

FCCIS - The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

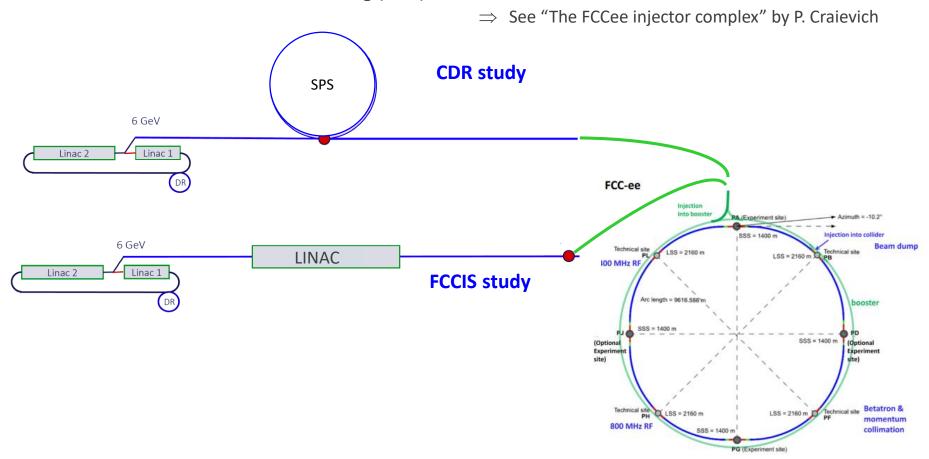
Booster Overview

- B. Dalena, A. Chance, T. Da Silva (CEA)
- A. Mashal (IPM), T. Raubenheimer (SLAC), F. Zimmermann (CERN)

Thanks to:

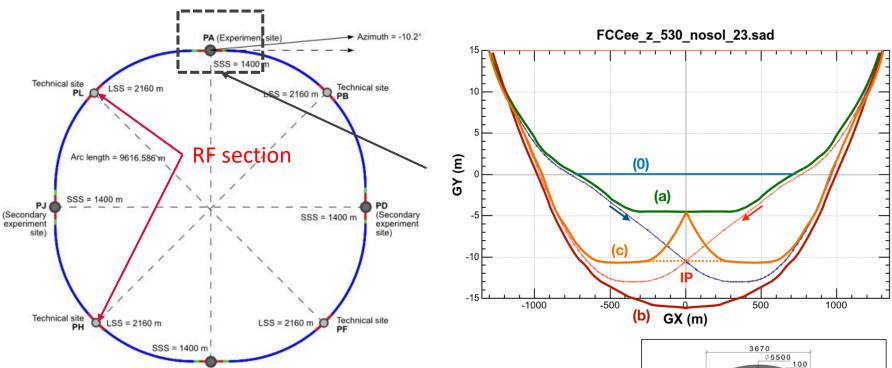
- B. Haerer, L. Van Riesen-Haupt, T. Charles, R. Tomas, T. Persson,
- F. Antoniou, O. Etisken, M. Zampetakis, S. Bettoni, M. Hofer, F. Carlier,
- B. Holzer, A. Franchi, A. Latina, K. Oide, S. Farthoukh

- > The injector complex
 - Layout of the High Energy Booster (HEB)
- Optics design
 - Arcs
 - Insertions
- Injection energy and emittances
 - Dynamic Aperture (DA) and Momentum Acceptance (MA)
- Correction of imperfections and definitions of tolerances
- Emittance evolution and booster operations
- Perspectives

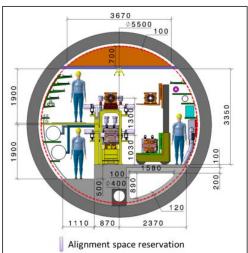


Injection energy into the booster **20 GeV** (or lower?)

Ramping: 80-100 GeV / s (< 1 s)


Alternatives: SPS as Pre Booster Ring (PRB) and a Linac

Booster layout (after CDR)



- ▶ In the current booster version, cavities are located in sections H and L. Alternative all RF system of the Booster placed in H. Proposal of the RF group to use 800 MHz only for all mode of the Booster: https://indico.cern.ch/event/1064327/contributions/4888581/ (F. Peauger)
- ▶ Bypass of the booster near the detector still under investigation.

PG (Experiment site)

▶ Booster on top of the collider. Azimuthal offset required for integration. (see F. Valchkova talk)

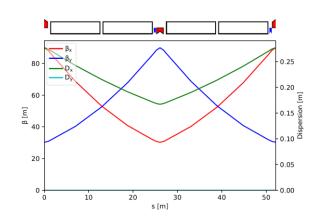
60°/60° Optics for Z and W modes

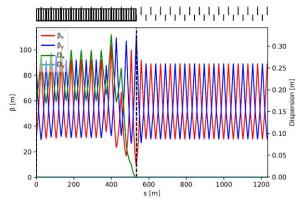
Magnet	Parameter	Unit	Value
Dipole	Field at injection (20 GeV)	G	71
	Field at W energy (80 GeV)	G	284
	Length	m	11.1
Quadrupole	Gradient at injection (20 GeV)	T/m	1.74
	Gradient at W energy (80 GeV)	T/m	6.9
	Length	m	1.5
Sextupole	Gradient at injection (20 GeV)	T/m ²	75
	Gradient at W energy (80 GeV)	T/m ²	300
	Length	m	0.5

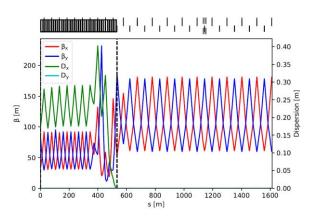
- FODO cells of ~52 m
- Made of 4 dipole, 2 quadrupoles and 2 sextupoles

Distance between dipoles: 0.4 m

Distance between quadrupole and sextupole: 0.165 m


Distance between dipole and sextupole: 0. 504 m


Distance between quadrupole and dipole: 0.869 m


(it includes space for BPM and dipole correctors)

dipoles =
$$2 \times 2944$$

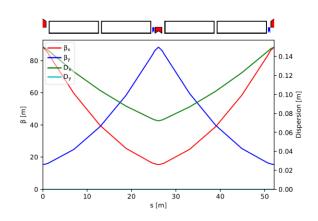
⇒ Very challenging **low** dipole field at injection

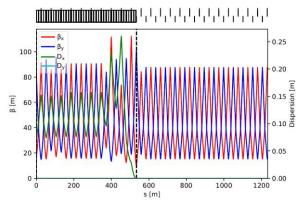
90°/90° Optics for H and ttbar modes

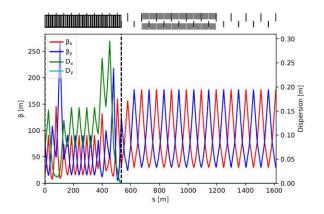
Magnet	Parameter	Unit	Value
Dipole	Field at injection (20 GeV)	G	71
	Field at ttbar energy (182.5 GeV)	G	650
	Length	m	11.1
Quadrupole	Gradient at injection (20 GeV)	T/m	2.5
	Gradient at ttbar energy (182.5 GeV)	T/m	22.5
	Length	m	1.5
Sextupole	Gradient at injection (20 GeV)	T/m ²	174
	Gradient at ttbar energy (182.5 GeV)	T/m ²	1582
	Length	m	0.5

- FODO cells of ~52 m
- Made of 4 dipole, 2 quadrupoles and 2 sextupoles

Distance between dipoles: 0.4 m

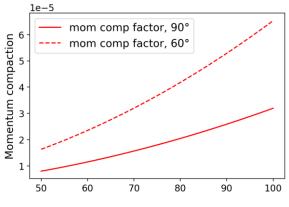

Distance between quadrupole and sextupole: 0.165 m Distance between dipole and sextupole: 0.504 m

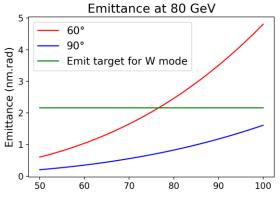

Distance between dipole and sextupole: 0. 504 m

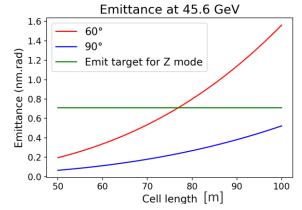

(it includes space for BPM and dipole correctors)

- # dipoles = 2×2944
- # quadrupoles = 2944
- # sextupoles = 2632/4

⇒ Very challenging **low** dipole field at injection (preliminary magnet design by **J. Bauche** @ FCC week 2022 https://indico.cern.ch/event/1064327/contributions/4888487/)

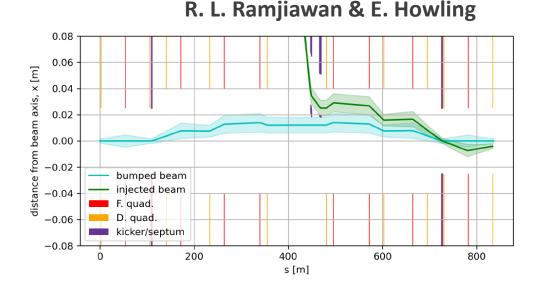

Equilibrium emittances


Booster rms emittance at extraction ≤ collider

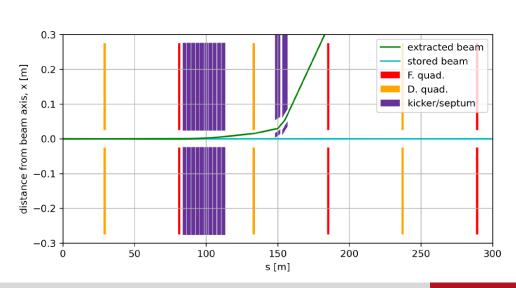

Beam Energy [GeV]	Eq. Emittance [nm rad] 60°/60°	Eq. Emittance [nm rad] 90°/90°	Eq. Emittance Collider [nm rad]	Eq. emittance Collider new [nm rad]
45.6 (Z)	0.235	0.078	0.24	0.71
80 (W)	0.729	0.242	0.84	2.16
120 (H)	4.229	0.545	0.63	0.64
175 (tt)	3.540	1.172	1.48	1.49

- ⇒ 90°/90° required for H and ttbar final emittances
- ⇒ 60°/60° retained for Z and W operation (mitigation of MI and IBS)
- ⇒ 90°/90° 100 m cell could gain a bit in momentum compaction at Z & W
- ⇒ Alternatives ?

new



Injection/ extraction in the High Energy Booster



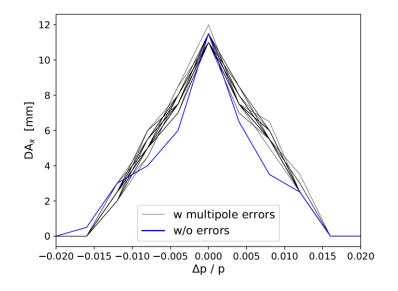
- Injection scheme with orbit bump and thin electrostatic septum
- Possibility to have vertical injection to be studied

Extraction scheme with 10 kickers

 Room for optics optimization of both injection and extraction

08/12/2022

DA at injection (20 GeV) with multipole errors

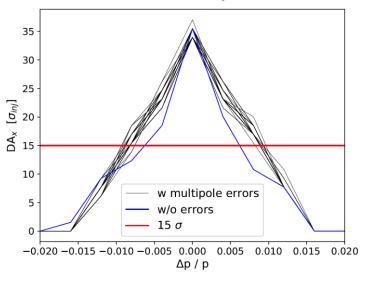


Static dipole field errors of the CT dipole design at 56Gs considered + 10% random part

Dynamic field effect not taken into account in this simulations: dipole and multipole reproducibility expected to be $\leq 5 \times 10^{-4}$

Dynamic Aperture defined as Stable initial amplitude @ 4500 turns (~15% tx 20 GeV)

91km 60°/60° optics



Courtesy of F. Zimmermann and Jie Gao

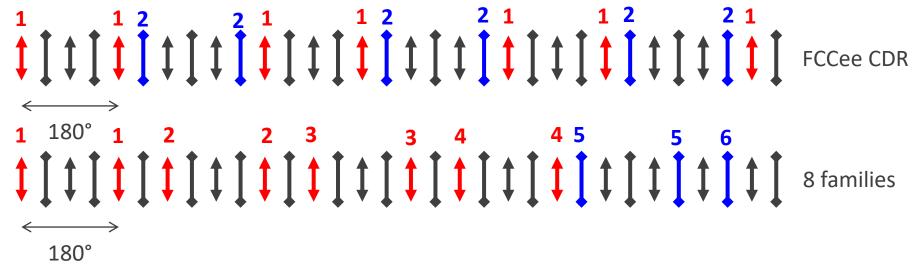
	CT dipole		Iron-cor	e dipole
GFR=R26	28Gs	56Gs	28Gs	56Gs
B1/B0	-5. 20E-04	-1.04E-04	-1. 56E-03	-2. 60E-04
B2/B0	4. 73E-04	5. 41E-04	-2. 03E-03	-2. 03E-04
B3/B0	-7. 03E-06	1. 05E-04	3. 52E-04	1. 76E-04
B4/B0	-9. 14E-04	-3.66E-04	4. 57E-04	-1.83E-04
B5/B0	3. 56E-05	-2. 38E-05	-2. 38E-05	−3. 56E−05
B6/B0	6. 18E-04	2. 16E-04	-3. 09E-04	9. 27E-05

relative values @ R = 26 mm

$$\beta_x = 83.2 \text{ m } \beta_y = 32.2 \text{ m } D_x = 0 \text{ m}$$

Geometric emittance injected 1.27 nm

DA of 91km 90°/90° optics is ~ 5mm (due to strong sextupoles)


preliminary

Dynamic aperture and momentum acceptance improvement

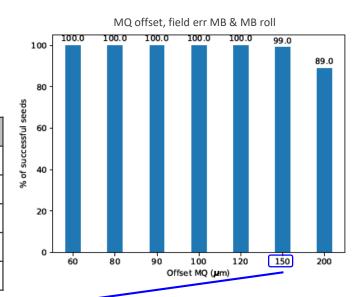
► Investigating alternative sextupoles schemes with 4 non-inteleaved sextupole families. Better 2nd order chromaticity but higher anharmonicity.

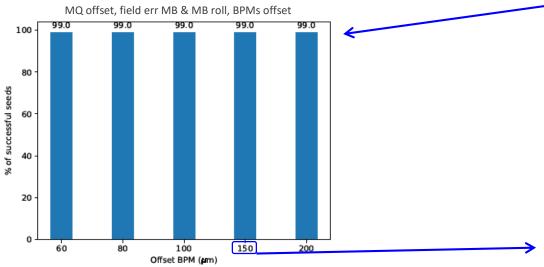
▶ Using odd Defocusing Sextupoles families to optimize Resonance Driving Terms, in particular the candidate terms of driving synchro-betatron resonance.

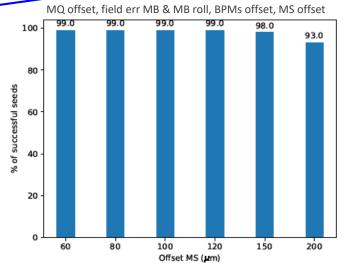
RD Term	Before correction	After correction
h11001	-0.0597	-0.0585
h00111	0.0788	0.0776
h20001	2.3321 - 5.9823i	-0.0000 - 0.9894i
h00201	-11.0933 - 0.1063i	0.0041 + 3.3608i
h10002	-0.1846 + 0.0136i	-0.1846 + 0.0136i
h21000	1.4358e-04 - 6.5961e-04i	1.4451e-04 - 6.8774e-04i

A. Mashal

Static magnets imperfections

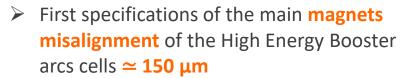


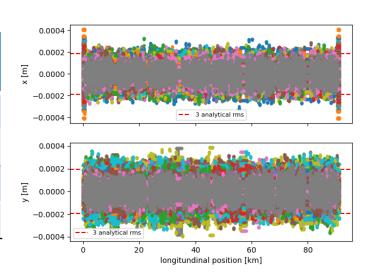

Define pre-alignment tolerances of the elements and the orbit correctors specifications + establish a correction procedure for orbit correction for the FCC-ee high energy booster.

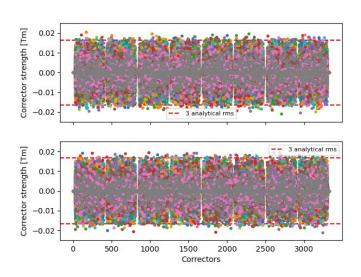

Orbit correction only Statistics on 100 seeds

Error type	Value
Dipole relative field error	10 ⁻⁴
Main dipole roll error	300 mrad
Offset quadrupoles	60, 80, 90, 100, 120, 150 and 200 μm
Offset BPMs	60, 80, 100, 150 and 200 μm
Offset sextupoles	60, 80, 100, 120, 150 and 200 μm

Tatiana Da Silva




First pre-alignment and correctors specs



Imperfections rms value	Case	Plane	3 x Analytical RMS	3 x Mean RMS/seeds
MQ offset = 150 μm	Residual Orbit	Х	188.4	112.2
MB field err = 10^{-4} MB roll = 300 mrad	[10 ⁻⁶ m]	У	192	
BPM offset = 150 μm MS offset = 150 μm	Correctors	х	16.5	10.8
BPM resolution = 50 μm	stengths [10 ⁻³ Tm]	У	16.8	10.8

- ➤ First definition of the orbit correctors for the booster ≃ 20 mT
- In order to preserve transverse emittances need to able to correct also beta-beating, dispersion and coupling (emittance tuning)

T. Da Silva

"latest" parameters

Beam energy	[GeV]	45.6	80	120	182.5
Layout		PA31		-1.0	
# of IPs			4		
Circumference	[km]	91.17	4117	91.17	4107
Bending radius of arc dipole	[km]		9.9	37	
Energy loss / turn	[GeV]	0.0391	0.370	1.869	10.0
SR power / beam	[MW]		50		
Beam current	[mA]	1280	135	26.7	5.00
Bunches / beam		10000	880	248	40
Bunch population	$[10^{11}]$	2.43	2.91	2.04	2.37
Horizontal emittance ε_x	[nm]	0.71	2.16	0.64	1.49
Vertical emittance ε_y	[pm]	1.42	4.32	1.29	2.98
Arc cell		Long 9	90/90	90,	/90
Momentum compaction α_p	$[10^{-6}]$	28.	.5	7.	33
Arc sextupole families		75	5	146	
$\beta_{x/y}^*$	[mm]	100 / 0.8	200 / 1.0	300 / 1.0	1000 / 1.6
Transverse tunes/IP $Q_{x/y}$		53.563 /	53.600	100.565	/ 98.595
Energy spread (SR/BS) σ_{δ}	[%]	0.038 / 0.132	0.069 / 0.154	0.103 / 0.185	0.157 / 0.221
Bunch length (SR/BS) σ_z	[mm]	4.38 / 15.4	3.55 / 8.01	3.34 / 6.00	1.95 / 2.75
RF voltage 400/800 MHz	[GV]	0.120 / 0	1.0 / 0	2.08 / 0	2.5 / 8.8
Harmonic number for 400 MHz			1210	648	
RF freuquency (400 MHz)	MHz	399.99	4581	399.9	94627
Synchrotron tune Q_s		0.0370	0.0801	0.0328	0.0826
Long. damping time	[turns]	1168	217	64.5	18.5
RF acceptance	[%]	1.6	3.4	1.9	3.0
Energy acceptance (DA)	[%]	± 1.3	± 1.3	± 1.7	-2.8 + 2.5
Beam-beam ξ_x/ξ_y^a		0.0023 / 0.135	0.011 / 0.125	0.014 / 0.131	0.093 / 0.140
Luminosity / IP	$[10^{34}/{\rm cm}^2{\rm s}]$	182	19.4	7.26	1.25
Lifetime (q + BS)	[sec]			1065	4062
Lifetime (lum)	[sec]	1129	1070	596	744

aincl. hourglass.

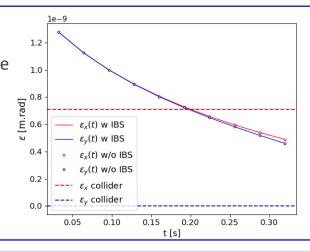
K. Oide, Aug. 4, 2022 1

Injectors parameters

Injection time for each specie (20 GeV Linacßß, 4 IP)

$oldsymbol{L}$					
	Z	WW	ZH	tt	
Collider energy [GeV]	45.6	80	120	182.5	
Collider & BR bunches / ring	10000	880	248	40	
Collider particles / bunch [1010]	24.3	29.1	20.4	23.7	
Injector particles / bunch [1010]		≦ 3	3.0 *		
Bootstrap particles / bunch [1010]	2.43	1.746	1.224	1.422	
# of BR ramps (to 1/2 stored current)	3	3	3	4	
# of BR ramps (bootstrap)	6	8	6	7	
BR ramp time (up + down) [s]	0.6	1.5	2.5	4.1	
Linac bunches / pulse			2		
Linac pulses	5000	440	124	20	
Linac repetition frequency [Hz]	200		50		
Collider filling time from scratch [s]	230.4	113.3	44.82	49.5	
Collider filling time for top-up [s]	25.6	10.3	4.98	4.5	
Allowable charge imbalance Δ [±%]	5		3		
Lum. lifetime (2 IP) [s]	2258				
BS lifetime (2 IP) [s]	100000	100000	2130	8124	
Lattice lifetime (2 IP) [s]	1260	2400	3000	3600	
Collider lifetime (2 IP) [s]	802.2	2140	465.7	885.7	
Collider top-up interval (between e+ and e-)(2 IP) [s]	40.1	64.2	13.971	26.571	
Lum. lifetime (4 IP) [s]	1129	1070	596	744	
BS lifetime (4 IP) [s]	100000	100000	1065	4062	
Lattice lifetime (4 IP) [s]	840	1600	2000	2400	
Collider lifetime (4 IP) [s]	479.3	1070	382.1	542.8	
Collider top-up interval (between e+ and e-)(4 IP) [s]	24.0	32.1	11.463	16.284	

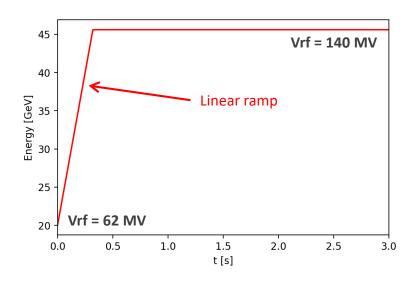
Sep 21, 2021 K. Oide

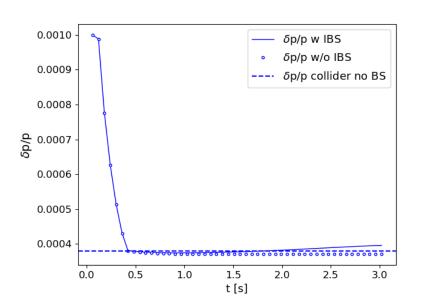

Emittances evolution

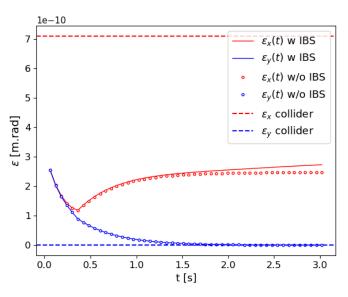
▶ We consider the Z mode:

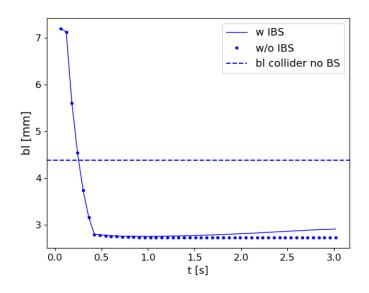
- We accumulate in the booster for 24 s: for the emittance evolution we consider 2 cases:
 - 1 fresh beam (the ramp begins directly after injection).
 - 1 accumulation time of 24 s before the ramp.
- We ramp from 20 GeV to 45.6 GeV for 0.32 s.
- We consider also a flat-top of 2.7 s (to get a total cycling time of 27 s) to evaluate the gain of damping at top energy.
- ▶ The injection is from the LINAC at 20 GeV:
 - Normalized emittance of 10 μm x 10 μm.
 - Energy spread of 0.1%
 - 2.53e+10 particles per bunch (4 nC)
- We assume a matched beam: the bunch length is deduced from the total voltage, energy spread and momentum compaction.
 Thanks to M. Zampetakis,
- ► We consider the case with no IBS and with IBS, using MAD-X routines. F. Antoniou, O. Etisken for IBS

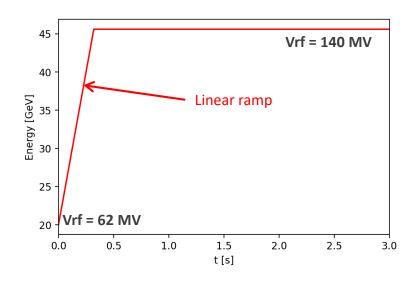
Normalized transverse emittance of $50 \mu m \times 50 \mu m$ Energy spread of 0.1%No flat-top Ramp Only

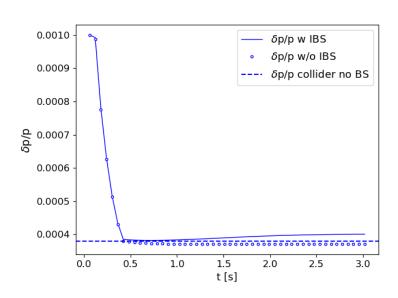

A. Grudiev, P. Craievich

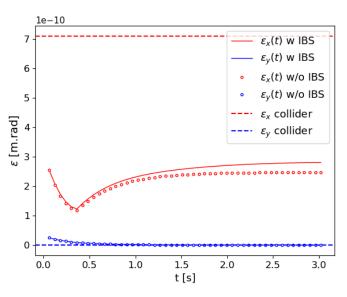

LINAC parameters: S. Bettoni, A. Latina,

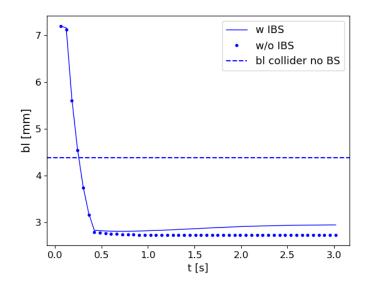


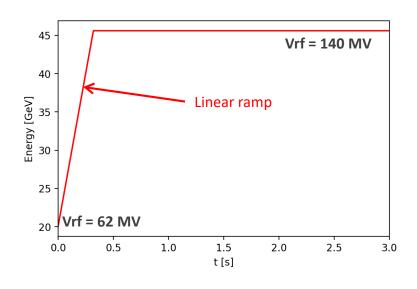

Emittance: ramp only 10μm x 10μm; 0.1%

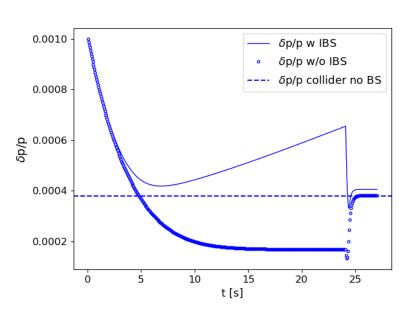


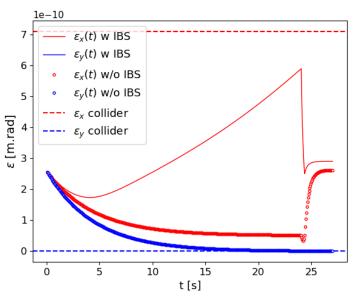


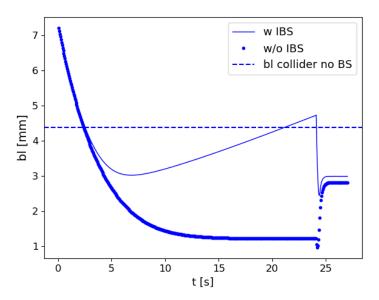



Emittance: ramp only 10μm x 1.0μm; 0.1%

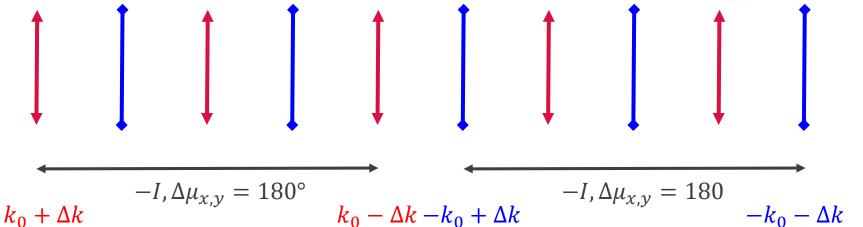






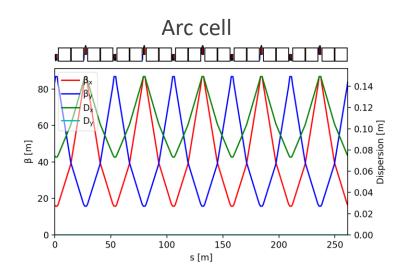

Emittance: accumulation + ramp 10μm x 10μm; 0.1%

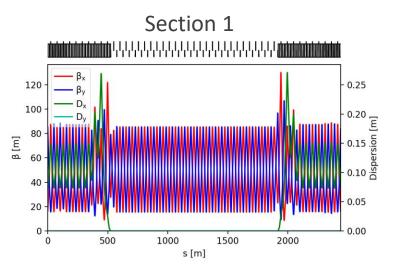
Parameter variation during the cycling

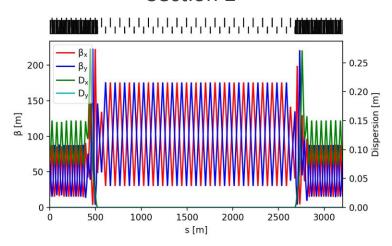

- During the accumulation process,
 - IBS processes drive the emittance evolution.
 - The bunch parameters (length, emittance, size) vary from a bunch to another bunch. Energy spread doesn't reach equilibrium emittance at injection.
- ► If we do not modify the I2 function (with different dipole families), we should have a flat top of at least 2 seconds to damp the beam with an initial round normalized emittance of 10 μm.
- ► The duration of the flat top depends on the initial emittances **1-3 s** for **1-50** μ m.
- ▶ We have assumed that the beam is matched at the entrance. An initial energy spread of 0.1% gives a bunch length of 7.2 mm. We could reduce a bit the initial bunch length by increasing the initial RF voltage but we are quickly limited by the maximum total RF voltage.
- ▶ If we do not match the longitudinal parameters, we will have some bunch length and momentum spread breathing. We need to do tracking simulations to check that is not an issue.
- ► We can lengthen the final bunch length by adjusting the final total voltage, to be studied.

Alternative arc optics

- ▶ Due to collective effects, we have to maintain 2 arc optics
 - Z/W operations (with a momentum compaction of 1.49×10^{-5} corresponding to a FODO cell of 60 degrees and an I5 of 5.21×10^{-11}).
 - H/ttbar operations (with a momentum compaction of 0.73×10^{-5} corresponding to a FODO cell of 90 degrees and an I5 of 1.79×10^{-11}).
- ► The motivation is to have an additional knob to tune the momentum compaction during the ramp:
 - We can have a larger momentum comapction at injection energy: better for collective effects.
 - At higher energies, we can reduce the momentum compaction because collective effects are less critical at higher energy and we can get a smaller equilibrium emittance.
- ► The alternative optics should be compatible with Pantaleo's alternative arc cell.


$$\Delta k pprox rac{\sqrt{x}}{2\sqrt{3}}$$
 with $x=rac{lpha}{lpha_0}-1$ where $lpha$ is the momentum compaction and 0 when Δk =0

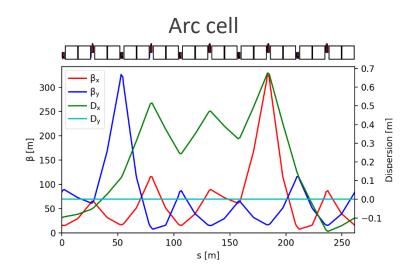

- ► We assume here a sequence of 5 90 degrees cells. However, this scheme should be compatible with Pantaleo's scheme because it keeps —I cells.
- ► A betatron wave is created by the first quadrupole. It is cancelled at the next quadrupole.
- ► However, the dispersion wave is not cancelled and the **effect on the** momentum compaction is not zero.
- ▶ The initial Twiss parameters and the total tune of this sequence is conserved
- ► The total tunes of the arcs do not change when we vary the momentum compaction.

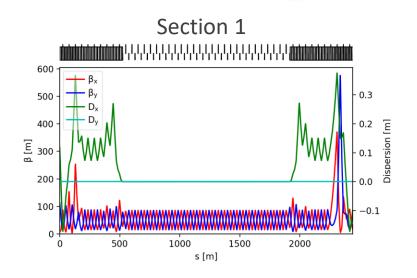

Alternative optics: reference

Section 2

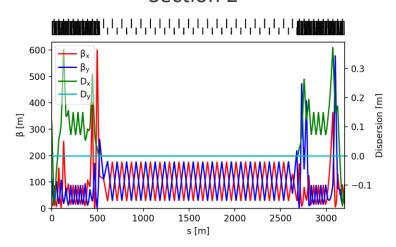
Momentum compaction:

$$\alpha = 0.73 \times 10^{-5}$$


Synchrotron integrate I5:


$$I_5 = 0.179 \times 10^{-12}$$

90 degrees FODO cells



Alternative optics: doubled momentum compaction

Section 2

Momentum compaction:

$$\alpha = 1.39 \times 10^{-5}$$

Synchrotron integrate I5:

$$I_5 = 1.12 \times 10^{-12}$$

Increase by a factor of 6.25 of I₅.

The increase is a factor 3 with a 60 degrees lattice.

But the long-cell 90 degrees optics has a factor 8:

the equilibrium emittance is still smaller.

Still needs more work on matching sections.

Alternative optics: discussion

- ► The advantages of this alternative optics are:
 - **Possibility to tune the momentum compaction** during the ramp.
 - Different I5 at injection and extraction.
 - Needs to know the limitation of collective effects at injection but also at extraction to evaluate the optimum momentum comapction during the ramp.
 - We keep the same sextupole correction scheme for all modes.
 - We could add an additional sextupole at the dispersion peak to correct the extra chromaticity due to the betatron wave (the chromaticity increase is about 50% more in comparison with the reference case). The extra sextupoles are 10 times weaker to double the momentum compaction.

► The drawbacks are:

- A larger equilibrium emittance in comparison with FODO cells.
 - We are still below the equilibrium emittance of the long 90 degrees cells.
 - We can reduce the imapct by decreasing the momentum compaction during the ramp.
- We need to increase the number of quadrupole families and thus power supplies.
 - 6 families against 2 families.
- Larger maximum peak betatron functions in the arcs.
 - Need for more work to improve the matching sections.
- ► We have to evaluate the impact on the dynamic aperture and momentum acceptance.

Conclusions

Optics:

- Optimization of layout and booster positioning in the tunnel
- Two options to bypass the experimental areas inside or outside detector
- ► Improve DA and MA for the 90°/90° optics
 - Resonance Driviting terms optimization
 - Optimisation strategy for sextupoles families (MOGA,...) ?
 - Improve optics design ?
- HEB operation and emittance evolution
 - Optimization of cycle time at Z
 - Effect of mis-matched beam at injection
 - Optimization of RF Voltage at injection and extraction
 - Study the 800 MHz RF system against 400 MHz + 800 MHz
- ▶ First definition of the orbit correctors for the booster (\simeq 20 mT) and orbit correction scheme. First specifications of elements misalignment (150 µm)
 - Finalize the emittance tuning studies
 - Integration with DA and MA and Overall Design optimization (exploiting AI)
- ► Finalize injection/extraction in the High Energy Booster (CERN)
- ► An alternative optics to 60° FODO cells has been proposed.

Perspectives

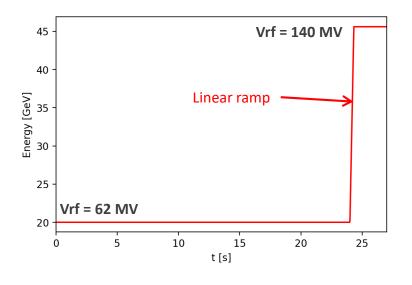
To establish a baseline (June 2023)

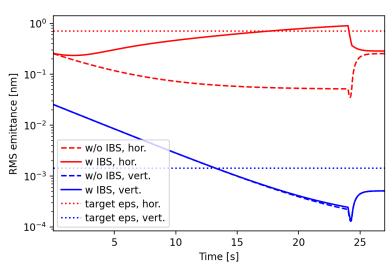
- Improve DA and MA
 - Optimizing sextupoles families, tunes and matching of insertions
- Optimize RF Voltage at injection and extraction (for 400 MHz and 800 MHz)
- ▶ Impact of injecting a mis-matched beam (including collective effects)
- ► Iterate on optics and layout
- ▶ Evaluate the dynamic aperture and momentum acceptance for the alternative optics.

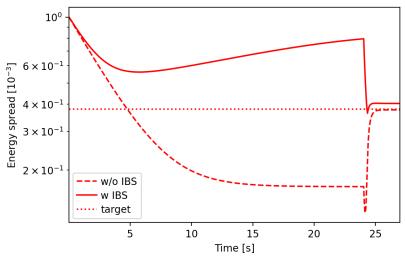
Long term plan

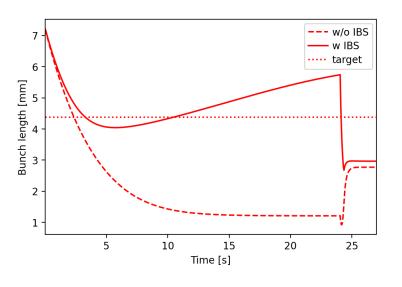
- Finalize emittance tuning
 - Static and dynamic imperfections
 - Improve overall performances/cost with AI
- Optimize the energy ramp and verify emittance reach (start-to-end simulations)
- Optimization of insertion sections

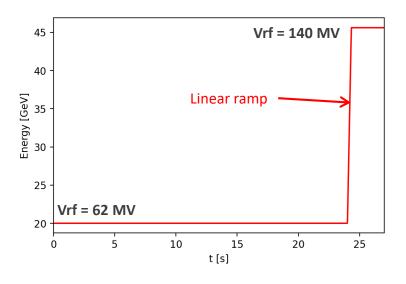
First requirements for beam instrumentation

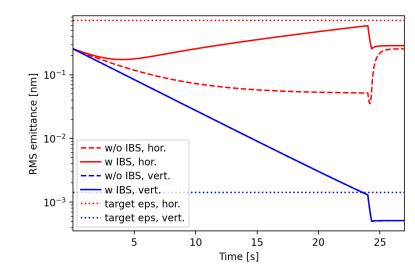


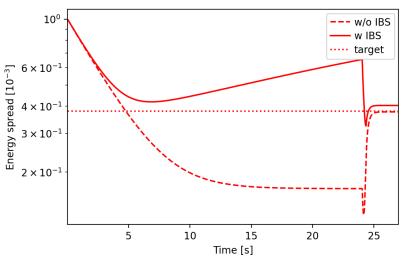

- \blacktriangleright First tolerance studies require for 2944 BPMs in the arcs with a RMS resolution better than 50 μm .
- ▶ We should be able to measure the current of each bunch with a precision better than 20 pC (less than 1% of the bunch charge).
- ▶ We should be able to measure the emittance of the bunches at the extraction.
- ▶ Because of the damping during the accumulation, the bunch properties are not the same from bunch to bunch: beam emittance, beam size and bunch length vary from bunch to bunch.
- ▶ At extraction, we should be at equilibrium and bunch properties should be roughly the same from bunch to bunch (especially for other modes than Z).

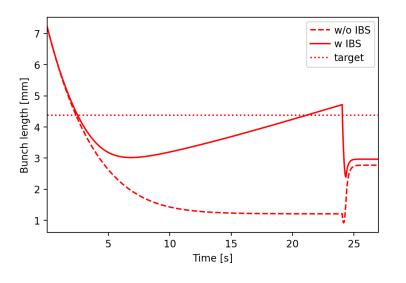


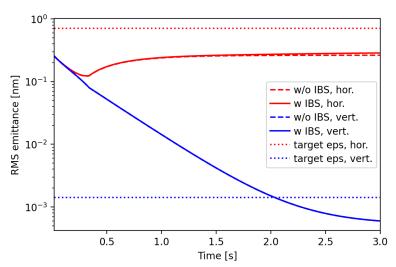

Emittance: accumulation + ramp 10μm x 1.0μm; 0.1%

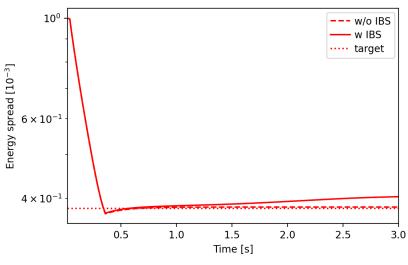


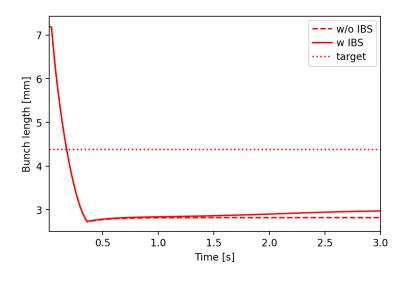


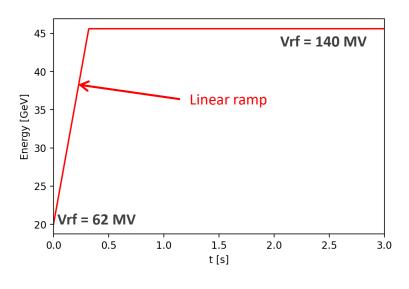


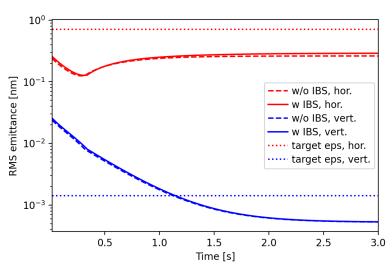

Emittance: accumulation + ramp 10μm x 10μm; 0.1%

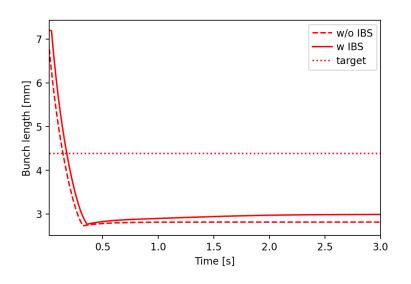


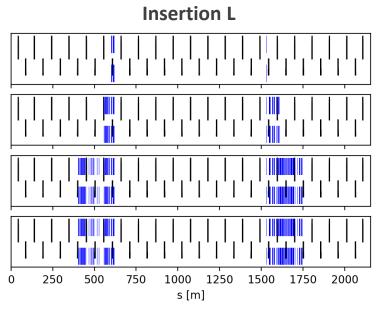



Emittance: ramp only 10μm x 10μm; 0.1%



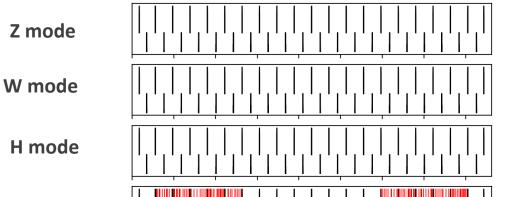

08/12/2022


Emittance: ramp only 10μm x 1.0μm; 0.1%



RF insertions

- Currently, the cavities are inserted in the insertions H and L.
- The cell FODO length in the RF insertion is 104 m.
- 400 MHz cryomodule length: 11.4 m
- 800 MHz cryomodule length: 7.5 m



Z mode: 2 CM left, 1 CM right of IPL

▶ W mode: 7 CM left, 6 CM right of IPL

► H mode: 17 CM left, 17 CM right of IPL

tt mode: 17 CM left, 17 CM right of IPL

Insertion H

▶ tt mode: 60 CM left, 60 CM right

1000

s [m]

1250

1500

1750

750

250

500

Proposal of the RF group to use 800 MHz only for all mode of the Booster: https://indico.cern.ch/event/1064327/contributions/4888581/ (F. Peauger)

tt mode

Possible solutions (1/3): Damping Wiggler B. Haerer, T. Tydecks https://arxiv.org/abs/2111.14462

Target damping time 0.1 s (to fulfill cycle time)

Wigglers reduce damping time and increase eq. emittance:

$$\tau_{\chi} \propto \frac{1}{E^3 I_2} \qquad \varepsilon_{eq} = \frac{C_q \gamma^2 I_5}{\left(I_2 \left(1 - \frac{I_4}{I_2}\right)\right)}$$

$$I_2 = \oint \frac{ds}{\rho^2} \qquad I_5 = \oint \frac{H_{\chi}}{|\rho^3|} ds$$

A normal conducting wigglers foreseen

⇒ can be further optimized for poles length and for number of poles

Hor. Emittance (60° optics) 1.7 nm @ 45.6 GeV

⇒ it **should be switched off** during acceleration or a parallel line with a fast kicker should be designed

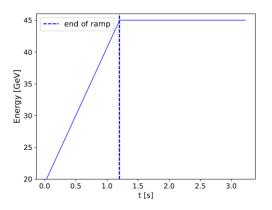
Total length of installed wigglers is of the > **100 m** in the **same straight line**

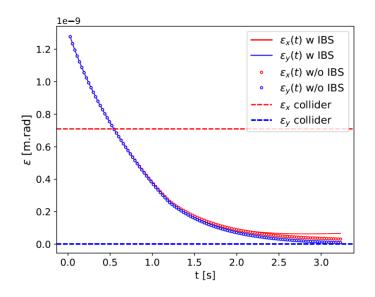
⇒ Possible stimulated **additional radiation** and **instability** (like in FEL) to be studied

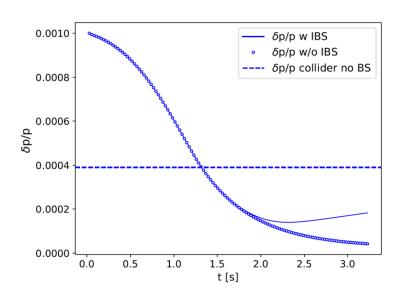
Beam energy (GeV)	Eq. emittance (nm rad) 60°/60° optics	Eq. emittance (nm rad) 90°/90° optics	Transv. damping time (s)
20.0	0.045	0.015	10.054
45.6	0.235	0.078	0.854
80.0	0.729	0.242	0.157
120.0	4.229	0.545	0.047
175.0	3.540	1.172	0.015

Pole length	0.095 m
Pole separation	$0.020\mathrm{m}$
Gap	$0.050\mathrm{m}$
Number of poles	79
Wiggler length	$9.065\mathrm{m}$
Magnetic field	1.45 T
Energy loss per turn	126 MeV
Hor. damping time	104 ms
Hor. emittance (60° optics)	300 pm rad

Possible solutions (2/3): 2s at extraction energy Tor Raubenheimer




FUTURE CIRCULAR COLLIDER

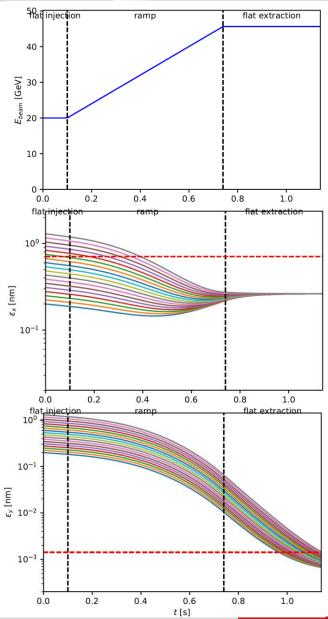

Add 2 seconds after the energy ramp at extraction energy

Pros: no change to the optics design

Cons: small increase Booster Cycle time

08/12/2022

Possible solutions (3/3): change I2 integral & ramp time


Simple model with synchrotron radiation only

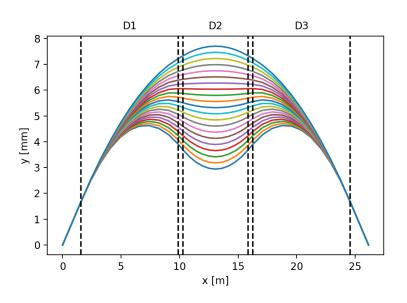
- Injection energy 20 GeV
- Injection rms emittance 0.2-1.3 nm
- Energy injection + ramp + extraction ~1.2 s
- 4×12 (4×15) synchrotron radiation integrals
- dE/dt = 40 GeV/s
- $k = 2 \times 10^{-3}$

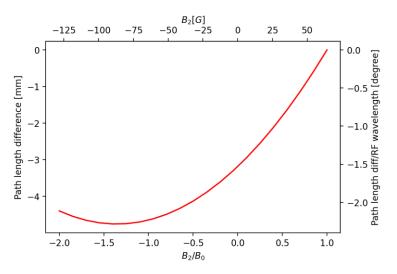
$$\frac{d\varepsilon_{x}}{dt} = -2\frac{\varepsilon_{x} - \varepsilon_{eq}(E(t), I2, I5)}{\tau_{x}(E(t), I2)}$$
$$\frac{d\varepsilon_{y}}{dt} = -2\frac{\varepsilon_{y} - k \varepsilon_{eq}(E(t), I2, I5)}{\tau_{x}(E(t), I2)}$$

Possible solution:

- 2 dipoles with two different curvatures, proposed for the electron-ion collider (EIC)
- Damping time can be reduced by playing on the ratio between the two different fields.

2 dipoles families optics


- 4×12 can be obtained with L2 ~5,5 m, B2~-128 G, B1 ~128 G at 20 GeV (to be compared with B~71 G with one single magnet family),
- Minimum dipole field at injection ~ 2×present lattice
- Momentum compaction ~1.8 10⁻⁵ (~ 60°/60° lattice)
- Variation of the path length difference below 5 mm
- Difference between the different orbits in the dipoles of 5 mm


Advantages:

- Increase I2 without damping wigglers
- **Higher dipole field at injection** energy (useful for all modes and maybe possibility to lower injection energy)

Drawbacks:

- Different reference orbits ⇒ reduction of beam stay clear?
- Change of path length should be followed by RF during acceleration... (Oide)
- More synchrotron radiation and in opposite direction of foreseen absorber (at injection) ⇒ vacuum quality to be investigated

First Beam Instrumentation requirements

- First tolerance studies require for 2944 BPMs in the arcs with a RMS resolution $^{\sim}$ 50 μm.
- ▶ We should be able to measure the current of each bunch with a precision better than 20 pC (less than 1% of the bunch charge).
- ▶ We should be able to measure the emittance of the bunches at the extraction.
- ▶ Because of the damping and IBS during the accumulation, the bunch properties are not the same from bunch to bunch: beam emittance, beam size and bunch length vary from bunch to bunch.
- ▶ At extraction, we should be at equilibrium and bunch properties should be roughly the same from bunch to bunch (especially for other modes than Z).