FCC-ee Arc Half-Cell Configuration Project & Mock-up

F. Carra (CERN)

On behalf of the Arc Half-Cell Configuration Project, with inputs from many FCC WG and colleagues

- Aim of the project
- Project organization & timeline
- Arc cell configuration(s)
- Main studies
 - Integration layout & booster placement
 - Arc systems interfaces & inter-beam distance
 - Accelerators supporting systems & SSS girders
- Arc half-cell mock-up & Novel concepts
- Conclusions

- Aim of the project
- Project organization & timeline
- Arc cell configuration(s)
- Phase I main studies
 - Integration layout & booster placement
 - Arc systems interfaces & inter-beam distance
 - Accelerators supporting systems & SSS girders
- Arc half-cell mock-up & Novel concepts
- Conclusions

Aim of the project

- Arc half-cell: most recurrent assembly of mechanical hardware in the accelerator (~1500 similar FODO cells in the FCC-ee)
- Building a mock-up allows optimizing and testing fabrication, integration, assembly, transport, installation, alignment, maintenance
- Working with demonstrators of the different equipment, and/or structures with equivalent volumes, weights, stiffness
- First proposal later in this presentation!

Arc perspective view, F. Valchkova-Georgieva

- Aim of the project
- Project organization & timeline
- Arc cell configuration(s)
- Phase I main studies
 - Integration layout & booster placement
 - Arc systems interfaces & inter-beam distance
 - Accelerators supporting systems & SSS girders
- Arc half-cell mock-up & Novel concepts
- Conclusions

Phase I main deliverables

3D model + 2D cross-section drawings of arc region

- Phase 1: Concept development → functional spec + integration studies. Develop 3D model for 'representative' arc half-cell.
- Phase 2: Engineering design of half-cell mock-up systems and delivery of 2D functional and fabrication drawings.
- Phase 3: Fabrication of half-cell mock-up with tunnel boundary with representative components and systems (non-operational).

Timeline

Phase I setup

- Dedicated working group representing all domains involved
 - PL: Federico Carra (overall mechanical concept)
 - Scientific secretary & Calculations: L. Baudin
 - FCC Integration (enlarged) F. Valtchkova, J. P. Corso, S. Grillot, J. Etheridge, S. Chemli
 - Design & Stabilization: M. Timmins, C. Tetrault, K. Artoos, O. Capatina, M. Guinchard, L. Baudin
 - Alignment: H. Mainaud-Durand;
 - Beam Instrumentation: M. Wendt
 - Accelerator hardware aspects: via R. Losito as coordinator for Technology R&D
 - RF: O. Brunner

) FCC

- Technical infrastructure: via K. Hanke as coordinator of Technical Infrastructure Pillar
- CE tunnel: J. Osborne
- Accelerator design: K. Oide (FCCee) and A. Chance (Booster)
- + additional team members, full list in e-group: fcc-ee-arc-cell-mockup-project (FCC-ee arc-cell mock-up meeting members);
- Oversight directly by <u>Accelerator Pillar Coordinators (T. Raubenheimer, F. Zimmermann)</u>
- Regular meetings with Senior Advisors Panel to report on status, collect feedback & proposed actions (A. Bertarelli, F. Bertinelli, P. Fessia, F. Lackner, J.P. Tock, J. Wickstrom, P. Raimondi with M. Benedikt, T. Raubenheimer & F. Zimmermann)

- Aim of the project
- Project organization & timeline
- Arc cell configuration(s)
- Phase I main studies
 - Integration layout & booster placement
 - Arc systems interfaces & inter-beam distance
 - Accelerators supporting systems & SSS girders
- Arc half-cell mock-up & Novel concepts
- Conclusions

Arc cell configuration(s)

T. Raubenheimer, "Accelerator Overview", FCC week, 30th May 2022.

M. Hofer, "Baseline optics and layout of the FCC-ee collider ring", FCC week, 31st May 2022.

- New configuration for arc optics with long ~100 m FODO cells at Z & W and short ~50 m cells at Zh and tt (more details in Katsunobu's <u>talk</u> this morning)
- Total arc length 9.6 x 8 ~ 77 km

- FCC arcs are constructed from roughly 750 long cells or 1500 short cells
- Integration study (Phase I): to give also inputs on how to best evolve from long cell (low energy) to short cell

○ FCC

Arc cell configuration: from low to high energy

○ FCC

Short arc half-cell (high energy, H and ttbar)

L. Baudin, J. Bauche

- Instead of having 3 different lengths for the long dipoles → 2 types of dipoles
 - SD ~ 1.5m
 - LD ~ 10m(x2)
- Instead of having 2 (/3) different girder lengths → 1 common girder
 - Girder ~ 6.3m
- "Hot spares" for each SSS module ready for installation in case of faults, leaks, etc. of single elements
- (→ more in the "supporting systems" part, later in these slides)

- Aim of the project
- Project organization & timeline
- Arc cell configuration(s)
- Phase I main studies
 - Integration layout & booster placement
 - Arc systems interfaces & inter-beam distance
 - Accelerators supporting systems & SSS girders
- Arc half-cell mock-up & Novel concepts
- Conclusions

Tunnel Layout – Vertical placement booster to collider

F. Valchkova-Georgieva

Machine tunnel 5.5m in diameter

- Main cross section as for FCC-hh
- Main ring below of booster ring
- Main ring and booster ring 1.03 m distant
- Demineralized water circuit decreased to DN550 (can possibly be less, requirement update exercise triggered with G. Peon and equipment owners)

Tunnel Layout – Vertical placement booster to collider

F. Valchkova-Georgieva

Machine tunnel 5.5m in diameter

Perspective view

Tunnel Layout – Vertical placement booster to collider

Vertical placement considers that:

- The booster SSS is azimuthally offset from the collider SSS
 - Decrease vertical distance between booster and collider beam axis
 - Better stability of booster supports
 - Eases integration in Φ5.5m tunnel
 - (periodicity/offset maintained across the ring)

C. Tetrault

Booster SSS on top of collider dipoles

Tunnel Layout – Horizontal placement booster to collider

F. Valchkova-Georgieva

Machine tunnel 5.5m in diameter

- Main ring and booster ring 2.1 m distant
- Demineralized water circuit DN550 in a trench

Tunnel Layout - Horizontal placement booster to collider

F. Valchkova-Georgieva

Machine tunnel 5.5m in diameter

Perspective view

○ FCC

Booster-Collider positioning – Inspiration from the past

KEKB, SuperKEKB

3 km Electron-Positron rings

3770 05500

100

Horizontal (wrt Vertical) configuration

Pros

Overall better stability

Easier access to collider

- Less vibrations to the booster
- Collider more decoupled from the booster
 → less vibration crosstalk

Cons

- Demineralized water circuit in trenches presents complications:
 - Water-induced vibrations to accelerators
 - Lower stiffness of ground close to accelerators
 - Difficult access to valves and connection water pipes DN80 (every some tens of meters)
- Complex integration of alignment system, with reduced space for maintenance
- Imposes larger diameters to other tunnel regions than arcs (e.g. RF 6.8m points L/H vs. 5.5-6.3/6.3m L/H; IP...)
- EN-HE perspective: more problematic transport and maintenance.
 - To remove outer ring magnets, necessary to remove inner ring ones, beampipe and survey equipment to gain access
 - Slightly less space for the passage of vehicles
- Ground adaptation required when moving to FCC-hh

- Aim of the project
- Project organization & timeline
- Arc cell configuration(s)
- Phase I main studies
 - Integration layout & booster placement
 - Arc systems interfaces & inter-beam distance
 - Accelerators supporting systems & SSS girders
- Arc half-cell mock-up & Novel concepts
- Conclusions

Collider: e+e- interbeam distance

- Mechanical design study of magnetic & vacuum system and interfaces of collider
 - Larger space required for SR absorbers (water cooling piping and fittings; safety distance to busbar wrt voltage)
 - Proposed to increase the inter-beam distance from 300 to 350 mm

<u>Conflict</u>: SR absorber - busbar

Discussed and approved at <u>160th FCC-ee Optics</u> <u>Design Meeting</u>

Dipole cross-section with SMA flanges

SR absorber

C. Tetrault

SR absorber integration in dipole

- Aim of the project
- Project organization & timeline
- Arc cell configuration(s)
- Phase I main studies
 - Integration layout & booster placement
 - Arc systems interfaces & inter-beam distance
 - Accelerators supporting systems & SSS girders
- Arc half-cell mock-up & Novel concepts
- Conclusions

Short Straight Sections configuration

Collider

FCC

- SSS elements supported by common girder
- Enhance strategy for chamber insertion / splittable magnets
- Booster
 - TE-MSC and TE-VSC started the design of the booster elements
 - EN-MME produced the first version of a robust and compact supporting system → fed to calculations
 - Two supporting principles studied: common girder (preferable for TE-VSC, allows a single chamber) vs. individual adjustment system (e.g. HL-LHC UAP, designed by BE-GM)

Collider SSS:

Quadrupole weight: ~5300 Kg.

Sextupole weight: ~680 Kg individual, 2720 Kg total.

Total: ~8020 Kg

Preliminary girder weight: ~3000 Kg Girder: 650 mm x 720 mm x 6500 mm

Short Straight Sections configuration

Booster SSS supports, two preliminary configurations:

○ FCC

Booster support – design iterations

 Proposals to allow compacting/stiffening the booster to collider placement discussed and approved at the <u>Arc Half-Cell mock-up meeting</u>, at the <u>Accelerator Pillar meeting</u> and at the <u>FCC-ee Optics Design</u> <u>Meeting</u>

C FOC

O FOO

Technical Infrastructures Pillars

https://indico.cern.ch/event/1213096/

Booster (and collider) stability: functional spec

Draft version collecting outcome of several discussions with Tor, Frank, Katsunobu, Antoine, Barbara, Michael G., etc. link

- 10 ÷ 100 Hz
- Orbit feedback, oscillation suppression up to 10 Hz

Comment: with booster vertically placed on collider, similar spec in terms of vibration is very challenging!

26

Booster supports – calculations

			6		
L. Baudin		T	T	T	N
Mode Shape	FCC Week '22 Frequency [Hz]	First Iteration Frequency [Hz]	Shifted Horizontally Frequency [Hz]	Shifted Vertically Frequency [Hz]	Shifted Vertically & Horizontally Frequency [Hz]
Longitudinal	7	18	24	21	29
Bending Cantilever Arms/ Torsion Horizontal Beam	7	19	23	29	29
Bending Horizontal Beam	14	36	41	40	54

- Optimization leading x15 higher stiffness and x4 higher natural frequencies
- Likely conservative (2.5t total magnet weight, 50% less seems feasible)
- Some room for further improvement but **already a** reasonably robust result
 - PETRA IV girder 46 Hz
 - PSB LIU girder 29 Hz

Next steps

T

- Add ground motion & harmonic response to evaluate expected vibration amplitude, compare with specs (20 nm @10-100 Hz)
- Add collider to the model, to evaluate vibrations crosstalk

Recap of girder concept for SSS, pros' and cons'

Pros

- 1. Pre-assembly and pre-alignment on the surface leaving Triggered discussions with PSI U. Wickstrom in-tunnel connections with bellows at ends: better tools, more space, clean environment
- **Reduced time** for installation and alignment in the machine
- Less bellows: easier azimuthal integration, important gain in impedance
- Single chamber for elements in the SSS
- 5. Reduced need for sextupole beam-based alignment (weak trims, less BPMs, ...)
- Easier maintenance of faulty elements 6. on girders) Total impedance: longitudi

M. Migliorati, FCCIS 2021

FCC-ee parameters dicussion	22/02/2022	Pag. 10

Cons

- Require design/mate_l/supporting optimization to prevent higher xist:
 - ctures à la PETRA IV (topology optimization hess/mass ratio (e.g. polymer concrete)

of feet (4-6), alignment with wedges

nardware cost (collider: ~2000 girders, 15 allpark \rightarrow 30 MCHF), but to be weighed against:

ra costs of bellows, flanges and alternative supporting system Possibly shorter (cheaper) overall assembling and alignment time

Figure 2: Topology optimization result (left), in which the coloring represents the artificial element density, and the abstracted beam-shell model (right)

S. Andresen et al., "Innovative and biologically inspired PETRA IV girder design", MEDSI2020

- Aim of the project
- Project organization & timeline
- Arc cell configuration(s)
- Phase I main studies
 - Integration layout & booster placement
 - Arc systems interfaces & inter-beam distance
 - Accelerators supporting systems & SSS girders
- Arc half-cell mock-up & Novel concepts
- Conclusions

Arc half-cell mock-up: 1st proposal

Objectives:

- Test different integration options in terms of element positioning & supporting
- Test accessibility to equipment, handling, logistic
- Test safety aspects & procedures
- Test interfaces and connections between systems, mechanical alignment of SSS
- Benchmark numerical simulations in terms of rigidity, stability of supporting systems (girder, jacks) and magnets
- Test instrumentation systems ("standard" DAQ, Digital Twins, ...)
- Host prototypes of the main systems under responsibility of equipment groups
- Better estimation of costs and technological feasibility of systems
- Having a visual and clear representation of a region characteristic of ~90% of the FCC tunnel, in view of the next update of the ESPP

Arc half-cell mock-up: 1st proposal

(example for booster / collider vertical placement)

FCC

systems, shelves, etc.)

M. Timmins

Novel concepts: Digital Twins

What is a Digital Twin?

Novel concepts: Digital Twins

Digital Twin IS MORE than just

- data acquisition & monitoring
- a set of simulations
- experience from historical

OUTPUT

Normal Operation:

- Determine system state through data acquisition
- Real time, ALSO for parameters not directly acquired <u>Failure</u>:
- Forecast system state, real time interpretation
- Repair scenarios: real time analysis, system-wide

Complexity of the system is tailored to the specific needs

To be considered for mock-up girder and magnets: displacements, vibrations, strains, temperature, etc.

- Aim of the project
- Project organization & timeline
- Arc cell configuration(s)
- Phase I main studies
 - Integration layout & booster placement
 - Arc systems interfaces & inter-beam distance
 - Accelerators supporting systems & SSS girders
- Arc half-cell mock-up & Novel concepts
- Conclusions

Conclusions

) FCC

- The design and construction of a **mock-up of an arc half-cell** of the FCC-ee is proposed, in order to investigate aspects such as fabrication techniques, integration, installation, assembly, transport, maintenance.
- The project is divided into three phases:
 - Phase I (end of 2022) focused on the integration studies of the arc configuration and the interfaces between its systems
 - Phase II (2023-2024) will tackle the engineering design of each element
 - Phase III (2024-2025) will involve fabrication and assembling steps
- The Phase I, under conclusion, led to important results, including (but not limited to):
 - Definition of inter-beam distance
 - Design study of magnet and vacuum systems interfaces
 - Optimization of booster and collider supporting frames
 - Study and recommendations on booster-to-collider placement and integration, as well as of supporting concepts for the SSS
 - Proposals for the standardization of the equipment and for the switch from low to high energy
- Concise summary report will be prepared in January to document the study
- A preliminary proposal for a mock-up was discussed, and will be refined (and costed) once the Phase II is approved
- Discussions for collaborations on different tasks are ongoing with University La Sapienza (Rome), University of Malta, PSI, ...

Thank you for your attention.

Arc cell configuration(s)

Arc half-cell

FCC

- 1 Quadrupole
- 0, 1, 2 **Sextupoles**
- Up to ~24 m Dipoles (segmented, variable length)

D: dipole, C): quadrupo	le, S: sextu	pole							
Spacing bet	ween magi	nets (m)	(A)	_	D	Q		D		
D-Q	0.3									
Q-S	0.3		(B)		D	Q	s	D)	
S-S	0.1									
S-D	0.3		(C)	_	D	Q	s	s	D	
Case	Arrange	Length of	D							
(A)	Q-D	24.432								
(B)	Q-S-D	22.732								
(C)	Q-S-S-D	21.232								
Length (m)										
Q	2.9	twin aperture								
S	1.4	single aper	ture							

F. Valchkova-Georgieva