

SPACE FOR ADDITIONAL LOGOS

FCC ACCELERATOR STATUS and R&D

Tor Raubenheimer FCC IS Workshop December 5-9, 2022

Introduction

- FCC-ee fills need for a precision EW/Higgs factory while setting stage for a 100 TeV p-p collider in the future
 - FCC infrastructure will support a century of physics
- Very high luminosity precision study of Z and H
 2×10³⁶ cm⁻²s⁻¹/IP at Z and 7×10³⁴ cm⁻²s⁻¹ at Zh
- Low-risk technical solution based on 60 years of e⁺e⁻ circular colliders and particle detectors
 - R&D on components for improved performance but no need for "demonstration" facilities
- Utility requirements similar to CERN existing use

FCC-ee Luminosity

- FCC-ee efficient L from Z to *tt*
 - Thanks to twin-aperture magnets, SRF, efficient RF power, top-off injection
- Accumulate >2.5 ab⁻¹ with ~0.5x10⁶ H produced per IP
- Accumulate >75 ab⁻¹ with ~2x10¹² Z produced per IP
- Run plan naturally starts at Z but is under discussion

Luminosity vs. electricity consumption

Highest lumi per AC site power of all proposals Electricity cost ~200 CHF per Higgs boson

Challenges and Drivers

- High beam energy → large circumference to reduce synchrotron radiation and strong luminosity dependance on energy
 - Large circumference → challenging tuning and tolerances and long runs for facilities
 - Tunnel radiation \rightarrow may limit in-tunnel electronics
- High luminosity
 → strong beam-beam with beamstrahlung and reduced lifetimes
 - High beam current → large RF power with collective instabilities and collimation
 - Requires top-up injection and large dynamic aperture

Outline

- Overall requirements and status
- Parameters
- Main e+/e- rings beam optics
- Collective effects, Dynamic aperture, Injection, Collimation, ...
- SRF and Energy efficiency
- Full-energy booster and e+/e- injector
- R&D Issues

Accelerator Design Status

- New ~90 km circumference placement with 8 access points
- Layout with 4 IP's that is consistent with upgrade to FCC-hh
- Optimizing allocation of straight sections
- New FCC-ee optics to optimize beam-beam
- 400 MHz and 800 MHz RF systems
- Starting tunnel integration studies for RF and Arc sections
- Full energy booster that will fit in FCC tunnel for top-up injection
- e+ / e- injector to fill booster 24 / 7

Basic Design Choices

- Double ring e+e- collider
- **Common footprint with FCC-hh**, except around IPs
- Asymmetric IR layout and optics to limit synchrotron radiation towards the detector
- Perfect 4-fold superperiodicity allowing 2 or 4 IPs; large horizontal crossing angle 30 mrad, crab-waist collision optics
- Synchrotron radiation power 50 MW/beam at all beam energies
- **Top-up injection** scheme for high luminosity Requires **booster synchrotron in collider tunnel**

Accelerator Placement Optimization

J. Gutleber, V. Mertens

Placement Impact

- New PA31 layout proposed in 2021
- PA31-1.0 had a 91.2 km circumference
- Needed to modify to have matched harmonic number for injector chain → 91.1 km (Dec. 2021)
- Further circumference reduction needed to support surface sites leading to 90.8 km optics (Summer 2022)
- Settling on 90.7 km circumference with a harmonic number of 121,200 at 400.79 MHz which supports surface sites as well FCChh injector chain

FCC-ee layout consistent with FCC-hh

FCC-ee Parameters

Beam energy	[GeV]	45.6	182.5										
Layout		PA31-1.0											
# of IPs		4											
Circumference	[km]	90.836848											
Bending radius of arc dipole	[km]												
Energy loss / turn	[GeV]	0.0391	0.0391 0.370 1.869										
SR power / beam	[MW]	\sim	50										
Beam current	[mA]	1280	135	26.7	5.00								
Bunches / beam		10000	880	248	40								
Bunch population	$[10^{11}]$	2.43	2.91	2.04	2.37								
Horizontal emittance ε_x	[nm]	0.71	2.16	0.64	1.49								
Vertical emittance ε_y	[pm]	1.42	4.32	1.29	2.98								
Arc cell		Long	90/90	90/90									
Momentum compaction α_p	$[10^{-6}]$	28	7.	7.33									
Arc sextupole families		7	5	146									
$\beta^*_{x/y}$	[mm]	100 / 0.8	200 / 1.0	300 / 1.0	300 / 1.0 - 1000 / 1.6								
Transverse tunes/IP $Q_{x/y}$		53.563 /	53.600	100.565 / 98.595									
Energy spread (SR/BS) σ_{δ}	[%]	0.038 / 0.132	0.069 / 0.154	0.103 / 0.185	0.157 / 0.221								
Bunch length (SR/BS) σ_z	[mm]	4.38 / 15.4	3.55 / 8.01	3.34 / 6.00	1.94 / 2.74								
RF voltage 400/800 MHz	[GV]	0.120 / 0	1.0 / 0	2.08 / 0 2.1 / 9.2									
Harmonic number for 400 MHz			1210	548									
RF freuquency (400 MHz)	MHz		400.79	93257									
Synchrotron tune Q_s		0.0370	0.0801	0.0328	0.0826								
Long. damping time	[turns]	1168	217	64.5	18.5								
RF acceptance	[%]	1.6	3.4	1.9	3.0								
Energy acceptance (DA)	[%]	±1.3	± 1.3	± 1.7	-2.8 + 2.5								
Beam-beam ξ_x/ξ_y^a		0.0023 / 0.135	0.011 / 0.125	0.014 / 0.131	0.093 / 0.140								
Luminosity / IP	$[10^{34}/cm^2s]$	182	19.4	7.26	1.25								
Lifetime $(q + BS + lattice)$	[sec]	840	—	< 1065	< 4062								
Lifetime (lum)	[sec]	1129	1070	596	741								

^aincl. hourglass.

K. Oide, Nov. 2022

FCC-ee Arc FODO optics

- Configuration for arc optics with long ~100 m cells at Z & W and short ~50 m cells at Zh and t-tbar
 - \circ Reduces $ε_x$ at high E and increases $α_c$ at low E 90°/90° : $t\bar{t}, Zh$ Long 90°/90° : Z, W

K. Oide

FCC-ee IR optics

- Novel 'virtual' crab waist combining local vertical chromaticity correction
 - Crab waist was demonstrated at DAFNE
 - Crab waist is also being used at SuperKEKB
- Optimized optics configurations for each of the 4 working points

CDR optics, ttbar 182.5 GeV

- FCC-ee IR geometry
- FCC-ee and FCC-hh IP's moved to same location to reduce IR tunnel width
- Asymmetric IR layout is chosen to minimize the incoming synchrotron radiation

- $\odot~$ Photon E_{crit} < 100 keV from magnets within ~500 m of IP
- Collimators and masks further protect detectors
- Optimization is ongoing as part of MDI effort

FCC-ee Tuning and Correction

- Extensive studies on emittance tuning and dynamic aperture
 - Emittance tuning looks good given a 'reasonable' set of errors
 - Working to develop beam-based alignment models to combine with mechanical alignment specifications
 - Sets requirements on diagnostics but eases installation and stability requirements

FCC-ee Dynamic Aperture

No error

- Large dynamic aperture is needed for top-up injection and lifetime due to high beamstrahlung energy tails
 - Dynamic aperture optimized with ~150 families of sextupoles
 - Aperture is good without errors but still need to improve error correction

Alternate Ring Optics

P. Raimondi

- Nominal arc cells are 90-degree FODO cells
 - \circ Consider cell concepts from LC damping rings or light sources that may have better chromatic behavior \rightarrow better DA

FCC-ee Collective effects C

DIPARTIMENTO DI SCIENZE DI BASE e Applicate per l'Ingegneria

- Single bunch instabilities calculated with impedance, beambeam, and ring optics but there is complicated interplay
 - Building detailed impedance model: vacuum chamber, RF, bellows, BPMs, collimators working with Super KEKB, EIC,
 - Longitudinal wake and beam-beam constrains tunes
 - Beam-beam stabilizes the transverse mode-coupling instability

FCC-ee Long-range Collective effects

- Multibunch instabilities constrain bunch spacing
 - \circ Requires low SEY and n_y on vacuum chamber to avoid significant e-cloud
 - Damped RF cavities and electron cloud limits $\Delta t \ge 15$ ns ongoing studies
- Large ring circumference limits feedback gain
 - Developing integrated simulations for collective effects with feedback

Fatih Yaman, STFC Luca Sabato, EPFL FCC IS and CHART

FCC-ee Accelerator Layout

- The arc cells are repeated 2000 times around the ring
 - Critical to understand and optimize the layout for cost, installation, alignment, operation, and maintenance
 - Includes placement of the main rings and the Booster
- The RF regions are also tightly constrained
 - Optimize cryomodule lengths and waveguides

HL-LHC 2t Universal Adjustment Platform

FCC-ee SRF Systems

- Baseline uses established SRF technologies in use at CERN
- 800 MHz for booster and 400 MHz at Z, W, Zh while adding 800 MHz at t-tbar
 - Z with very high current \rightarrow 120 MV of low frequency (400 MHz) single-cell cavities with RF dedicated to e+ or e-
 - $\circ~$ Upgrade to 2-cell cavities at W with 1 GV in each ring
 - Increase to 2.1 GV shared between e+ and e- at Zh
 - Add 9 GV of 5-cell 800 MHz to e+ and e- rings along with a total of 11 GV 800 MHz for the booster
- Consider more aggressive options as alternates in future

FCC-ee SRF Systems

24th May 2022	Z		w			н	ttbar2						
	per beam	booster	per beam	booster	2 beams	booster	2 beams	2 beams	booster				
Frequency [MHz]	400	800	400	800	400	800	400	800	800				
RF voltage [MV]	120	140	1000	1000	2480	2480	2480	9190	11670				
Eacc [MV/m]	5.72	6.23	11.91	24.26	11.82	25.45	11.82	24.52	25.11				
# cell / cav	1	5	2	5	2	5	2	5	5				
Vcavity [MV]	2.14	5.83	8.93	22.73	8.86	23.85	8.86	22.98	23.53				
#cells	56	120	224	220	560	520	560	2000	2480				
# cavities	56	24	112	44	280	104	280	400	496				
# CM	14	6	28	11	70	26	70	100	124				
T operation [K]	4.5	2	4.5	2	4.5	2	4.5	2	2				
dyn losses/cav [W]	19	0.5	174	7	171	8	171	51	8				
stat losses/cav [W]	8	8	8	8	8	8	8	8	8				
Qext	6.6E+04	3.2E+05	1.2E+06	8.9E+06	1.5E+06	1.2E+07	8.3E+06	4.9E+06	5.3E+07				
Detuning [kHz]	8.939	4.393	0.430	0.115	0.123	0.031	0.025	0.040	0.005				
Pcav [kW]	880	205	440	112	352	95	62	207	20				
rhob [m]	9937	9937	9937	9937	9937	9937	9937	9937	9937				
Energy [GeV]	45.6	45.6	80.0	80.0	120.0	120.0	18	32.5	182.5				
energy loss [MV]	38.49	38.49	364.63	364.63	1845.94	1845.94	987	5.14	9875.14				
cos phi	0.32	0.27	0.36	0.36	0.74	0.74	0.70	0.90	0.85				
Beam current [A]	1.280	1.280 0.128		0.0135	0.0534	0.005	0.010	0.010	0.001				

FCC-ee SRF R&D

- 400 MHz Cu/Nb cavities with Q₀ of >3e9 at 12 MV/m and 4.5K
 - Require strong damping of single-cell cavities to reduce HOMs at Amp-level current
 - $\circ~$ Coupler design for ~MW RF power
 - Compact cryomodule design for W, Zh, and t-tbar
- 800 MHz Nb cavities with Q₀ of >3e10 at 25 MV/m and 2K
 - Require strong damping of HOMs in 5-cell cavities for 100 mA
 - \circ Recently increased Q₀ spec from 2e10 to >3e10
 - Coupler design for 250 kW RF power
 - Compact cryomodule design for t-tbar

FCC-ee 400 and 800 MHz SRF Systems

- R&D is on-going around the world on high Q₀ cavities
- 400 MHz is based on thin-film coatings of Cu cavities while 800 MHz are bulk Nb
 Jefferson Lab
- LHC is pushing the 400 MHz development of HiPIMS sputtering
- Jlab tested a bare 800 MHz cavity

High Q₀ SRF Systems

- LCLS-II developed new N₂ doping approach \rightarrow is operating cryomodules at 1.3 GHz with Q₀ = 2.7x10¹⁰ at 16 MV/m
- PIP-II is developing high Q cavities at 650 MHz

 LCLS-II-HE has built two cryomodules with Q0 = 2.7x10¹⁰ and >21 MV/m

Developing High Q Cavities

- Development of cavities is guided by theory but still very much
 an exploration
 Ship to DESY
 Cavity after
- LCLS-II developed 2/6 N₂ recipe; LCLS-II-HE 2/0 and 3/60 recipes; ILC low-T bake; PIP-II mid-T bake

Sustainability compared with other Higgs factories

TWh / year for the "Higgs factory" centre-of-mass energy

 \sqrt{s} = 240 GeV for CEPC/FCC-ee, 250 GeV for ILC/C³, 380 GeV for CLIC

CLIC	ILC	C ³	FCC-ee	CEPC
0.8	0.9	0.9	1.1	2.0

Energy consumption in MWh / Higgs

becomes 2 MWh / Higgs for FCC-ee with 4 IPs

Present carbon footprint for electrical energy in tons CO_2 / Higgs

CLIC@CERN	ILC@KEK	C ³ @FNAL	CEPC@China	FCC-ee@CERN
2.1	7.8	8.5	6.1	, 0.24

0.14 ton CO_2 / Higgs for FCC-ee with 4 IPs

Patrick Janot

https://indico.cern.ch/event/1178975/

P. Janot and A. Blondel, *Who is the greenest? - The environmental footprint of future Higgs boson studies*, arXiv 2208.10466 (2022); <u>https://arxiv.org/abs/2208.10466</u>

FCC-ee Power Consumption

- Roughly 300 MW operating at Higgs
 - Complete power accounting
- High efficiency RF sources (150 MW) 80 \rightarrow 90%
- High Q RF Cavities (20 MW)
- Magnet systems (40 MW)
 - O Dipole quite efficient
 - Quadrupole and sextupole magnets simplified and power reduced with smaller bore or HTS
 - Cable losses may be reduced with in-tunnel PS
- Efficient cooling and ventilation (40 MW)

Modified cross-section

HTS Arc Quadrupole / Sextupole / Dipole

Swiss Accelerator Research and Technology

- Develop HTS magnets for arc quadrupole / sextupoles
 - Reduce power consumption with nested quadrupole and sextupole
 - Cryo-coolers for compact installation
 - Add weak dipoles to reduce SR power by 10% at Z and 20% at Higgs
- HTS4 R&D program supported by CHART led by M. Koratzinos
 - Produce a 1-m protype section leveraging HTS development as part of CHART
 - Understand radiation environment and magnet and cooler radiation damage

CERN Courier, Nov. 2022

Full Energy Booster

- Accumulate electrons or positrons for injection to Main Ring
- Accumulation times of ~25 seconds at Z
- Damp beams and transients to Main Ring equilibrium values
- Alternate injection of e- and e+ to maintain +/- 3 to 5% charge
- Layouts are being developed with IP Bypasses, Inj/Ext, and RF
 - Arc cell structure mirrors Main Ring
 - Laminated magnet concepts are being considered
 - Developing integrated model of arc structure including both Main Rings and Booster
 - Collective effects, dynamic aperture and tolerances are being studied

FCC-ee Pre-Injector

P. Craievich, A. Grudiev

- Design concept being developed with PSI
 - High brightness e- source and efficient e+ source with damping ring to generate pairs of 6 GeV bunches at 200 Hz (for Z)
 - Acceleration to Booster at ~20 GeV in SPS (CDR) or high energy
 ____linac (FCC IS)

FCC-ee Pre-Injector R&D

P³ project funded by the CHART program

What we want to validate with the experiment

- Positron Yield > 3 (simulation showed > 5) with \checkmark conventional scheme (simulation vs measurement)
- ~ AMD: SC Solenoid with HTS technology including mech. and thermal (cryostat) concept
- RF structures: large iris aperture \checkmark
- NC versus SC solenoids around the rf structures 1
- Phase 2: hydride scheme with crystal \checkmark

SC or NC solenoids around the rf structures under evaluation

Spectromete

positron beam

Swiss Accelerator

Research and Technology

beam dump

FCC-ee MDI and IR design

 Complicated integration with SC quadrupoles, solenoids, IR chamber, LumiCal, shielding, and diagnostics

(thanl	Shielding LumiCal (s to Mogens Dam)	Compensation Solenoid	Screening s	solenoid	QC1L3	M. Boscolo M. Koratzinos, B. Parker, et al						
				Start position	Length	B'@Z	B'@W	B' @ H	B'@tt			
		00111		(m)	(m)	(T/m)	(T/m)	(T/m)	(T/m)			
		QUILI	QC2L2	-8.44	1.25	25.05	43.82	61.30	69.50			
IP		BPM	QC2L1	-7.11	1.25	-0.18	0.00	7.32	56.85			
5			QC1L3	-5.56	1.25	-19.35	-34.38	-53.08	-99.98			
		Quadrupoles	QC1L2	-4.23	1.25	-18.57	-32.94	-53.07	-99.98			
		thanks to M. Koratzinos	QC1L1.1	-2.9	0.7	-40.95	-70.00	-99.71	-95.39			
			QC1L1.2	2.2	0.7	-40.95	-70.00	-99.71	-95.39			
			QC1R2	2.98	1.25	-25.44	-37.25	-51.94	-100.00			
			QC1R3	4.31	1.25	-19.54	-39.51	-53.65	-91.87			
			QC2R1	5.86	1.25	14.64	16.85	-2.65	37.19			
			OC2R2	7.19	1.25	19.50	44.32	67.52	94.43			

Grooved Double Helical Coil Support

Baseline FCC-ee Coils and Beam Pipe

FCC-ee IR Mock-up

IP chamber: critical for performance, MDI

<u>Step 1:</u> Central IP vacuum chamber (test cooling and vacuum systems), AIBeMet162 & steel transition (shape of transition, EBW process), Bellows (vacuum and thermal tests), Welding (EBW for elliptical geometry), C-fibre support structure

Step 2: Trapezoidal vacuum chamber with remote vacuum connection, first quadrupole QC1, cryostat, beam pipe and quadrupole and cryostat support, vibration & alignment sensors

FCC-ee Alternative technologies

- Developing technologies with significant potential impact in parallel to baseline, e.g.
 Changes in the spacings & lengths
 - HTS arc quadrupole/sextupole magnets
 - High efficiency RF sources
 - Radiation hard electronics
 - HE linac as a pre-booster
 - Positron target using crystal channeling
 - Advanced cooling tower design
 - Advanced cryogenic design

$(A) \qquad D \qquad Q \qquad D$ $(B) \qquad D \qquad Q \qquad S \qquad D$ $(C) \qquad D \qquad Q \qquad S \qquad S \qquad D$

Combined function HTS magnet

36

Synergistic Programs

Collaborators around the world

- Many synergies with other large accelerator projects
 - Super KEKB (KEK)
 - CEPC (China)
 - Electron Ion Collider (BNL / Jlab)
 - o PIP-II (Fermilab)
 - Synchrotron radiation facilities (world-wide)

FCC accelerator summary and timeline

- Finalizing layouts with correct circumference
- FCC-ee baseline parameters are established
 - Main ring substems, full-energy booster, and injector all being defined
- Technical systems making good progress
 - Vacuum, magnets, SRF, cryogenics, diagnostics, integration, ...
 - $\circ~$ Already most efficient Higgs solution but working to improve overall η
 - Extensive world-wide R&D program
- Luminosity requires all systems work together in large facility
 - Still many challenges in developing robust integrated design
- Will have baseline established in 2023 and optimize further to complete feasibility study at end of 2025

																					-			-
-				Ş	SP	AC	E	F	OF	R A	۱D	D١	ΓIC	٦V	IAI	LL	0	G	DS					
۰.																								

Thank you for your attention.