor Ψ̃ = Ψ̃+ + Ψ̃− with

Ψ̃+ = Ψ+, Ψ̃− =
1

2i∂−
(mβ − iαi∂i)Ψ+ . (23)

The projection still holds, Ψ̃± = Λ±Ψ̃.

3. Ψ̄α and the color-Dirac equations

The variational derivatives and the generalized momentum fields of the anti-fermion field are

δL

δΨ̄
= −gγµAµΨ − mΨ +

i
2
γµ∂µΨ, Πλ

Ψ̄
= −

i
2
γλΨ . (24)

The equations of motion for Ψ̄ give the color-Dirac equation, Eq. (16), which we have already arrived

from Ψ, not surprisingly.



7

We now turn to the construction of the canonical Hamiltonian density through a Legendre transforma-

tion, 5

P+ =(∂+As
κ)Π
+
As
κ
+ (∂+Ψ)Π+Ψ + (∂+Ψ̄)Π+

Ψ̄
− L

= − F+κs ∂+As
κ +

1
2

[iΨ̄γ+∂+Ψ + h.c.] +
1
4

Fµν
aFa

µν −
1
2

[Ψ̄(iγµDµ − m)Ψ + Ψ̄(−iγµ
←−
Dµ − m)Ψ]

= − F+κs ∂+As
κ +

1
2

[iΨ̄γ+∂+Ψ + h.c.] +
1
4

Fµν
aFa

µν ,

(25)

where we have used the color-Dirac equations as in Eqs. (14) and (16) in the last line. It is convenient to

add a total derivative −∂κ(Fκ+
s As

+) to the Hamiltonian P− = 2P+,

P− =2
∫

dx+ d2x⊥ P+

=

∫
dx− d2x⊥ − F+κs ∂+As

κ +
1
2

[iΨ̄γ+∂+Ψ + h.c.] +
1
4

Fµν
aFa

µν − ∂κ(F
κ+
s As

+) .
(26)

We can rewrite the first and the last terms into

Fκ+
s ∂+As

κ − ∂κ(F
κ+
s As

+) =Fκ+
s ∂+As

κ − (∂κFκ+
s )As

+ − Fκ+
s ∂κAs

+

=Fκ+
s (∂+As

κ − ∂κA
s
+) − (∂κFκ+

s )As
+

= − Fκ+
s (F s

κ+ + g f sbcAb
κAc
+) − gJ+s As

+

= − Fκ+
s F s

κ+ − gΨ̄γ+T sAs
+Ψ .

(27)

The Hamiltonian becomes

P− =
∫

dx− d2x⊥
1
4

Fµν
aFa

µν − Fκ+
s F s

κ+ − gΨ̄γ+T sAs
+Ψ +

1
2

[iΨ̄γ+∂+Ψ + h.c.]

=

∫
dx− d2x⊥

1
4

Fµν
aFa

µν − Fκ+
s F s

κ+ +
1
2

[iΨ̄γ+D+Ψ + h.c.] .
(28)

1. 1st part of Eq. (28)

Let us also rewrite the color-electro-magnetic energy density and separate the longitudinal and the

transversal contributions,

1
4

Fµν
a Fa

µν − Fµ+
a Fa

µ+ =
1
4

(Fi j
a Fa

i j + Fµ+
a Fa

µ+ + F+νa Fa
+ν + Fµ−

a Fa
µ− + F−νa Fa

−ν

− F+−a F+− − F−+a F−+) − Fµ+
a Fµ+

=
1
4

Fi j
a Fa

i j +
1
2

(Fµ+
a Fa

µ+ + Fµ−
a Fa

µ− − F+−a Fa
+−) − Fµ+

a Fa
µ+

=
1
4

Fi j
a Fa

i j −
1
2

F+−a Fa
+− .

(29)

5 Note that we are taking the derivative ∂+, in terms of x+, and the conjugate quantity is P+, or equivalently P−/2.
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Note that Fµ+
a Fa

µ+ = Fµ−
a Fa

µ− by Fµ−
a = gµνFa

ν+g+−. Substituting A−a by Eq. (10), the color-electric

part becomes,

F+−a Fa
+− = − ∂

+A−a∂−Aa
+

= −
1
4
∂+A−a∂

+A−a

= − (−g
1
∂+

J+a − ∂iAi
a)2

=g2J+a
1

(∂+)2 J+a − (∂iAi
a)

2
− gJ+a Ã−a .

(30)

In deriving the last line, we introduced an extra term g2 1
∂+ (J+a

1
∂+ J+a ), taking that it should vanish under

the integral of
∫

dx−. The color-magnetic part can be written as

Fi j
a Fa

i j =2∂iA j
a∂iAa

j − 2∂iA j
a∂ jAa

i − 4g f abc∂iA j
aAb

i Ac
j + g2 f abcAi

bA j
c f ae f Ae

i A f
j

= − 2A j
a∂

i∂iAa
j + 2A j

a∂
i∂ jAa

i − 4g f abc∂iA j
aAb

i Ac
j + g2 f abcAi

bA j
c f ae f Ae

i A f
j

=2A j
a∇

2
⊥Aa

j − 2(∂ jA
j
a∂

iAa
i ) − 4g f abc∂iA j

aAb
i Ac

j + g2 f abcAi
bA j

c f ae f Ae
i A f

j .

(31)

2. 2nd part of Eq. (28) For the spinor terms,

iΨ̄γ+D+Ψ = iΨ†γ0γ+D+Ψ = 2iΨ†Λ+D+Ψ = 2iΨ†Λ+D+Λ+Ψ = 2iΨ†+D+Ψ+ . (32)

Substitution of the time derivative in Eq. (22) and the free spinors defined in Eq. (23) leads to

2iΨ†+D+Ψ+

=Ψ
†
+(mβ − iαiDi)

1
2i∂−

(mβ − iαiDi)Ψ+

=Ψ
†
+(mβ − iαi∂i)

1
2i∂−

(mβ − iαi∂i)Ψ+ + g2Ψ
†
+α

iAi
1

2i∂−
αiAiΨ+

+ gΨ†+α
iAi

1
2i∂−

(mβ − iαi∂i)Ψ+ + gΨ†+(mβ − iαi∂i)
1

2i∂−
αiAiΨ+

=Ψ
†
+(mβ − iαi∂i)

1
2i∂−

(mβ − iαi∂i)Ψ+ + g2Ψ
†
+α

iAi
1

2i∂−
αiAiΨ+ + gΨ†+α

iAiΨ̃− + gΨ̃†−α
iAiΨ+ .

(33)

The first term reads, with recalling that Ψ̃+ = Ψ+,

Ψ̃
†
+(mβ − iαi∂i)

1
2i∂−

(mβ − iα j∂ j)Ψ̃+ =Ψ̃†Λ+(mβ − iαi∂i)
1

2i∂−
(mβ − iα j∂ j)Λ+Ψ̃

=
1
2

¯̃Ψγ+(mβ − iαi∂i)
1

2i∂−
(mβ − iα j∂ j)Ψ̃

=
1
2

¯̃Ψγ+(m + iγi∂i)
(γ0)2

2i∂−
(m − iγ j∂ j)Ψ̃

=
1
2

¯̃Ψγ+
m2 − ∇2

⊥

2i∂−
Ψ̃ .

(34)
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From the first to the second equation, the Λ+ on the right is brought to the left, using the relations in

Eq.(A22). The second term reads,

g2Ψ̃
†
+α

iAi
1

2i∂−
α jA jΨ̃+ =

g2

2
¯̃Ψγ+γ0γiAi

1
2i∂−

γ0γ jA jΨ̃ =
g2

2
¯̃ΨγiAi

γ+

2i∂−
γ jA jΨ̃ . (35)

The last two terms combine into

gΨ̃†+α
iAiΨ̃− + gΨ̃†−α

iAiΨ̃+ = g(Ψ̃†+ + Ψ̃−)αiAi(Ψ̃
†
+ + Ψ̃−) = gΨ̃†αiAiΨ̃ = g ¯̃ΨγiAiΨ̃ . (36)

We can also define the current density of free fields solution J̃µa in analogy to Jµa , and notice that their

”+” components are the same,

J+s = f sacF+µa Ac
µ + Ψ̄γ

+T sΨ = f sac∂+AµaAc
µ + Ψ̄γ

+T sΨ

= f sac∂+Ai
aAc

i + Ψ̄γ
+T sΨ = f sac∂+Ãi

aÃc
i +

¯̃Ψγ+T sΨ̃ = J̃+s .
(37)

Let us also introduce the fermion current ȷ̃µa ≡ ¯̃ΨγµT aΨ̃ as part of the total current J̃µa . By substituting

Eqs. (29) to (37) into Eq. (28), and with Ãi = Ai, we finally get the front form Hamiltonian,

P−QCD =

∫
dx− d2x⊥ −

1
2

Ã j
a(i∇⊥)2Ãa

j +
1
2

¯̃Ψγ+
m2 − ∇2

⊥

i∂+
Ψ̃

− g f abc∂iÃ j
aÃb

i Ãc
j + gJ̃+a Ãa

+ + g ¯̃ΨγiÃiΨ̃

−
1
2

g2 J̃+a
1

(∂+)2 J̃+a +
g2

4
f abcÃi

bÃ j
c f ae f Ãe

i Ã f
j

+
g2

2
¯̃ΨγiÃi

γ+

i∂+
γ jÃ jΨ̃ .

(38)

The two terms in the first line are the kinetic energy for the gauge field and the fermion respectively.

The three terms in the second line can be written collectively as gJµa Aa
µ, which include the three-gluon-

interaction, the gluon emission and quark-antiquark-pair-production processes. The two terms in the third

line are the instantaneous-gluon-interaction and the four-gluon-interaction respectively. The last line con-

tains the instantaneous-fermion-interaction. The vertex diagrams for these interactions are shown in Fig. 2

The fields for QCD admit free-field expansions at x+ = 0 [1],

Ψαc f (x) =
∑
λ=± 1

2

∫
d2 p⊥ dp+

(2π)32p+
θ(p+)

[
bq(p)uα(p, λ)e−ip·x + d†q(p)vα(p, λ)eip·x

]
, (39)

Aµa(x) =
∑
λ=±1

∫
d2 p⊥ dp+

(2π)32p+
θ(p+)

[
aq(p)ϵµ(p, λ)e−ip·x + a†q(p)ϵ∗µ(p, λ)eip·x

]
, (40)

where θ(p+) is the Heaviside unit step function. α denotes the spinor components of Ψ, and µ denotes the

vector components of A. λ is the light-front helicity of the corresponding field (λ = ±1/2 for quarks and
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(a)The three-gluon

interaction,

−g f abc∂iA j
aAb

i Ac
j

(b)The gluon emission,

gΨ̄γµAµΨ

(c)The four-gluon

interaction,
1
4 g2 f abcAi

bA j
c f ae f Ae

i A f
j

(d)The instantaneous-

quark-interaction,
1
2 g2Ψ̄γiAi

γ+

i∂+ γ
jA jΨ

(e)The instantaneous-gluon-interaction, − 1
2 g2 J+a

1
(∂+)2 J+a

FIG. 2. Vertex diagram representation of the light-front QCD Hamiltonian in Eq. (38). The solid lines represent the

quark operators, and the curly lines represent the gluon operators. The instantaneous quark (gluon) propagator 1/(i∂+)

[1/(∂+)2] is represented by a quark (gluon) line with a bar across it.

λ = ±1 for gluons). c = 1, 2, 3 and a = 1, 2, . . . , 8 are the color indices of quarks (antiquarks) and gluons

respectively. q contains the quantum numbers of single particle state, for fermion q = {λ, c, f (flavor)} and

for gluons q = {λ, a}. The creation and annihilation operators obey the commutation and anti-commutation

relations. For gluons,

[aλa(p), a†λ′a′(p′)] = 2p+θ(p+)(2π)3δ3(p − p′)δλλ′δaa′ , (41)

where δ3(p − p′) = δ(p+ − p′+)δ2( p⃗⊥ − p⃗′⊥). For quarks and antiquarks,

{bλc f (p), b†
λ′c′ f ′(p′)} = 2p+θ(p+)(2π)3δ3(p − p′)δλλ′δcc′δ f f ′

{dλc f (p), d†
λ′c′ f ′(p′)} = 2p+θ(p+)(2π)3δ3(p − p′)δλλ′δcc′δ f f ′ .

(42)

All the other commutation and anti-commutation relations vanish,

[aλa(p), aλ′a′(p′)] = {bλc f (p), bλ′c′ f ′(p′)} = {dλc f (p), dλ′c′ f ′(p′)} = {bλc f (p), d†
λ′c′ f ′(p′)} = · · · = 0 . (43)

The fields obey the standard equal-light-front-time commutation relations, and here we write it out for

the dynamical components (suppressing the flavor indices):

{Ψ+,c(x),Ψ†
+,c′(y)}x+=y+ = Λ+δ(x− − y−)δ2(x⃗⊥ − y⃗⊥)δc,c′ , (44)

in which recall that Λ+ = γ0γ+/2 is the light-front projector , and

[Ai,a(x), A†j,a′(y)]x+=y+ = −
i
4
ϵ(x− − y−)δ2(x⃗⊥ − y⃗⊥)δi, jδa,a′ , (45)

with i, j = 1, 2, and ϵ(x) is the sign function.
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II. MESONS AS THE QCD BOUND STATES (0.5 H’)

1. Fock space representation

The Hilbert space for the single-particle creation and destruction operators is the Fock space. The Fock

space can be decomposed into sectors with n Fock particles, in which the number of quarks, antiquarks and

gluons, N, N̄ and Ñ, respectively and n = N+N̄+Ñ. Fock states can be defined in terms of the eigenstates of

the free-field Hamiltonian, i.e., the light-front kinetic operator, and can be obtained by applying the creation

operators on the Fock vacuum |0⟩. The hadron state vector |ψh(P, j,m j)⟩ can be expanded in the Fock space.

We use j as the total spin of meson and m j as its magnetic projection. In the single particle coordinates, it

reads

|ψh(P, j,m j)⟩ =
∞∑

n=0

∫ n∏
i=1

dκ+i d2κi⊥

(2π)32κ+i
θ(κ+i )2P+θ(P+)(2π)3δ3(κ1 + κ2 + · · · + κn − P)

×
∑
{li,si}

ψ
(m j)
n/h ({κi, si, li})c

†

s1l1
(κ1) . . . c†snln

(κn) |0⟩ ,
(46)

where i is the index of the Fock particle, and it takes values of i = 1, . . . , n for the n-particle sector. c†sili
(κi)

is the creation operator for the corresponding constituent (quark, antiquark or gluon). κi is the momentum,

and each particle is on its mass-shell κ2
i = m2

i . l is the color index, and s is the spin projection of the particle.∑
{li,si} means the sum of all color and spin arrangements in the string of the creation operators resulting in a

sum over a unique set of creation operators with the restriction of producing color-singlet projected states.

The construction of the global color singlets for multi-particle states can be found in Ref. [10]. We suppress

flavor indices but they can be included in a straightforward manner. ψ(m j)
n/h ({κi, si, li}) are the projection of the

physical states to the Fock states, called the light-front wavefunctions (LFWFs).

In the relative particle coordinates, we define

xi ≡
κ+i
P+
, k⃗i⊥ ≡ κ⃗i⊥ − xiP⃗⊥ . (47)

xi are known as the longitudinal momentum fractions; k⃗i⊥ are the relative transverse momenta. They are

independent of the total momentum of the bound state, and satisfy 0 < xi < 1,
∑n xi = 1 and

∑
k⃗i⊥ = 0⃗.

[Exercise] Show that the quantities defined in Eq. (47) are invariant under Lorentz boosts

v+ → v+, v⃗⊥ → v⃗⊥ + v+β⃗⊥ , (48)

v+ → cωv+, v⃗⊥ → v⃗⊥ , (49)

with c-numbers β⃗⊥ and cω.
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The hadron state vector now reads,

|ψh(P, j,m j)⟩ =
∞∑

n=0

∫ n∏
i=1

dxi d2ki⊥

(2π)32xi
2(2π)3δ(x1 + x2 + · · · + xn − 1)δ2(⃗k1⊥ + k⃗2⊥ + · · · + k⃗n⊥)

×
∑
{li,si}

ψ
(m j)
n/h ({xi, k⃗i⊥, si, li})c

†

s1l1
(x1P+, k⃗1⊥ + x1P⃗⊥) · · · c†snln

(xnP+, k⃗n⊥ + xnP⃗⊥) |0⟩ ,
(50)

with the LFWFs ψ(m j)
n/h ({xi, k⃗i⊥, si, li}) in the relative coordinates.

The hadron state vector is normalized as,

⟨ψh(P, j,m j)|ψh′(P′, j′,m′j)⟩ = 2P+θ(P+)(2π)3δ3(P − P′)δm j,m′jδ j, j′δh,h′ . (51)

Then the normalization of the LFWFs reads,

∞∑
n=0

∫ n∏
i=1

dxi d2ki⊥

(2π)32xi
2(2π)3δ(x1 + · · · + xn − 1)δ2(⃗k1⊥ + · · · + k⃗n⊥)

∑
{li,si}

∣∣∣∣ψ(m j)
n/h ({xi, k⃗i⊥, si, li})

∣∣∣∣2 = 1 . (52)

[Exercise] For practical calculations, the infinite Fock space needs to be truncated. Consider a meson

state in the |qq̄⟩ Fock sector, write out its light-front wavefunction representation in terms of the relative

momenta,

x ≡
k+q
P+
, k⃗⊥ ≡ k⃗q⊥ − xP⃗⊥ . (53)

The state reads,

|hqq̄(P, j,m j)⟩ =
∑
s,s̄

∫ 1

0

dx
2x(1 − x)

∫
d2k⊥
(2π)3ψ

(m j)
ss̄/h(⃗k⊥, x)

×
1
√

Nc

Nc∑
i=1

b†si(xP+, k⃗⊥ + xP⃗⊥)d†s̄i((1 − x)P+,−k⃗⊥ + (1 − x)P⃗⊥) |0⟩ .

(54)

Here we write the color singlet configuration of the qq̄ state, 1/
√

3(rr̄+gḡ+bb̄), explicitly with color index

i and Nc = 3 in the above equation. The normalization relation of the valence LFWF ψ(m j)
ss̄/h(⃗k⊥, x) is

∑
s,s̄

∫ 1

0

dx
2x(1 − x)

∫
d2k⊥
(2π)3ψ

(m′j)∗
ss̄/h′ (⃗k⊥, x)ψ(m j)

ss̄/h(⃗k⊥, x) = δhh′δm j,m′jδh,h′ . (55)

2. The eigenvalue equation

The quarkonium state |ψh⟩ is an eigenstate of the light-front Hamiltonian, and satisfies

HLF |ψh⟩ = M2
h |ψh⟩ , (56)
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where HLF = P+P− + P⃗2
⊥ is the light-front Hamiltonian and Mh is the mass of the bound state. Each eigen-

state |ψh⟩ can be labeled with six eigenvalues, Mh, P+, P⃗⊥, the total spin j and its longitudinal projection

m j.

Projecting the Hamiltonian eigenvalue equation of Eq. (56) onto the Fock space results in an infinite

number of coupled integral eigenvalue equations. The solutions of these equations consist of the spectrum

and the corresponding wavefunctions, which could fully describe the bound state system. Fock states can

be defined in terms of the eigenstates of the free-field Hamiltonian, i.e., the light-front kinetic operator, and

can be obtained by applying the creation operators on the Fock vacuum |0⟩:

Q0 ≡ |qq̄ : k+i , k⃗i⊥, λi⟩ = b†λ1
(k1)d†λ2

(k2) |0⟩

Q1 ≡ |qq̄g : k+i , k⃗i⊥, λi⟩ = b†λ1
(k1)d†λ2

(k2)a†λ3
(k3) |0⟩

Q2 ≡ |qq̄qq̄ : k+i , k⃗i⊥, λi⟩ = b†λ1
(k1)d†λ2

(k2)b†λ3
(k3)d†λ4

(k4) |0⟩

. . .

(57)

For convenience, we have labeled the various Fock states with index n = 1, 2, . . .. Each Fock state Qn is an

eigenstate of P+ and P⃗⊥, satisfying P+ =
∑

i k+i and P⃗⊥ =
∑

i k⃗⊥.

In practical calculations, only a finite number of the leading Fock sectors are considered. The eigenvalue

equation, Eq. (56), can be written explicitly on the finite Fock basis truncated as,

N∑
j=1

Hi j |ψ j⟩ = M2
h |ψi⟩ for all i = 1, 2, . . . ,N . (58)

We define the block matrices Hi j ≡ QiHLF Q j, and the projected eigenstates |ψi⟩ ≡ Qi |ψh⟩. One could

then proceed to solve the coupled matrix equations in Eq. (58). The resulting eigenstate can be written as

|ψh⟩ =
∑N

n=1

∫
d[ki]Qn |ψn⟩.

Even with a finite truncation scheme, solving the Hamiltonian matrix becomes a major challenge in

numerical calculations with increasing number of Fock sectors. Could we include the physics from higher

Fock sectors while carrying out the calculation at a smaller feasible Fock space? A well known and widely

used method is the effective interactions. In field theories, it was first introduced by I.Tamm [11] and redis-

covered by S.M.Dancoff [12] to describe the two nucleon forces. It reduces and solves the field equations

according to the number of Fock particles.

Although the Tamm-Dancoff approach was applied originally in the instant form, we can derive it anal-

ogously in the front form. The Fock space could be arbitrarily divided into two parts, namely the P-space

and the Q-space. By choosing a specific partition, we wish to formulate an effective potential acting only in

the P-space but including the effects generated by the Q-space. The Hamiltonian matrix equation, Eq. (58),
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can then be rewritten as a coupled matrix equation involving the block matrices Hαβ ≡ ⟨α|HLF |β⟩ and the

projected eigenfunctions |ψh⟩α = ⟨α|ψh⟩ with (α, β = P,Q):

HPP |ψ⟩P + HPQ |ψ⟩Q = ω |ψ⟩P , (59a)

HQP |ψ⟩P + HQQ |ψ⟩Q = ω |ψ⟩Q . (59b)

The mass eigenvalue is unknown at this point, and it is written as ω = M2
h in the above equations. One can

express the Q-space wavefunction |ψh⟩Q in terms of the P-space wavefunction |ψh⟩P from Eq. (59b) as,

|ψ⟩Q =
1

ω − HQQ
HQP |ψ⟩P . (60)

Plugging it into Eq. (59a), we arrive at an eigenvalue equation with an “effective Hamiltonian” acting only

in the P-space:

Heff |ψ⟩P = ω |ψ⟩P , (61)

with

Heff = HPP + HPQ
1

ω − HQQ
HQP . (62)

We can see that the effective interaction contains two parts: the original block matrix HPP, and a contribution

where the system is scattered virtually into the Q-space and then scattered back to the P-space.

One key problem now is to compute the energy denominator (ω − HQQ)−1, since the value of ω is

unknown before solving the equations. One could start with some fixed value of ω as the “starting point

energy” and calculate M2
h(ω) from the eigenvalue equation. The true eigenvalues are determined by varying

ω until ω = M2
h(ω) [13, 14]. This procedure, involving inverting a Q-space matrix, however, does not seem

to reduce the numerical work of diagonalizing the (P+Q)-space matrix directly. An alternative way is to

substitute the eigenvalue ω by T ∗, the average kinetic energy of the initial and final P-space states [15]. The

idea is to reduce the matrix ω − HQQ to its dominant term as a c-number. The Q-space matrix HQQ splits

into a diagonal kinetic term TQQ and an off-diagonal interaction term UQQ. The inverse matrix could then

be written as

1
ω − HQQ

=
1

T ∗ − TQQ − δU(ω)
, δU(ω) = ω − T ∗ − UQQ . (63)

In the case of a sufficiently small δU(ω), the energy denominator can be approximated by the kinetic energy

T ∗ − TQQ, which no longer depends on the energy eigenvalue.
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3. Mesons in the valence Fock sector

In solving bound state systems with effective Hamiltonian approaches, the simplest P-space one can

choose is the valence Fock sector. For heavy quarkonium, constituent quark models have shown reasonable

first approximations in non-relativistic potential models [16, 17]. In the following, we illustrate the formu-

lation of the effective Hamiltonian in the valence Fock sector by choosing Q0 = |qq̄⟩ as the P-space and

Q1 = |qq̄g⟩ as the Q-space. The eigenvalue equation now reads (signifying the Qi by its index ”i” in the

following), (
H00 + H01

1
ω − H11

H10

)
ψ0 = ωψ0 . (64)

We can write the Hamiltonian as a summation of the kinetic energy and the interaction operator, H = T +U.

The diagonal block Hii contains Tii and Uii, and the off-diagonal block is Hi j = Ui j, (i , j). The interaction

matrix U is illustrated in Table 3.

FIG. 3. The interaction matrix U for a meson in the Fock space |qq̄⟩ + |qq̄g⟩. The matrix elements are represented by

diagrams. For each diagram where the gluon couples to the quark, there also exists a corresponding diagram with the

gluon coupling to the antiquark. Diagrams in the red frames are excluded by color factor or gauge cutoff, see details

in the text.

We first focus on the denominator of the second term in Eq. (64). To maintain the gauge invariance in the

truncated Fock space, we implement the “gauge cutoff” formulated by Tang, Brodsky, and Pauli [18], that

is, the instantaneous parton graph is only retained if the corresponding propagating parton graph contributes

in the truncated theory. As a consequence, some instantaneous interactions in U00 and U11 are excluded.

In the U11 block, the diagrams in the red frames should not be considered since the corresponding |qq̄gg⟩
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sector is absent in the truncated space. The second diagram in U00 block vanishes for another reason: zero

color factor. We further adopt the approximation δU(ω) ≈ 0 in Eq. (63), i.e. U11 → 0. In principle, this

approximation can be improved systematically by performing an expansion in δU(ω) and retaining terms

order-by-order in that expansion. The energy denominator now reduces to T ∗ − T11.

k, s, c k′, s′, c′

k̄, s̄, c̄ k̄′, s̄′, c̄′

k, s, c k′, s′, c′

k̄, s̄, c̄ k̄′, s̄′, c̄′

k, s, c k′, s′, c′

k̄, s̄, c̄ k̄′, s̄′, c̄′

k, s, c k′, s′, c′

k̄, s̄, c̄ k̄′, s̄′, c̄′

FIG. 4. Iterated interactions generated in the two-body effective interaction. The top two panels are the gluon-

exchange diagrams. The bottom two panels are the fermion-self-energy contributions. Each fermion lines are labled

by its momentum (k), spin (s) and color (c).

The first term in Eq. (64), H00, contains an instantaneous gluon-exchange interaction, U00. The second

term, by stitching U01 and U10, generates both fermion-self-energy loops and exchanges of gluons between

the quark and the antiquark as shown in Fig. 4. We simplify the interaction by neglecting the self-energy

terms in these investigations and we will adopt the strategy of using quark masses as adjustable parame-

ters (called “constituent quarks”). The remaining one-gluon exchange can be combined together with the

instantaneous contributions from U00 into one term, namely VOGE. In the Basis Light-Front Quantization

(BLFQ) formalism of ref. [19], the one-gluon exchange term reads,

VOGE = −
CF4παs(q2)

q2 ūs′(k′)γµus(k)v̄s̄(k̄)γµvs̄′(k̄′) . (65)

The energy denominator can now be interpreted as the average 4-momentum squared carried by the ex-

changed gluon, q2 = −(1/2)(k′ − k)2 − (1/2)(k̄′ − k̄)2. CF is the color factor of the one-gluon exchange

diagram, and its calculation follows the corresponding QCD vertices [20]. Here the initial and final quark-

antiquark pairs are both in the color singlet configuration, thereby CF = 1/4(1/
√

3c′†Tαc)(1/
√

3c†Tαc′) =

4/3, where Tα (α = 1, . . . , 8) are the Gell-Mann matrices and c, c′ = red, blue, green are the color vectors,

their expressions can be found in Appendix A 3. The overall“-” sign in Eq. (65) results from the anti-

communitation relation of the fermion fields in calculating the vertices, in analogy to the Coulomb potential

between two opposite charges in electrodynamics. This term implements the short-distance physics between

the quark and the antiquark, and determines the spin structure of the mesons. The eigenvalue equation of
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Eq. (64) then reduces to

(T00 + VOGE)ψ0 = ω0ψ0 . (66)

The one-gluon exchange interaction VOGE is identical to the one-photon exchange in quantum electro-

dynamics (QED), except for the color factor. The eigenvalue equation of Eq. (66) with the one-photon

exchange has been applied to the positronium system in the basis function approach by Ref. [21]. In the

relative coordinate presentation, the kinetic term can be written as T00 = (⃗k2
⊥ + m2

q)/x + (⃗k2
⊥ + m2

q̄)/(1 − x).

[Exercise] Derive this expression of T00 from the light-front QCD Hamiltonian in Eq. (38). Recall that

x = p+q /P
+ is the longitudinal momentum fraction of the quark and k⃗⊥ = k⃗q⊥− xP⃗⊥ is the relative transverse

momentum.

One can imagine that expanding the Q-space directly would introduce more interaction terms. Apart

from the standard way of including interactions from a finite Q-space, there are also phenomenological

approaches. Light-front holography constructs an effective Hamiltonian based on inspirations from string

theory. It addresses confinement, an essential feature of QCD, by holographic mapping gravity in a higher-

dimensional anti-de Sitter(AdS) space to light-front dynamics [22]. In the soft-wall model, a 2-dimensional

soft-wall confinement originates from the gravitational background field [23]. Y. Li et al. further improved

the confinement by including the longitudinal degree of freedom [19, 24],

Vconfinement = κ
4x(1 − x)r2

⊥ −
κ4

(mq + mq̄)2 ∂x(x(1 − x)∂x) . (67)

κ is the strength of the confinement, r⊥ = |⃗rq⊥ − r⃗q̄⊥| is the transverse separation of the partons. This phe-

nomenological confinement takes into account the long-distance physics, and provides another approxima-

tion to QCD. The eigenvalue equation provides a more extensive model of QCD by absorbing the confining

potential,

(T00 + VOGE + Vconfinement)ψ0 = ωψ0 . (68)

Conventionally, all the contributions in the Hamiltonian excluding the kinetic energy are combined and

the resulting interaction is referred to as the effective interaction, Veff = VOGE + Vconfinement. The mass

spectrum and LFWFs are the direct solutions of the eigenvalue equation, and could be obtained as in BLFQ

by diagonalizing the Hamiltonian in a basis representation.
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III. TWO STUDIES OF MESON LIGHT-FRONT WAVEFUNCTIONS (0.25 H’)

A. Basis Light-Front Quantization (BLFQ)

In the Hamiltonian approach of studying the meson states, the central task is to diagonalize the QCD

Hamiltonian to solve the eigenvalue equation. The basis light-front quantization (BLFQ) has been de-

veloped as a flexible computational platform for such purpose, dealing with relativistic strong interaction

many-body bound-state problems [10]. Based on the Hamiltonian formalism in light-front dynamics, which

we have discussed previously, BLFQ adopts basis function representation. This key feature provides us con-

siderable freedom in the choice of the orthonormal and complete set of basis functions with convenience

and convergence rates.

The BLFQ approach is first applied to the heavy quarkonium system in Ref. [19, 24]. As we have

already introduced in the proceeding section, the effective light-front Hamiltonian is constructed in the

|qq̄⟩ space, consisting of the holographic QCD Hamiltonian and the one-gluon exchange, as in Eq. (68).

There are two model parameters, κ and mq, and they are determined by fitting the mass spectrum of the

quarkonium system to experiments. In solving the eigenvalue equation of Eq. (68), the eigenfunctions of

part of the Hamiltonian, T00+Vconfinement, are taken as the basis functions, which largely brings in numerical

efficiency. The heavy quarkonium system is then solved in such basis representation, giving the spectrum

and the meson LFWFs. Following the applications in the heavy meson system, BLFQ is further developed

and applied to the heavy-light system [25], the light mesons [26, 27], and the nucleon [28, 29].

To understand and explain the meson systems from QCD first principles, a significant and more chal-

lenging step to take is including higher Fock sectors. The BLFQ study, Ref. [30], addresses the light meson

systems in the |qq̄⟩ + |qq̄g⟩ space.

B. Small-basis Light-Front Wavefunction (sLFWF) by design

In a standard light-front Hamiltonian formalism, the meson LFWFs are solved from the Schrödinger(-

like) eigenvalue equations. A different path to obtain the meson LFWF is to model it directly or determine

it from other formalisms. Works in this category include, the widely used boosted Gaussian [31–33], the

LFWFs determined from the Dyson-Schwinger and Bethe-Salpeter approach [34–37], and LFWFs boosted

from the NRQCD solution in the rest frame [38, 39].

As a complementary study to the existing modeled LFWFs, Ref. [40] proposed a method of designing

the LFWFs of meson bound states with a simple-functional form. Such “by design” approach is apparently

not first-principle, in which one chooses by hand to apply the constraints being considered for phenomeno-
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logical applications of the wavefunctions. This involves a certain amount of judgement as to how many

basis functions to include and which constraints to impose. One primary advantage of this approach is

that the resulting LFWFs are analytically tractable and can be used to calculate a wide variety of physical

observables.

The following briefs the basic idea of this method. Consider a meson state h consisting of a quark and an

antiquark, with momentum (P+, P⃗⊥), and expand its wavefunction on an orthonormal basis {β1, β2, . . . , βNβ},

ψh(⃗k⊥, x) =
Nβ∑
i=1

Ch,iβi(⃗k⊥, x) , (69)

where Ch,i are the basis coefficients for h and Nβ is the number of basis states. Here we are writing the

wavefunction in a relative coordinate, where x = p+q /P
+ is the longitudinal momentum fraction of the quark

and k⃗⊥ = k⃗q⊥ − xP⃗⊥ is the relative transverse momentum.

The wavefunctions should satisfy the orthonormalization relation

Nβ∑
i=1

Ch,iC∗h′,i = δh,h′ . (70)

Physical quantities and observables (O) such as decay widths and charge radius are functions ( fO) of the

basis coefficients,

Oh = fO(Ch,i) . (71)

The constraints Eqs. (70) and (71) form a system of equations, and the unknowns are the basis coefficients

Ch,i and could also include parameters in the basis functions. The procedure of designing LFWFs is, in

essence, solving such a system of equations.

In work [40], we modeled the LFWFs for four charmonium states, ηc, J/ψ, ψ′, and ψ(3770) as super-

positions of orthonormal basis functions. We choose the basis functions as eigenfunctions of an effective

Hamiltonian, which has a longitudinal confining potential in addition to the transverse confining potential

from light-front holographic QCD, the same basis functions as in BLFQ [19]. We determine the basis

function parameters and superposition coefficients by employing both guidance from the nonrelativistic

description of the meson states and the experimental measurements of the meson decay widths. With the

obtained wavefunctions, we study the features of those meson states, including charge radii and parton dis-

tribution functions. The obtained LFWFs have simple-functional forms and can be readily used to predict

additional experimental observables.
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Appendix A: Conventions

1. Light-Front coordinates

The contravariant four-vectors of position xµ are written as xµ = (x+, x−, x1, x2), where x+ = x0 + x3

is the light-front time, x− = x0 − x3 is the longitudinal coordinate, and x⃗⊥ = (x1, x2) are the transverse

coordinates. We sometimes write the transverse components with subscript x (y) in place of 1 (2), for

example r⃗⊥ = (rx, ry).

The covariant vectors are obtained by xµ = gµνxν, with the metric tensors gµν and gµν. The nonzero

components of the metric tensors are,

g+− = g−+ = 2, g+− = g−+ =
1
2
, gii = gii = −1 (i = 1, 2) . (A1)

Scalar products are

a · b = aµbµ = a+b+ + a−b− + a1b1 + a2b2 =
1
2

(a+b− + a−b+) − a⃗⊥ · b⃗⊥ . (A2)

Derivatives are written as

∂+ =
∂

∂x+
=

∂

2∂x−
=

1
2
∂−, ∂− =

∂

∂x−
=

∂

2∂x+
=

1
2
∂+ . (A3)

We define the integral operators

1
∂+

f (x−) =
1
4

∫ +∞

−∞

ϵ(x− − y−) f (y−) , (A4)(
1
∂+

)2

f (x−) =
1
8

∫ +∞

−∞

|x− − y−| f (y−) . (A5)

Here, the antisymmetric step function

ϵ(x) = θ(x) − θ(−x) ,
∂ϵ(x)
∂x
= 2δ(x) . (A6)

with the step function θ(x) = 0(x < 0); 1(x > 0). It follows that |x| = xϵ(x).

[Exercise] For the exponential function, check the following relation,

1
i∂+

e−ikx =
1
k+

e−ikx . (A7)

The Levi-Civita tensor is

ϵµνρσ =
1√
|g|


+1, if µ, ν, ρ, σ is an even permutation of −,+, 1, 2

−1, if µ, ν, ρ, σ is an odd permutation of −,+, 1, 2

0, other cases

(A8)
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in which g ≡ det gµν = − 1
2 .

The full four-dimensional integral is∫
d4x =

∫
dx0 dx1 dx2 dx3 =

1
2

∫
dx+ dx− d2x⊥ =

∫
d3x dx+ , (A9)

where we also define the volume integral as∫
d3x ≡

∫
dx+ d2x⊥ =

1
2

∫
dx− d2x⊥ . (A10)

In the momentum space, the Lorentz invariant integral is,∫
d4 p

(2π)4 θ(p+)(2π)δ(p+p− − p⃗2
⊥ − m2) =

1
2

∫
dp+ dp− d2 p⊥

(2π)4 θ(p+)(2π)δ(p+p− − p⃗2
⊥ − m2)

=

∫
d2 p⊥ dp+

(2π)32p+
θ(p+)

(A11)

The Fourier transform of a function f (⃗r⊥) and the inverse transform are defined as

f (⃗r⊥) =
∫

d2 p⊥
(2π)2 eip⃗⊥ ·⃗r⊥ f̃ ( p⃗⊥), f̃ ( p⃗⊥) =

∫
d2r⃗⊥e−ip⃗⊥ ·⃗r⊥ f (⃗r⊥) . (A12)

The Dirac deltas read∫
d2r⃗⊥e−ip⃗⊥ ·⃗r⊥ = (2π)2δ2( p⃗⊥),

∫
d2 p⃗⊥eip⃗⊥ ·⃗r⊥ = (2π)2δ2(⃗r⊥) . (A13)

2. γ matrices

The Dirac matrices are four unitary traceless 4 × 4 matrices:

γ0 = β =

0 −i

i 0

 , γ+ =

0 0

2i 0

 , γ− =

0 −2i

0 0

 , γi =

−iσ̂i 0

0 iσ̂i

 . (A14)

They are expressed in terms of the 2 × 2 Pauli matrices,

σ̂1 = σ2 =

0 −i

i 0

 , σ̂2 = −σ1 =

 0 −1

−1 0

 . (A15)

Note that γ3 = γ+ − γ0. It is also convenient to define γR ≡ γ1 + iγ2 and γL ≡ γ1 + iγ2. The chiral matrix is

γ5 = iγ0γ1γ2γ3. Some useful relations,

γ1γ+γ1 = γ2γ+γ2 = γ+, γ1γ+γ2 = −γ2γ+γ1 = iγ+ (A16)

γ0γµ = γµ†γ0, {γµ, γν} = 2gµνI (A17)
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ακ = γ0γκ, (α1)
2
= (α2)

2
= I, α1α2 = −α1α2 (A18)

Combinations of Dirac matrices as projection operators,

Λ± =
1
4
γ∓γ± =

1
2
γ0γ± =

1
2

(I ± α3) . (A19)

They have the following properties,

Λ+ + Λ− = I , (Λ±)2
= Λ± , Λ±Λ∓ = 0 , (Λ±)† = Λ± ,

αiΛ± = Λ∓αi , γ0Λ± = Λ∓γ0 .
(A20)

We use the following spinor representation, The u, v spinors are defined as,

u(p, λ =
1
2

) =
1
√

p+
(p+, 0, imq, ipx − py)⊺ ,

u(p, λ = −
1
2

) =
1
√

p+
(0, p+,−ipx − py, imq)⊺ ,

ū(p, λ =
1
2

) =
1
√

p+
(mq, px − ipy,−ip+, 0) ,

ū(p, λ = −
1
2

) =
1
√

p+
(−px − ipy,mq, 0,−ip+) ,

(A21)

and

v(p, λ =
1
2

) =
1
√

p+
(p+, 0,−imq, ipx − py)⊺ ,

v(p, λ = −
1
2

) =
1
√

p+
(0, p+,−ipx − py,−imq)⊺ ,

v̄(p, λ =
1
2

) =
1
√

p+
(−mq, px − ipy,−ip+, 0) ,

v̄(p, λ = −
1
2

) =
1
√

p+
(−px − ipy,−mq, 0,−ip+) .

(A22)

The polarization vectors for gluon are defined as

e(k, λ = ±1) = (0,
2ϵ⊥λ · k⃗⊥

k+
, ϵ⊥λ ) (A23)

where ϵ⊥± = (1,±i)/
√

2.

3. QCD color space

The specification of the quark state in the color space is by a three-element column vector c,

c =


1

0

0

 for red,


0

1

0

 for blue,


0

0

1

 for green. (A24)
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We use the standard basis for the fundamental representation of SU(3), i.e. the Gell-Mann matrices,

T 1 =
1
2


0 1 0

1 0 0

0 0 0

 , T 2 =
1
2


0 −i 0

i 0 0

0 0 0

 , T 3 =
1
2


1 0 0

0 −1 0

0 0 0

 ,

T 4 =
1
2


0 0 1

0 0 0

1 0 0

 , T 5 =
1
2


0 0 −i

0 0 0

i 0 0

 , T 6 =
1
2


0 0 0

0 0 1

0 1 0

 ,

T 7 =
1
2


0 0 0

0 0 −i

0 i 0

 , T 8 =
1

2
√

3


1 0 0

0 1 0

0 0 −2

 .

(A25)

In the matrix notation, Aµ = T aAµa with the gluon index a = 1, . . . , 8. The color matrix element Aµcc′ =

T a
cc′A

µ
a

Aµ =
1
2



1
√

3
Aµ8 + Aµ3 Aµ1 − iAµ2 Aµ4 − iAµ5

Aµ1 + iAµ2
1
√

3
Aµ8 − Aµ3 Aµ6 − iAµ7

Aµ4 + iAµ5 Aµ6 + iAµ7 −
2
√

3
Aµ8


. (A26)
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