

TUNNEL INTEGRATION

FCC

FCC-ee Underground Structure Overview

- Integration of FCC-ee Arc Cell
- Integration FCC-ee Arc Cell Alternative
- FCC-ee Underground Structure point A
- Integration of FCC-ee Beamstrahlung dump

Integration of RF sections

- FCC-ee Underground Structure point L
 - FCC-ee RF/Cryogenic Layout point L
 - FCC-ee RF Machine tunnel cross sections
 - FCC-ee Klystron Gallery cross sections
 - FCC-ee Undergeound structure Isometric views
- FCC-ee Underground Structure point H
 - FCC-ee RF/Cryogenic Layout point H
 - FCC-ee RF Machine tunnel cross sections
 - FCC-ee Klystron Gallery cross sections
 - FCC-ee Undergeound structure Isometric views

Integration of FCC-ee RF sections Alternative

F. Valchkova-Georgieva

3

FCC-ee Underground Structure Overview

Integration of FCC-ee Arc Cell

Machine tunnel 5.5m in diameter

Main cross section as for FCC-hh Main ring below of booster ring Main ring and booster ring 1.03 m distant Water distribution changed to DN550 + flange (ø630)

Perspective view

Machine tunnel 5.5m in diameter

Front view

Alternative Integration of FCC-ee Arc Cell

Alternative Integration of FCC-ee machine elements (regular arc)

Machine tunnel 5.5m in diameter

Booster ring next to the main ring Main ring and booster ring 2.1 m distant Demineralized water circuit DN 550 + flange (ø630) in a trench

Collider Center

10

<u>Alternative Integration of FCC-ee machine elements (regular arc)</u>

Perspective view

Machine tunnel 5.5m in diameter

FCC-ee Underground Structure point A

13

FCC Experiment Underground Structure version 2022

14

FCC Experiment Underground Structure version 2022

16

FCC Experiment Underground Structure version 2022

Integration of FCC-ee Beamstrahlung dump

○ FCC

FCC-ee main and booster rings Layout

IP

FCC-ee beamstrahlung dump integration at point A

E- ring

- E+ ring
- Booster ring

Beamstrahlung Dump

○ FCC

06.12.2022

F. Valchkova-Georgieva

20

FCC-ee beamstrahlung dump integration at point A

○ FCC

06.12.2022

F. Valchkova-Georgieva

21

FCC-ee beamstrahlung dump integration at point A

F. Valchkova-Georgieva

DEPARTMENT

22

FCC-ee beamstrahlung dump integration at point A

F. Valchkova-Georgieva

○ FCC

06.12.2022

23

DEPARTMENT

Integration of FCC-ee RF sections

Machine tunnel 5.5m in diameter

Main cross section as for FCC-hh Main ring below of booster ring Main ring and booster ring 1.03 m distant Water distribution changed to DN550 + flange (ø630)

18-Nov-22

27

FCC-ee RF reference table

			Courtesy F. Peauger and O. Brunner				
	н		ttbar2				
oster	2 beams	booster	2 beams	2 beams	booster		
00	400	800	400	800	800		
)50	2100	2100	2100	9200	11300		

	per beam	booster	per beam	booster	2 beams	booster	2 beams	2 beams	booster
Frequency [MHz]	400	800	400	800	400	800	400	800	800
RF voltage [MV]	120	140	1050	1050	2100	2100	2100	9200	11300
Eacc [MV/m]	5.72	5.34	10.95	21.55	10.78	22.42	10.78	22.52	22.50
# cell / cav	1	5	2	5	2	5	2	5	5
Vcavity [MV]	2.14	5.00	8.20	20.19	8.08	21.00	8.08	21.10	21.08
#cells	56	140	256	260	520	500	520	2180	2680
# cavities	56	28	128	52	260	100	260	436	536
# CM	<u>14</u>	7	32	13	65	25	<u>65</u>	<u>109</u>	<u>134</u>
T operation [K]	4.5	2	4.5	2	4.5	2	4.5	2	2
dyn losses/cav [W]	22	0.3	163	4	158	5	158	32	5
stat losses/cav [W]	8	8	8	8	8	8	8	8	8
Qext	6.0E+04	2.5E+05	1.1E+06	8.3E+06	1.1E+06	8.6E+06	9.4E+06	4.2E+06	4.6E+07
Detuning [kHz]	9.777	5.606	0.472	0.131	0.096	0.025	0.031	0.028	0.005
Pcav [kW]	962	192	385	95	379	99	45	202	18
rhob [m]	9937	9937	9937	9937	9937	9937	9937	9937	9937
Energy [GeV]	45.6	45.6	80.0	80.0	120.0	120.0	182.5		182.5
energy loss [MV]	38.49	38.49	364.63	364.63	1845.94	1845.94	9875.14		9875.14
cos phi	0.32	0.27	0.35	0.35	0.88	0.88	0.56	0.96	0.87
Beam current [A]	1.400	0.140	0.135	0.0135	0.0534	0.005	0.010	0.010	0.001

○ FCC

FCC-ee RF 400 MHz Cryomodules space occupation

Courtesy V.Parma/E. Montesinos

- Consider only 2 types of CM
- Same CM design for 1_cells (Z) and 2_cells (W, H) 400 MHz systems distance between WG must remain constant
- The use of half-height WG may allow to reduce the number of WG holes to be studied in detail

○ FCC

29

FCC-ee RF 800 MHz Cryomodules space occupation

Courtesy V.Parma/E. Montesinos

The use of half-height WG may allow to reduce the number of WG holes – to be studied in detail

○ FCC

30

FCC-ee RF/Cryogenic Layout point L

Courtesy L.Delprat, B.Bradu and K.Brodzinski

• 2K Collider CMs near to cryoplants then 2K Booster CM

Collider 800 MHz Cryomodules

06.12.2022

DEPARTMENT

34

FCC-ee Underground Structure

○ FCC

DEPARTMENT

36

FCC-ee RF/Cryogenic Layout point H

Courtesy L.Delprat, B.Bradu and K.Brodzinski

○ FCC

06.12.2022

F. Valchkova-Georgieva

FCC-ee RF Machine tunnel & Klystron Gallery cross section (ttbar machine)

DEPARTMENT

40

Alternative Integration of FCC-ee RF sections

Alternative Integration of FCC-ee machine elements (regular arc)

Machine tunnel 5.5m in diameter

Booster ring next to the main ring Main ring and booster ring 2.1 m distant Demineralized water circuit DN 550 + flange (ø630) in a trench

○ FCC

Thank you for your attention.