

Dec 5 – 9, 2022

Electron cloud simulations for the FCC-ee

Fatih Yaman, IYTE & STFC – ASTeC, Daresbury Lab.

Frank Zimmermann, CERN

Many Thanks: M. Zobov, D. Shatilov, G. Schiwietz and the FCC-ee optics team

December 7, 2022

FCC-ee Collider Arc Dipole Parameters

Parameters	
beam energy [GeV]	45.6
bunches per train 150	
trains per beam	1
r.m.s. bunch length (σ_z) [mm]	4.32
h. r.m.s. beam size (σ _x) [μm]	207
v. r.m.s. beam size (σ _y) [µm]	12.1
number of particles / bunch (10 ¹¹)	2.76
bend field [T]	0.01415
circumference C [m]	91.2
synchrotron tune Qs	0.037
average beta function ${oldsymbol{eta}}_{y}$ [m]	50
threshold density (10 ¹² [m ⁻³])	0.043

- bunch spacings, BS : (25, 30, 32) ns
- circular beam pipe radii, r : (30, 35) mm
- SEY Models: ECLOUD, Furman-Pivi
- Total SEY : (1.1, 1.2, 1.3, 1.4)

Drift region is included

- PE generation rates , $n'_{(\gamma)}$: (1e-3, 1e-4, 1e-5, 1e-6) m⁻¹
- threshold density (single-bunch instability) :

$$\omega_e = \left(\frac{N_b r_e c^2}{\sqrt{2\pi}\sigma_z \sigma_y (\sigma_x + \sigma_y)}\right)^{1/2}$$

$$Q = \min(\omega_e \sigma_z/c, 7)$$
 $K = \omega_e \sigma_z/c$

$$\rho_{\rm thr} = \frac{2\gamma Q_s \omega_e \sigma_z / c}{\sqrt{3} K Q r_e \beta_u C}$$

- K. Ohmi, Beam-beam and electron cloud effects in CEPC / FCC-ee, Int. Journal of Modern Physics A, 31(33), 1644014 (2016).
- K. Ohmi, F. Zimmermann and E. Perevedentsev, Wake-field and fast head-tail instability caused by an electron cloud, Phys. Rev. E 65, 016502 (2001).
- F.Yaman, G.Iadarola, R. Kersevan, S. Ogur, K. Ohmi,
 F. Zimmermann and M. Zobov, Mitigation of Electron Cloud Effects in the FCC-ee Collider, EPJ Tech. and Inst. 2022 9:9, Accelerating the design of the future circular collider, 2022. (preprint <u>arXiv:2203.04872</u>)

Furman-Pivi & ECLOUD SEY Models

in this study Total SEY = {1.1, 1.2, 1.3, 1.4}

0.02

TABLE I: Main parameters of the model

	Copper	Stainless Steel
Emitted angula	ar spectrum (Sec. II	(C1)
α	1	1
Backscattered	electrons (Sec. III B)
$P_{1,e}(\infty)$	0.02	0.07
$\hat{P}_{1,e}$	0.496	0.5
\hat{E}_e [eV]	0	0
W [eV]	60.86	100
p	1	0.9
$\sigma_e [\mathrm{eV}]$	2	1.9
e_1	0.26	0.26
e_2	2	2
Rediffused elec	ctrons (Sec. III C)	
$P_{1,r}(\infty)$	0.2	0.74
$E_r [eV]$	0.041	40
r	0.104	1
q	0.5	0.4
r_1	0.26	0.26
r_2	2	2
True secondary	electrons (Sec. III)	D)
$\hat{\delta}_{ts}$	1.8848	1.22
\hat{E}_{ts} [eV]	276.8	310
s	1.54	1.813
t_1	0.66	0.66
t_2	0.8	0.8
t_3	0.7	0.7
t_4	1	1
Total \mathbf{SEY}^a		
$\hat{E}_t [\text{eV}]$	271	292
$\hat{\delta}_t$	2.1	2.05
^{<i>a</i>} Note that $\hat{E}_t \simeq \hat{L}_t$	\hat{E}_{ts} and $\hat{\delta}_t \simeq \hat{\delta}_{ts} + P_{1,e}($	$(\infty) + P_{1,r}(\infty)$ provided
hat $\hat{E}_{ts} \gg \hat{E}_e, E_r$, , , -

Model for the Simulation of Secondary Electron Emission', SLAC-PUB-9912, 2003

Dipole Region: $n'_{(\gamma)} = 1e-6 \text{ m}^{-1}$, bunch spacing: 32ns, r = 35mm

- results via two SEY models agree well for SEY $\simeq 0$ (min. $\simeq 2e7 e^{-}/m^{3}$)
- max. \simeq 5e8 e⁻/m³ is verified with both models for SEY = 1.1

Drift and Dipole regions

SEY =1.1 , $n'_{(\gamma)}$ =1e-6 m⁻¹ , bunch spacing: 32 ns, r = 35mm

- both models yield similar results w.r.t. regions due to low SEY & PE (similar behaviours for 30ns bunch spacing)
- 0.01415 [T] external magnetic field ≈ 2.5 times lowers the densities for the weakest SEY & PE

Drift region: SEY =1.1, bunch spacing: 32 ns, r = 35mm

Drift and Dipole regions: SEY =1.1, bunch spacing: 32 ns, r = 35mm

Drift and Dipole regions: SEY =1.1, bunch spacing: 25 ns, r = 35mm

Drift and Dipole regions: SEY =1.1 , $n'_{(\gamma)}$ =1e-4 m⁻¹ , bunch spacing: 25 ns

Dipole Region : ECLOUD Model

bunch spacing: 25 ns, $n'_{(\gamma)}$ =1e-4 m⁻¹

Drift Region : ECLOUD Model

bunch spacing: 25 ns, $n'_{(\gamma)}$ =1e-4 m⁻¹

Dipole Region: ECLOUD Model

bunch spacing: 25 ns, $n'_{(\gamma)}$ =1e-3 m⁻¹

Drift Region : ECLOUD Model

bunch spacing: 25 ns, $n'_{(\gamma)}$ =1e-3 m⁻¹

ECLOUD SEY Model

SEY =1.1 ,
$$n'_{(\gamma)}$$
 =1e-3 m⁻¹ , bunch spacing: 25 ns, r = 35mm

Furman-Pivi SEY Model

SEY =1.4 ,
$$n'_{(\gamma)}$$
 =1e-3 m⁻¹ , bunch spacing: 25 ns, r = 35mm

Average of min.'s for center electron density

Dipole Region

- Furman-Pivi Model
- $n'_{(\gamma)} = 1e-3 \text{ m}^{-1}$
- r = (30, 35) mm
- BS=(25, 30) ns
- SEY=(1.1,1.2,1.3,1.4)

 $\overline{}$

- Furman-Pivi Model
- $n'_{(\gamma)} = 1e-4 \text{ m}^{-1}$
- r = 35 mm 🚺
- BS= 25 ns
- SEY= 1.4

Furman-Pivi SEY Model

SEY =1.4 ,
$$n'_{(\gamma)}$$
 =1e-3 m⁻¹ , σ_z = 15.4 mm, N_b = 2.43*e*11 bunch spacing: 25 ns, r = 35mm

Dipole Region

ECLOUD Model, $n'_{(\gamma)} = (1e-3, 1e-4, 1e-5, 1e-6)m^{-1}$, r = (30, 35)mm, BS=(25, 30, 32)ns, SEY=(1.1,1.2,1.3,1.4) Furman-Pivi Model, $n'_{(\gamma)} < 1e-3 m^{-1}$, r = (30, 35)mm, BS=(25, 30, 32)ns, SEY=(1.1,1.2,1.3,1.4) Furman-Pivi Model, $n'_{(\gamma)} = 1e-3 m^{-1}$, r = (30, 35)mm, BS=(25, 30, 32)ns, SEY=(1.1,1.2,1.3,1.4)

Drift Region

(ECLOUD, Furman-Pivi) Model, $n'_{(\gamma)} < 1e-3 \text{ m}^{-1}$, r= (30, 35)mm, BS=(25, 30, 32)ns, SEY=(1.1,1.2,1.3,1.4) (ECLOUD, Furman-Pivi) Model, $n'_{(\gamma)} = 1e-3 \text{ m}^{-1}$, r = (30, 35)mm, BS=(25, 30, 32)ns, SEY=(1.1,1.2,1.3,1.4) Furman-Pivi Model, $n'_{(\gamma)} = 1e-4$, r= 35mm, BS=(25, 30, 32)ns, SEY=1.4

Conclusions and Future Plans

- reference center e- density $\simeq 2e7 \text{ e-/m}^3$ (SEY $\simeq 0$ and $n'_{(\gamma)}$ = 1e-6 m⁻¹)
- bunch spacing = 32ns, SEY = 1.1, $n'_{(\gamma)}$ = 1e-6 m⁻¹:
 - e- density \simeq 2.5 times lower in dipole compared to drift
 - max. density $\simeq 5e8 e^{-}/m^{3}$ is verified with both models
- In Drift region e- density increases with the increase of pipe radius for SEY=1.1, 1.2, 1.3, 1.4
- In Dipole region
 - e- density decreases with the increase of pipe radius for SEY=1.1 and 1.2
 - e- density increases with the increase of pipe radius for SEY=1.3 and 1.4
- For SEY=1.1 photoelectrons dominates the Ecloud formation
- n'_(γ) < 1e-3 m⁻¹ is necessary to keep average minimums lower than the estimated threshold for considered scope of parameters in dipole & drift regions
- $n'_{(\gamma)}$ < 1e-5 m⁻¹ leads to 'safe-zone'
- Wake & Impedance calculations due Electron Clouds
- Simulations with the measured SEY data

THANK YOU FOR ATTENTION!

