FCC Feasibility Study Status FCCIS workshop and FCC SAC meeting 5 December 2022

Michael Benedikt, CERN on behalf of the FCC collaboration and FCCIS DS team

E-JADE

LHC

Work supported by the **European Commission** under the **HORIZON 2020 projects EuroCirCol**, grant agreement 654305; **EASITrain,** grant agreement no. 764879; **ARIES**, grant agreement 730871, **FCCIS**, grant agreement 951754, and **E-JADE**, contract no. 645479

ARIES

SPS

European Commission

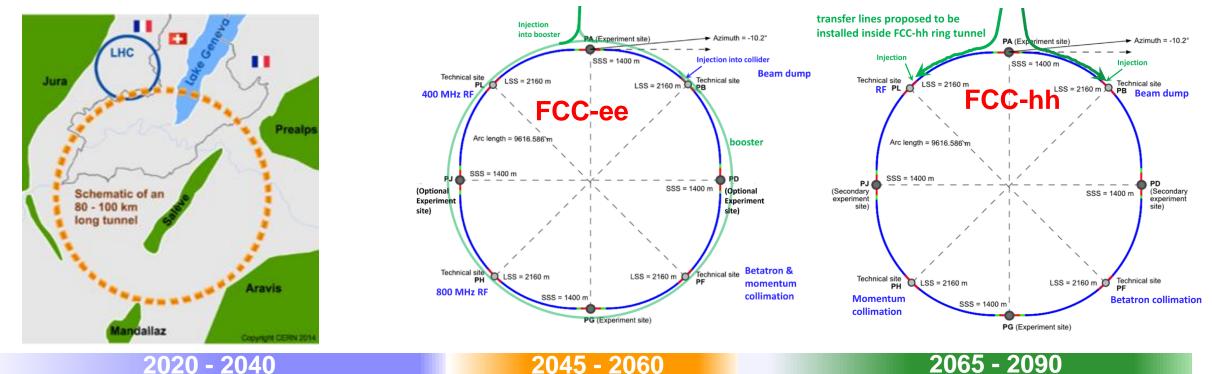
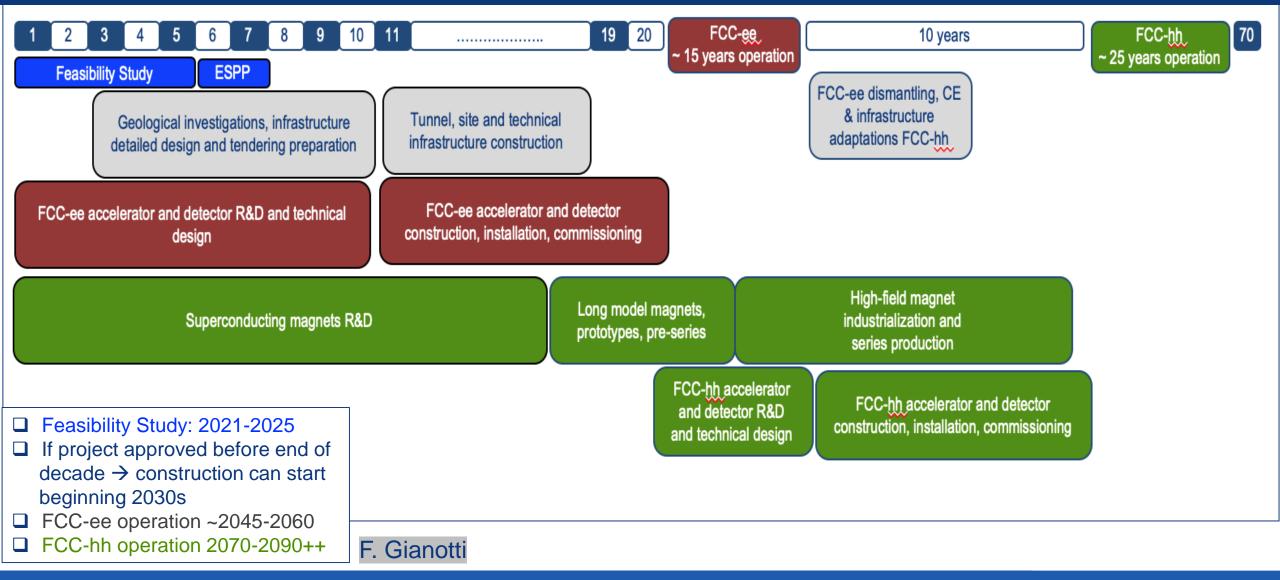

Horizon 2020 European Union funding for Research & Innovation

photo: J. Wenninger

FUTURE
CIRCULAR
COLLIDERThe FCC integrated program
inspired by successful LEP – LHC programs at CERN

comprehensive long-term program maximizing physics opportunities

- stage 1: FCC-ee (Z, W, H, tt) as Higgs factory, electroweak & top factory at highest luminosities
- stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, with ion and eh options
- complementary physics
- common civil engineering and technical infrastructures, building on and reusing CERN's existing infrastructure
- FCC integrated project allows seamless continuation of HEP after completion of the HL-LHC program



FCC Feasibility Study Status Michael Benedikt FCCIS WS,5 December 2022

a similar two-stage project CEPC/SPPC is under study in China

technical timeline of FCC integrated programme

FUTURE

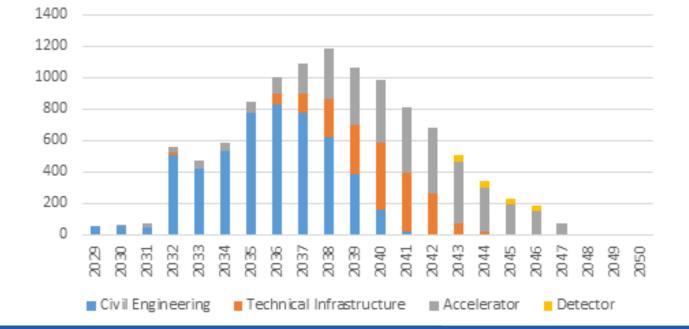
CIRCULAR COLLIDER

The FCC integrated program inspired by successful LEP – LHC programs at CERN

Construction cost estimate for FCC-ee

 Machine configurations for Z, W, H working points included

FUTURE CIRCULAR


COLLIDER

- Baseline configuration with 2 detectors
- CERN contribution to 2 experiments incl.

Spending profile for FCC-ee

- CE construction 2032 2040
- Technical infrastructure 2037 2043
- Accelerator and experiment 2032 2045
- Commissioning and operation start 2045 2048.

cost category	[MCHF]	%
civil engineering	5.400	50
technical infrastructure	2.000	18
accelerator	3.300	30
detector	200	2
total cost (2018 prices)	10.900	100

FCC Feasibility Study

2013 ESPPU requested FCC Conceptual Design fourvolume report \rightarrow 4 volumes delivered in 2018/19, describing the physics cases, the design of the lepton and hadron colliders, and the underpinning technologies and infrastructures. Fol-

2020 ESPPU→ 2021 Launch of FCC Feasibility Study (FCC FS) by CERN Council

- Feasibility Study Report (FSR) expected by the end of 2025, not only the technical design, but also numerous other key feasibility aspects, including tunnel construction, financing, and environment
- FSR will be an important input to the next ESPPU expected in 2026/27.

FCC FS is organized as an international collaboration. The FCC FS and a possible future project will profit from CERN's decadelong experience with successful large international accelerator projects, e.g., the LHC and HL-LHC, and the associated global experiments, such as ATLAS and CMS.

Organisational Structure of the FCC Feasibility Study

http://cds.cern.ch/record/2774006/files/En glish.pdf

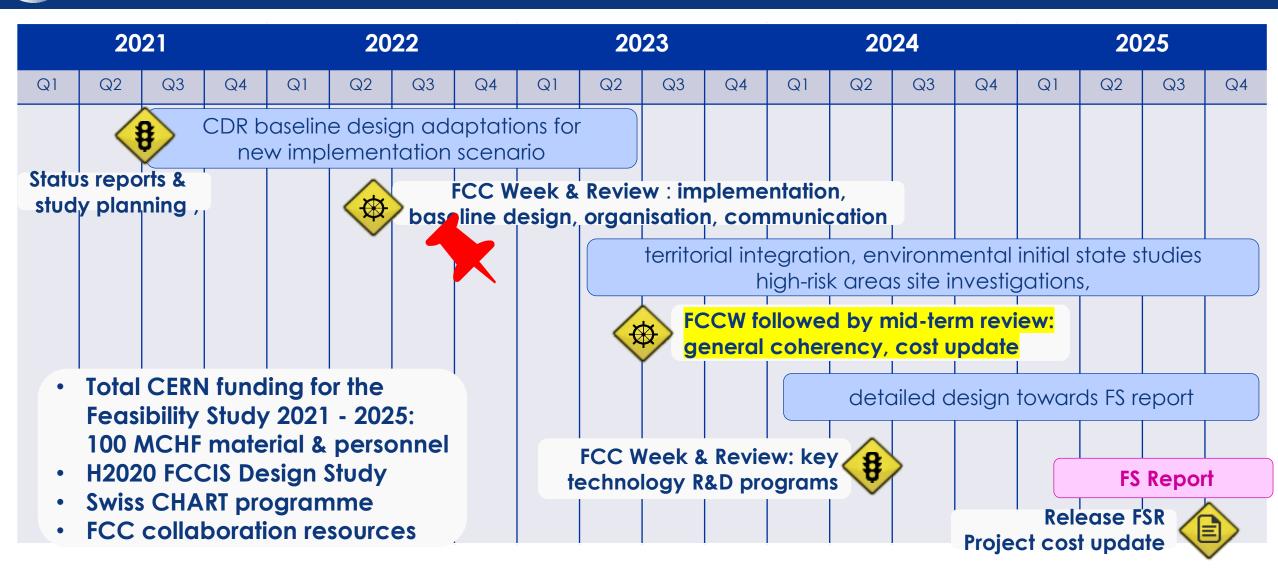
Main Deliverables and Timeline of the FCC **Feasibility Study**

http://cds.cern.ch/record/2774007/files/En glish.pdf

		CERN/SPC/1155/Rev.4 CERN/3566/Rev.2 Original: English 21 June 2021			CERN/SPC/116 CERN/3588 Original: Englis 21 June 2021
	EUROPÉENNE POUR LA RECH DPEAN ORGANIZATION FOR N			EUROPÉENNE POUR LA RECHE PEAN ORGANIZATION FOR NU	
Action to be taken		Foting Procedure	Action to be taken		Voting Procedury
For decision	RESTRICTED COUNCIL 203 st Session 17 June 2021	Simple majority of Member States represented and votin	For information	RESTRICTED COUNCIL 203 rd Session 17 June 2021	-

nent sets out the proposed organisational structure for the Feasibility Study of Future Circular Collider, to be carried out in line with the recommendations of the Europe Strategy for Particle Physics updated by the CERN Council in June 2020. It reflects discuss of this study will be summarised in a Feasibility Study Report to be completed by the at, and feedback received from, the Council in March 2021 and is now submitted for the latte 2025.

This document describes the main deliverables and milestones of the study being carried out to assess the technical and financial feasibility of a Future Circular Collider at CERN. The result


FUTURE CIRCULAR FCC Feasibility Study (2021-205): high-level objectives

- demonstration of the geological, technical, environmental and administrative feasibility of the tunnel and surface areas and optimisation of placement and layout of the ring and related infrastructure;
- pursuit, together with the Host States, of the preparatory administrative processes required for a potential project approval to identify and remove any showstopper;
- optimisation of the design of the colliders and their injector chains, supported by R&D to develop the needed key technologies;
- elaboration of a sustainable operational model for the colliders and experiments in terms of human and financial resource needs, as well as environmental aspects and energy efficiency;
- development of a consolidated cost estimate, as well as the funding and organisational models needed to enable the project's technical design completion, implementation and operation;
- identification of substantial resources from outside CERN's budget for the implementation of the first stage of a possible future project (tunnel and FCC-ee);
- □ consolidation of the physics case and detector concepts for both colliders.

Results will be summarised in a Feasibility Study Report to be released at end 2025

F. Gianotti

FCC Feasibility Study timeline

FUTURE

CIRCULAR COLLIDER

CIRCULAR Mid-Term Review & Cost Review, autumn '23

Mid-term review report, supported by additional documentation on each deliverable, will be submitted to review committees and to Council and its subordinate bodies, as input for the review.

Results of both general mid-term review and the cost review should indicate the main directions and areas of attention for the second part of the Feasibility Study

Infrastructure & placement

- Preferred placement and progress with host states (territorial matters, initial states, dialogue, etc.)
- Updated civil engineering design (layout, cost, excavation)
- Preparations for site investigations

Technical Infrastructure

- Requirements on large technical infrastructure systems
- System designs, layouts, resource needs, cost estimates

Accelerator design FCC-ee and FCC-hh

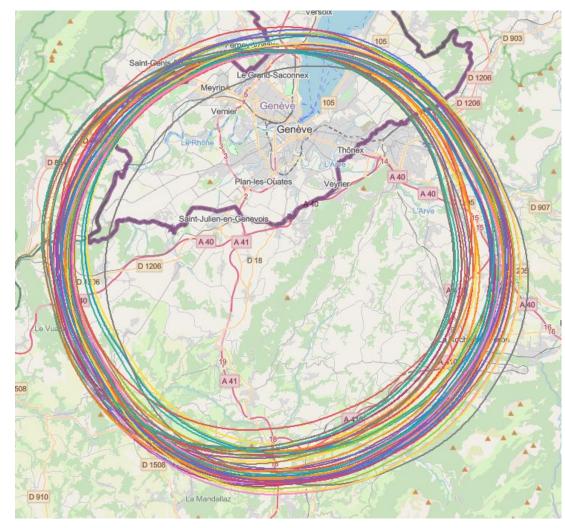
- FCC-ee overall layout with injector
- Impact of operation sequence: Z, W, ZH, $\ensuremath{t\overline{t}}$ vs start at ZH
- Comparison of the SPS as pre-booster with a 10-20 GeV linac
- Key technologies and status of technology R&D program
- FCC-hh overall layout & injection lines from LHC and SC-SPS

Physics, experiments, detectors:

- Documentation of FCC-ee and FCC-hh physics cases
- Plans for improved theoretical calculations to reduce theoretical uncertainties towards matching FCC-ee statistical precision for the most important measurements.
- First documentation of main detector requirements to fully exploit the FCC-ee physics opportunities

Organisation and financing:

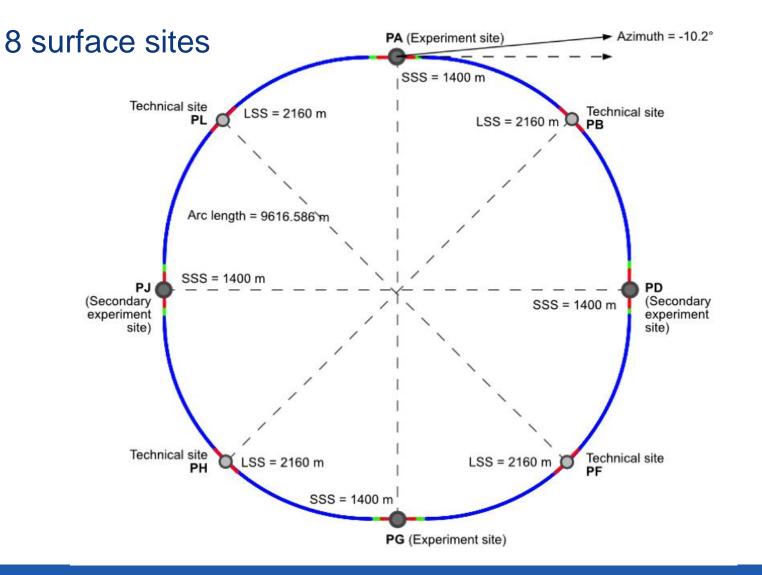
- Overall cost estimate & spending profile for stage 1 project


Environmental impact, socio-economic impact:

- Initial state analysis, carbon footprint, management of excavated materials, etc.
- Socio-economic impact and sustainability studies

Implementation studies with host states CIRCULAR

- layout & placement optimisation across both host states, Switzerland and France;
- following "avoid-reduce-compensate" directive of European & French regulatory frameworks;
- diverse requirements and constraints:
 - technical feasibility of civil engineering and subsurface geological constraints •
 - territorial constraints on surface and subsurface •
 - **nature**, accessibility, technical infrastructure, resource ٠ needs & constraints
 - optimum machine performance and efficiency •
 - economic factors including benefits for, and synergies, ۲ with the regional developments
- collaborative effort: FCC technical experts, consulting companies, government-notified bodies ullet



FUTURE

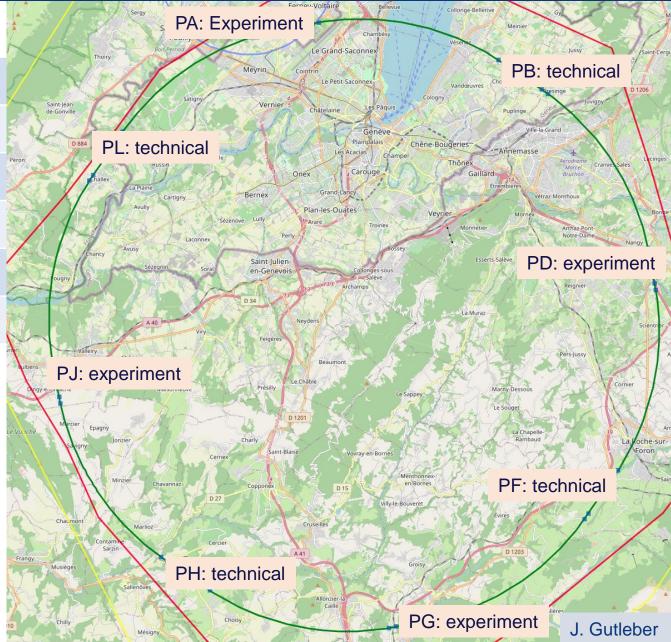
COLLIDER

PUTURE CIRCULAR **new "lowest risk" placement/optics allows 4 exp's**

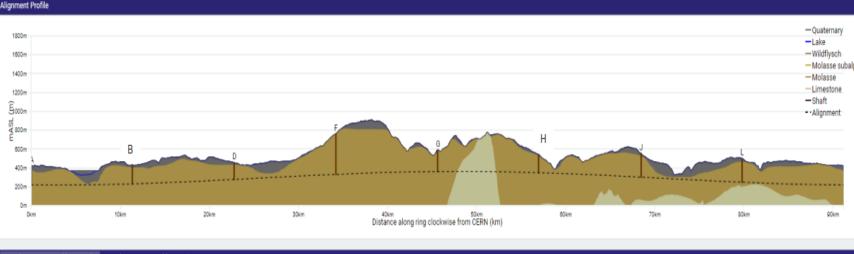
4-fold symmetryand4-fold superperiodicity

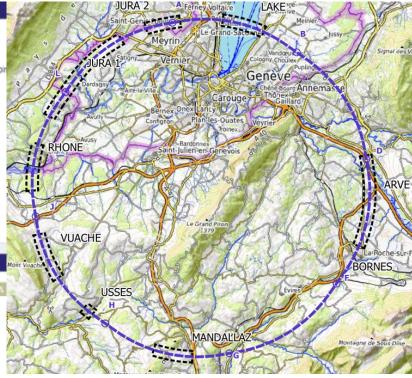
FCC-ee 2 or 4 lps FCC-hh 4 lPs

optimized placement and layout


8-site baseline "PA31"

FUTURE


COLLIDER


Number of surface sites	8
LSS@IP (PA, PD, PG, PJ)	1400 m
LSS@TECH (PB, PF, PH, PL)	2143 m
Arc length	9.6 km
Sum of arc lengths	76.9 m
Total length	91.1 km

- 8 sites less use of land, <40 ha instead 62 ha
- Possibility for 4 experiment sites in FCC-ee
- All sites close to road infrastructures (< 5 km of new road constructions for all sites)
- Vicinity of several sites to 400 kV grid lines
- Good road connection of PD, PF, PG, PH suggest operation pole around Annecy/LAPP
- Exchanges with ~40 local communes ongoing

FUTURE CIRCULAR FCC implementation - footprint baseline

Present baseline implementation

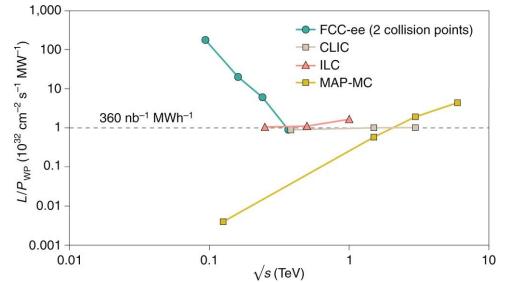
- 91.2 km circumference
- 95% in molasse geology for minimising tunnel construction risks
- 8 surface sites with ~5 ha area each.

Site investigations planned for 2024 and 2025 in areas with uncertain geological conditions:

- Limestone-molasse border, karstification, water pressure, moraine properties, water bearing layers, etc.
- ~40-50 drillings, 100 km of seismic lines

Progress with regional activities

- CERN visits of Elus from Departments Haute Savoie, Ain and Canton Geneva
- Information meetings and exchanges with presidents and prefets of Ain and Haute Savoie to prepare regional activities
- All communes concerned by FCC trace were approached directly via information letters co-signed by Prefet de la region ARA and CERN DG for France and Conseiller d'Etat de Geneve and CERN DG for Switzerland.
- Consultations with individual communes presently ongoing, first contact with all 42 completed before end of year.
- Technical discussions on territorial implementation, water use, excavation material reuse, etc. started with department 74 Haute Savoie.


Sustainability aspects and studies

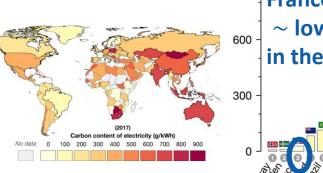
highly sustainable Higgs factory

FUTURE

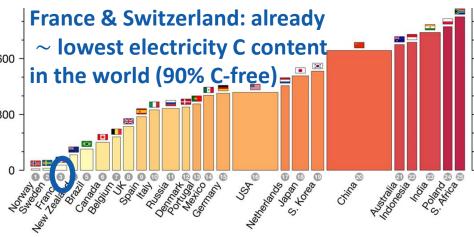
CIRCULAR COLLIDER

luminosity vs. electricity consumption

Thanks to twin-aperture magnets, thin-film SRF, efficient RF power sources, top-up injection

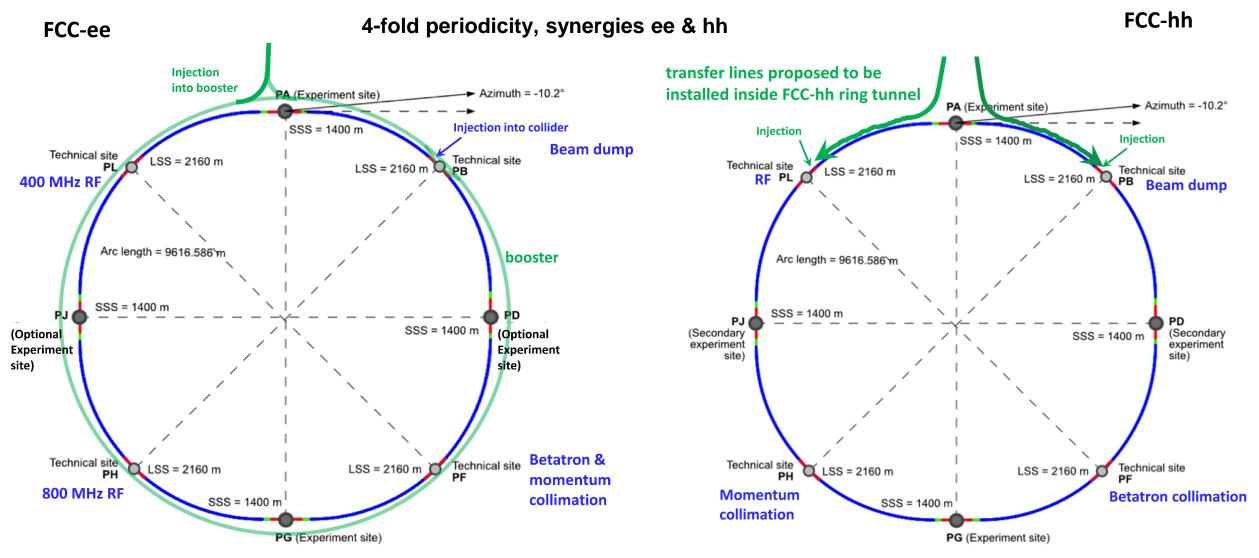

optimum usage of excavation material int'l competition "mining the future[®]"

https://indico.cern.ch/event/1001465/


FCC-ee annual energy consumption ~ LHC/HL-LHC

120 GeV	Days	Hours	Power OP	Power Com	Power MD	Power TS	Power Shutdow	n	
Beam operation	143	3432	293					10056	44 MWh
Downtime operation	42	1008	109					11026	6 MWh
Hardware, Beam commissioning	30	720		139				10007	'9 MWh
MD	20	480			177			8519	6 MWh
technical stop	10	240				87		2098	5 MWh
Shutdown	120	2880					69	19987	2 MWh
Energy consumption / year	365	8760						1.52	TWh
Average power								174	MW
JP. Burnet, FCC Week 2022				CERN Meyrin, SPS, FCC			Z V	v н	TT
incl. CERN site & SPS				m energy (GeV)		45.6 8	0 120) 182.5
				rgy consun	nption (TWł	n/y)	1.82 1.	92 2.0	9 2.54

powered by mix of renewable & other C-free sources


https://www.carbonbrief.org/

FUTURE CIRCULAR new layouts & preliminary assignments of straight sections COLLIDER

injection-tunnel near PA; 4 exp. caverns for both

- High luminosity precision study of Z, W, H, and tt
 2×10³⁶ cm⁻²s⁻¹/IP at Z (or total ~10³⁷ cm⁻²s⁻¹ with 4 IPs), 7×10³⁴ cm⁻²s⁻¹ at ZH, 1.3×10³⁴ cm⁻²s⁻¹ at tt
 , nprecedented energy resolution at Z (<100 keV) and W (<300 keV)</p>
- Low-risk technical solution based on 60 years of e⁺e⁻ circular colliders and particle detectors; R&D on components for improved performance, but no need for "demonstration" facilities; LEP2, VEPP-4M, PEP-II, KEKB, DAΦNE, or SuperKEKB already used many of the key ingredients in routine operation
- Infrastructure will support a century of physics \circ FCC-ee \rightarrow FCC-hh \rightarrow FCC-eh and/or several other options (FCC-µµ, Gamma Factory ..)
- Utility requirements similar to CERN existing use
- **Strong support** from CERN, partners, and 2020 ESPPU

Stage 1: updated parameters

FUTURE CIRCULAR COLLIDER

K. Oide, D. Shatilov,

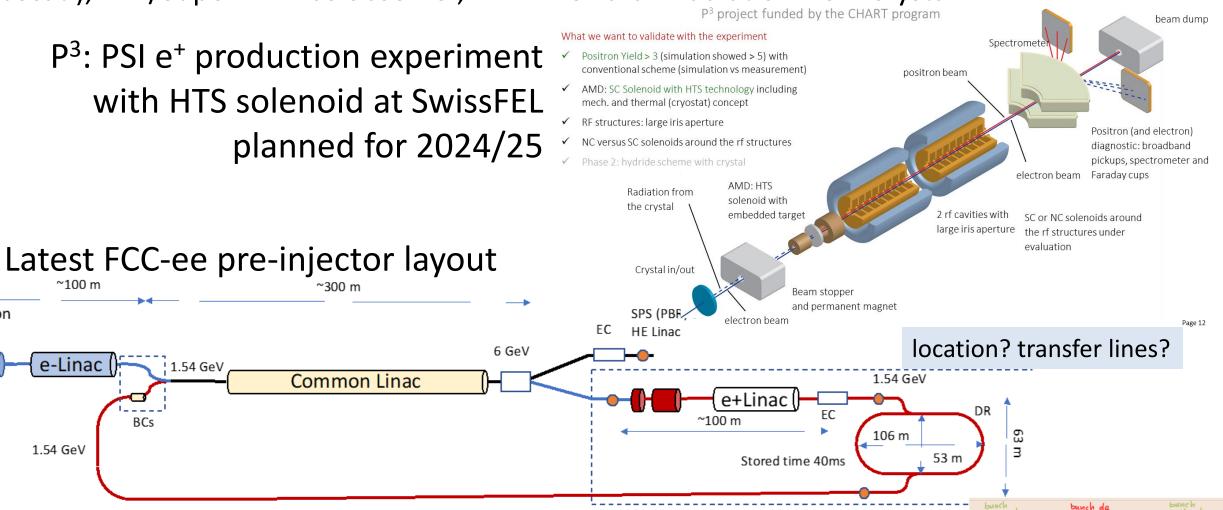
Parameter [4 IPs, 91.2 km, T _{rev} =0.3 ms]	Z	ww	Н (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1280	135	26.7	5.0
number bunches/beam	10000	880	248	36
bunch intensity [10 ¹¹]	2.43	2.91	2.04	2.64
SR energy loss / turn [GeV]	0.0391	0.37	1.869	10.0
total RF voltage 400/800 MHz [GV]	0.120/0	1.0/0	2.08/0	4.0/7.25
long. damping time [turns]	1170	216	64.5	18.5
horizontal beta* [m]	0.1	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horizontal geometric emittance [nm]	0.71	2.17	0.64	1.49
vertical geom. emittance [pm]	1.42	4.34	1.29	2.98
horizontal rms IP spot size [µm]	8	21	14	39
vertical rms IP spot size [nm]	34	66	36	69
beam-beam parameter ξ_x / ξ_y	0.004/ .159	0.011/0.111	0.0187/0.129	0.096/0.138
rms bunch length with SR / BS [mm]	4.38 / 14.5	3.55 / <mark>8.01</mark>	3.34 / <mark>6.0</mark>	2.02 / <mark>2.95</mark>
Iuminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	182	19.4	7.3	1.33
total integrated luminosity / year [ab-1/yr]	87	9.3	3.5	0.65
beam lifetime (rad Bhabha + BS+lattice)	8	18	6	10

FCC-ee Pre-Injector - Swiss CHART 2 program CIRCULAR COLLIDER Collaboration between PSI and CERN with external partners: CNRS-IJCLab (Orsay), INFN-LNF

(Frascati), KEK/SuperKEKB as observer, INFN-Ferrara – radiation from crystal

P³: PSI e⁺ production experiment with HTS solenoid at SwissFEL planned for 2024/25

FUTURE


~100 m

e-Linac

1.54 GeV

Electron

source

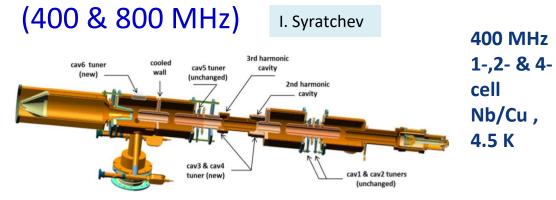
Positron source

estore

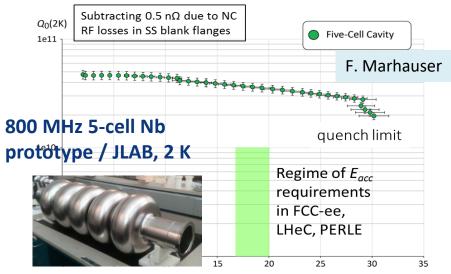
P. Craievich, A. Grudiev, C. Milardi, A. De Santis, et al.

! 1.54 GeV

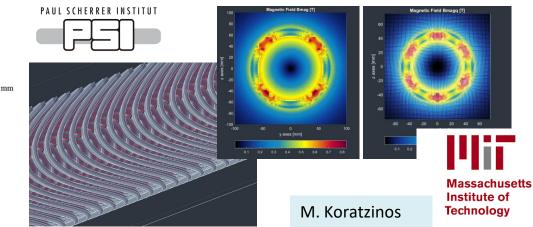
BCs



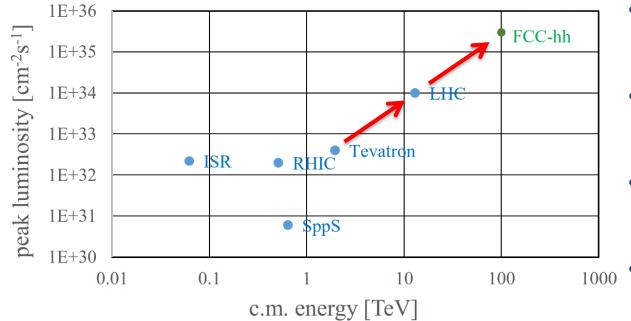
Accelerator R&D examples


efficient RF power sources

E_{acc} (MV/m)


FPC & HOM coupler, cryomodule, thin-film coatings...

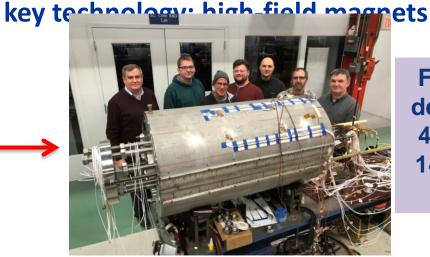
energy efficient twin aperture arc dipoles



0.5 T 1.0 T

under study: CCT HTS quad's & sext's for arcs

CIRCULAR FCC-hh: highest collision energies



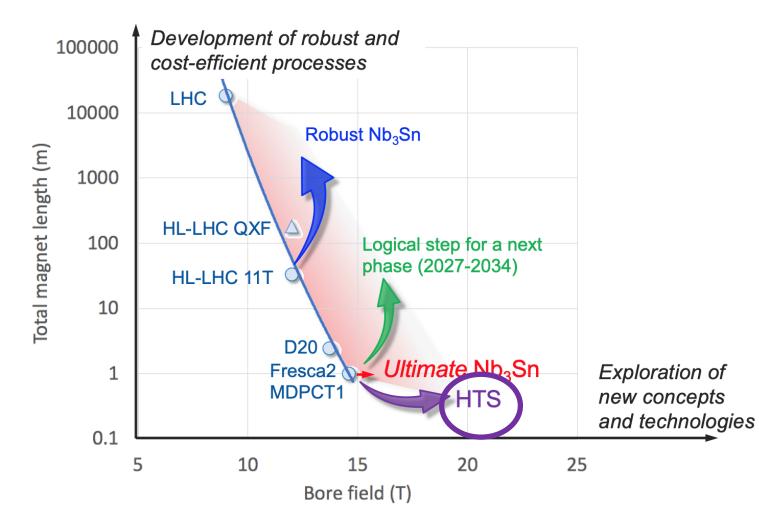
from LHC technology 8.3 T NbTi dipole

via HL-LHC technology 12 T Nb₃Sn quadrupole

- order of magnitude performance increase in both energy & luminosity
- **100 TeV cm collision energy** (vs 14 TeV for LHC)
- 20 ab-1 per experiment collected over 25 years of operation (vs 3 ab⁻¹ for LHC)
- similar performance increase as from Tevatron to LHC

FNAL dipole demonstrator 4-layer cos 14.5 T Nb₃Sn in 2019

Stage 2: FCC-hh (pp) collider parameters


parameter	FC	FCC-hh		LHC
collision energy cms [TeV]	1	00	14	14
dipole field [T]	~17 (~16 co	mb.function)	8.33	8.33
circumference [km]	91	1.2	26.7	26.7
beam current [A]	0	.5	1.1	0.58
bunch intensity [10 ¹¹]	1	1	2.2	1.15
bunch spacing [ns]	25	25	25	25
synchr. rad. power / ring [kW]	27	700	7.3	3.6
SR power / length [W/m/ap.]	32	2.1	0.33	0.17
long. emit. damping time [h]	0.	0.45 12.9		12.9
beta* [m]	1.1	0.3	0.15 (min.)	0.55
normalized emittance [µm]	2	2.2 2.5		3.75
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	5 (lev.)	1
events/bunch crossing	170	1000	132	27
stored energy/beam [GJ]	7	8	0.7	0.36

FUTURE CIRCULAR COLLIDER

CIRCULAR HFM: preparing for FCC stage 2 (FCC-hh)

In parallel to FCC studies,

High Field Magnet development program as long-term separate R&D project

CERN budget for high-field magnets doubled in 2020 Medium-Term Plan (~ 200 MCHF over ten years)

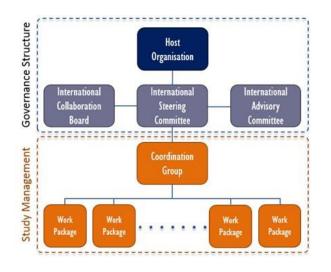
Main R&D activities:

- materials: goal is ~16 T for Nb₃Sn, at least ~20 T for HTS inserts
- magnet technology: engineering, mechanical robustness, insulating materials, field quality
- production of models and prototypes: to demonstrate material, design and engineering choices,

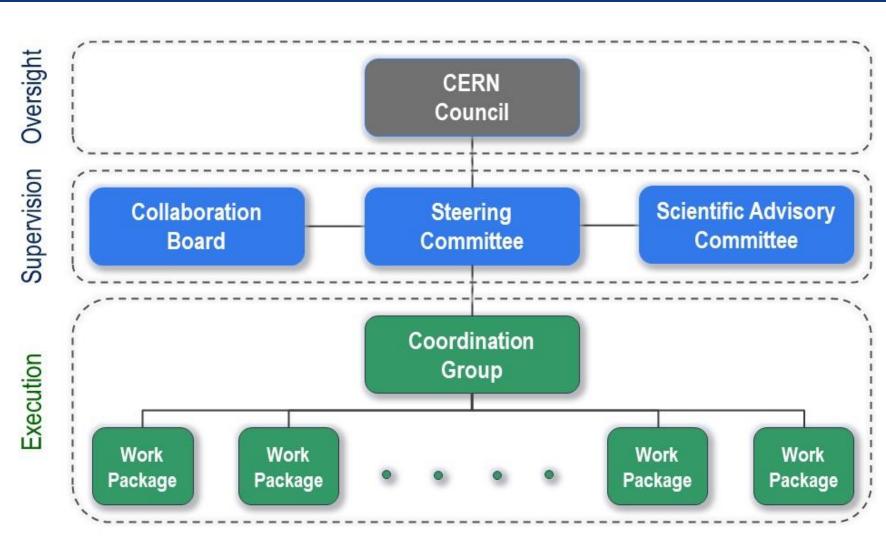
industrialisation and costs

infrastructure and test stations: for tests up to ~ 20 T and 20-50 kA

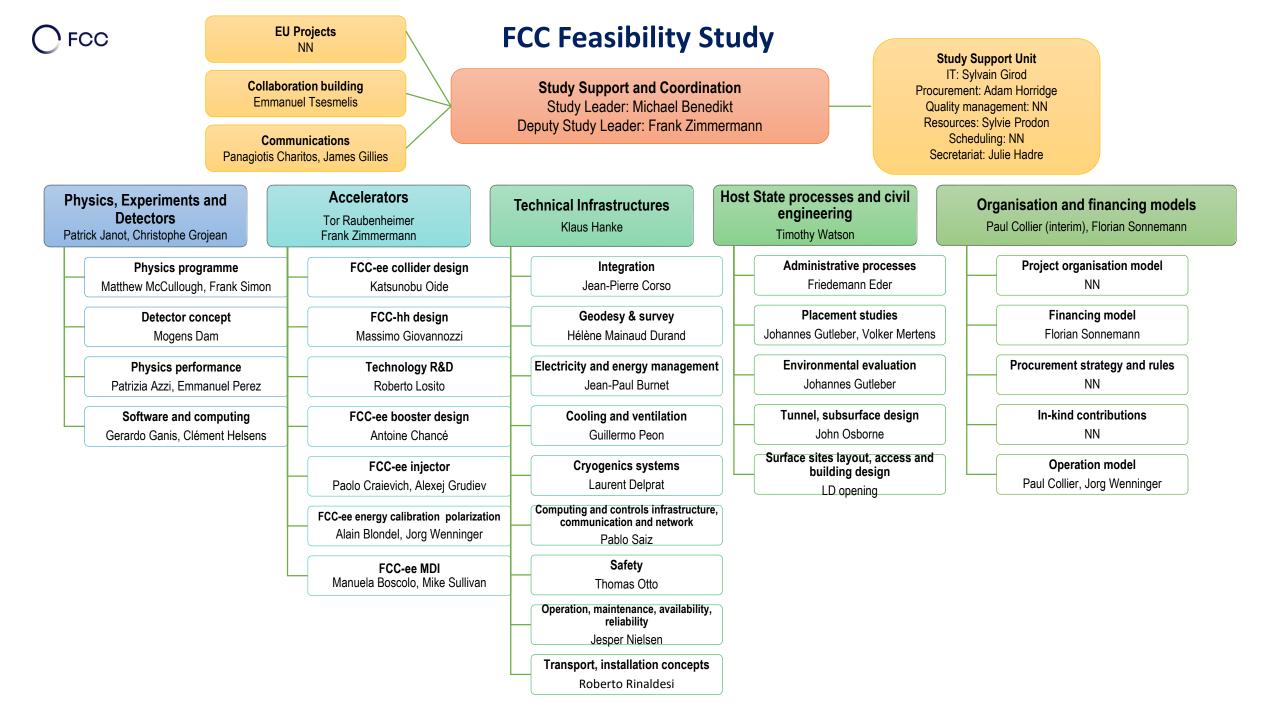
Detailed deliverables and timescale being defined through Accelerator R&D roadmap under development


L. Bottura, F. Gianotti, A. Siemko

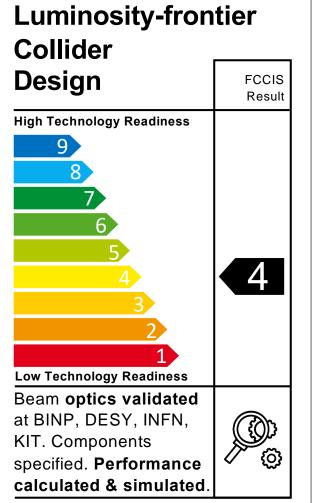
FCC Feasibility Study - organisational structure

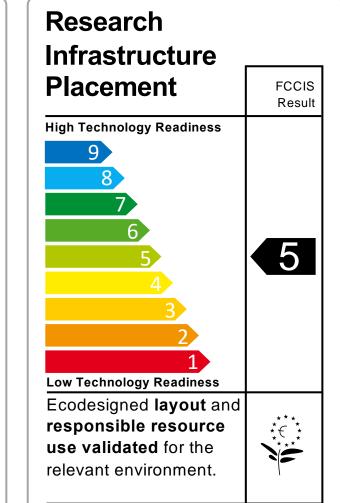

 New structure very similar to the first phase of the FCC Study (2014-2020), leading to the Conceptual Design Report as input to the ESPPU.

FUTURE


CIRCULAR COLLIDER

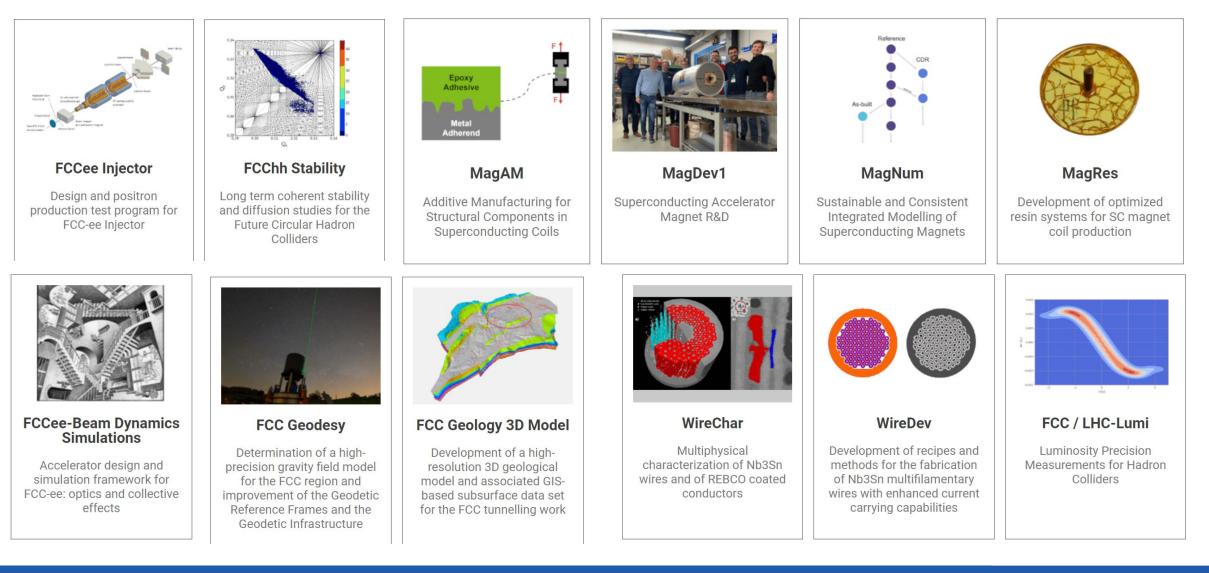
 Classical structure common to CERN projects.


H2020 DS FCC Innovation Study 2020-24


				Торіс	INFRADEV-01-2019-2020
ULIV, United Kingdom Springer, The Netherlands				Grant Agreement	FCCIS 951754
				Duration	48 months
	•DESY, G	•DESY, Germany			2 Nov 2020 – 1 Nov 2024
Beneficiaries	IFJPAN	N, Poland		Project cost	7 435 865 €
Deficiciaries	KIT, Germany	KIT, Germany			2 999 850 €
CEA, France				Beneficiaries	16
	CERN	MUL, Austria		Partners	6
Cerema, CETU , Fran					
USC, Spain	LD, Switzerland INFN CNRS, France	, Italy United States of America	UOXI United <u>Kingdom</u> D.R.T		Partners
			Fran		

Objectives of FCCIS (Description of Action)

- <u>O1:</u> **Design a circular luminosity frontier particle collider** with a research programme to remain at the forefront of research
- <u>O2</u>: Demonstrate the technical and organizational feasibility of a 100 km long, circular particle collider
- <u>O3:</u> Develop an innovation plan for a longterm sustainable research infrastructure that is seamlessly integrated in the European research landscape
- <u>O4:</u> Engage stakeholders from different sectors of the society
- <u>O5:</u> Demonstrate the role and impact of the research infrastructure in the innovation chain, focusing on responsible resource use and managing environmental impacts



FUTURE

CIRCULAR COLLIDER

CHART - Switzerland

FCC Feasibility Study Status Michael Benedikt FCCIS WS,5 December 2022 Founded in 2016 as umbrella organization for accelerator research and technology in Switzerland to support FCC via projects with CERN, PSI, ETHZ, EPFL and U Geneva and further partners.

Status of global FCC collaboration

H2020

Increasing international collaboration as a prerequisite for success:

links with science, research & development and high-tech industry will be essential to further advance and prepare the implementation of FCC

FCC Feasibility Study: 58 fully-signed previous members, 17 new members, MoU renewal of remaining CDR participants in progress

FCC workshops in 2nd half of 20

eeFACT'22 – FCC-ee progress; power & performance assessment for future e⁺e⁻colliders, Frascati (INFN);12-16 Sep'22 – <u>https://agenda.infn.it/event/21199/</u>

FCC-ee energy calibration & polarization, incl. possible exp's at KIT and LNF, CERN; 19-30 Sep'22 – <u>https://indico.cern.ch/event/1181966</u>

ECLOUD'22 – e.g. Vlasov solver for e-cloud driven instabilities; lessons from LHC & SuperKEKB; predictions & countermeasures for FCC-ee/FCC-hh and for EIC, La Biodola (INFN); 25 Sep - 1 Oct'22 - <u>https://agenda.infn.it/event/28336/</u>

FCC-ee MDI workshop – including IR mock-up at LNF; CERN 17-28 Oct'22 <u>https://indico.cern.ch/event/1186798/</u>

FCC-ee beam instrumentation workshop; 21-22 Nov'22 https://indico.cern.ch/event/1209598/

First joint FCC - France&Italy workshop on Higgs, Top, EW, HF and SM physics; Lyon, 21-23 November'22, <u>https://indico.in2p3.fr/event/27968/</u>

FCCIS workshop 2022 including first meeting of FCC FS SAC; 5-9 Dec'22 https://indico.cern.ch/event/1203316/

FCC WEEK

2023

5 – 9 June

OTRACK.

Following 2020 European Strategy Update, organisation structure and major milestones & deliverables for the FCC Feasibility Study (FCC FS) approved by CERN Council in June 2021. Entire FCC government structure (members of SC, CB, SAC, CG) established by now (summer 2022).

Main activities: developing & confirming concrete implementation scenario, in collaboration with host state authorities, including environmental impact analysis, and accompanied by machine optimisation, physics studies and technology R&D - via global collaboration, supported by EC H2020 Design Study FCCIS and Swiss CHART. Goal: demonstrate feasibility by 2025/26

Long term goal: world-leading HEP infrastructure for 21st century to push particle-physics precision and energy frontiers far beyond present limits

