
FCC-ee INJECTION AND EXTRACTION

M. Aiba, W. Bartman, M. Boland, Y. Dutheil, P. Hunchak, M. Hofer, R. Ramjiawan, K. Oide, F. Zimmermann

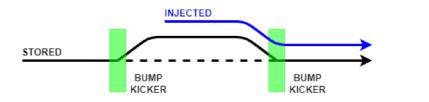
Introduction

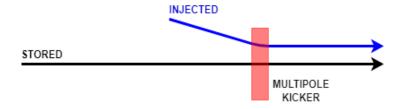
- To maximize time in collision, and thereby integrated luminosity, FCC-ee is foreseen to use top-up injection
 - Full energy beam from booster injected close to stored beam with either transverse or momentum offset, merge via SR damping
 - Injection interval ranging from 23s (H) to 60s (W) [ref]
 - To avoid flip-flop instability, charge imbalance below ±5% (Z) - ±3% (other modes)
- Used in operation in SKEKB and PEP-II and many light sources

Wienands, U. "Lepton Collider Operation with Constant Currents". Proceedings of the 2005 Particle Accelerator Conference. doi:10.1109/pac.2005.1590385

Injection schemes

) FCC


• Different injection schemes have been evaluated during CDR phase, with two general schemes deemed viable for FCC-ee


Conventional orbit bump injection

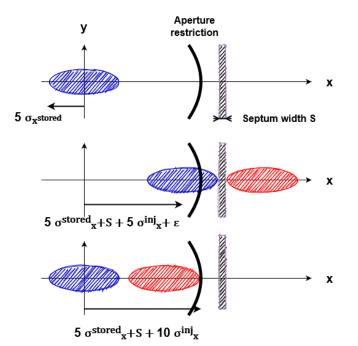
 Dipole kicker magnets creating a one turn closed orbit bump to bring stored beam close to septum

Multipole Kicker injection

- Use of a special kicker magnet with special field shape
- Small on-axis field for minimal effect on stored beam, while significant kick for injected beam

- Both modes allow separation via transverse offset (x) or momentum offset $(D_x \delta_p)$
- · Beam injection is performed in the horizontal plane

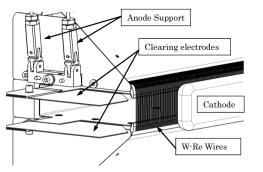
Conventional orbit bump injection


- Requires physical aperture and DA above $5\sigma_x^{stored} + S + 10\sigma_x^{injected}$ to store both beams
 - For off-momentum injection, DA above $5\sigma_x^{injected}$ for given δ_p

FCC

• Accounting for hor. emittance from booster [ref],

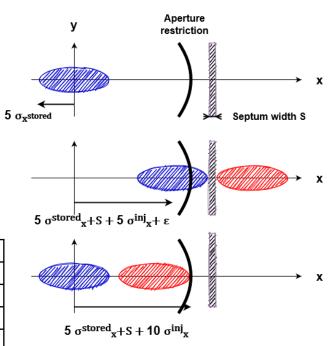
$$\sigma_x^{injected} / \sigma_x^{stored}$$
 ranging from 0.5 (Z) to 0.9 ($t\bar{t}$)


- Optics of the TL can be adjusted to optimize phase space coverage
 - For current injection optics, $\beta_x^{stored} \approx 4\beta_x^{injected}$ [ref]
- Septum aperture larger by safety margin ε wrt primary collimator for safety, need to account in bump height

Conventional orbit bump injection

- With orbit bump closed, beams still separated by septum width S, including alignment tolerances
 - Benefits from thin electrostatic septum with $S = 200 \mu m$ under study ($S = 200 \mu m \triangleq 0.3 \sigma_x$)
 - R&D at CERN planned to investigate sparking rates as function of electric field

Septum



FCC

Fig. 1. ZS electrostatic septum used for SPS slow extraction


Parameter	Value
Deflection angle	65 µrad
Int. field ($\bar{t}\bar{t}$)	11.2 MV
Electric field	1.87 MV/m
Potential difference	37.4 kV
Septum thickness	200 µm
Gap width	20 mm
Length	2×3 m

Preliminary - still under study

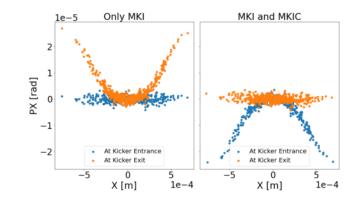
Multipole kicker injection

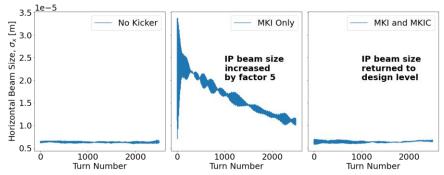
- Special kicker permits to kick an off-axis beam, while stored beam remains (relatively) unaffected
 - Unlike conventional bump injection, • septum width plays secondary role \rightarrow magnetic eddy current septum with 3mm septum width
 - So far, only 2D design for MKI exist, ٠ further R&D and 3D design required
- Aperture requirement of $5\sigma_x^{stored} + 10\sigma_y^{injected}$
 - Septum aperture affects strength of kicker and thereby stored beam distortion

-5 M. Aiba et al. "Top-up injection schemes for future circular lepton collider"

Ó 5 10 15 20

x (mm

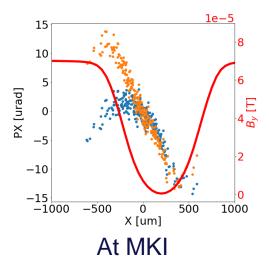

0.5 0.0 -20 -15 -10

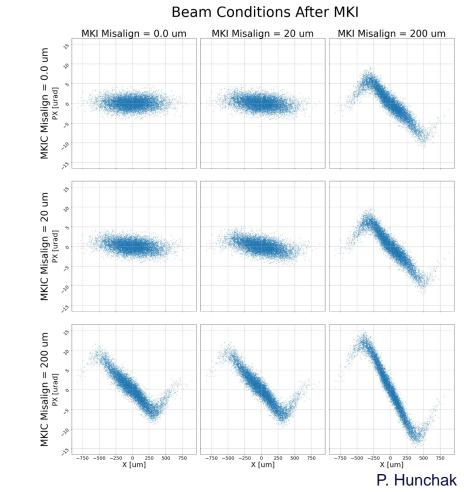

Multipole kicker compensation

 Non-zero on-axis field of the MKI results in distortion of stored beam

FCC

- Temporary increase of beamsize at IP by factor 5
- Compensation kicker upstream to cancel effect on stored beam
 - Phase advance of 180° and same optics allows for –I transformation

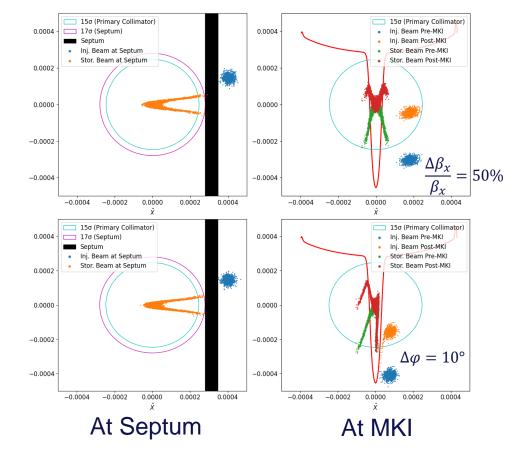




P. Hunchak

Alignment tolerances

- Off-center passage of stored beam through ۲ either one or both MKI results in distortion
 - For case of both MKI fields shifted • by $200\mu m$, ε_x increase by factor 1.75

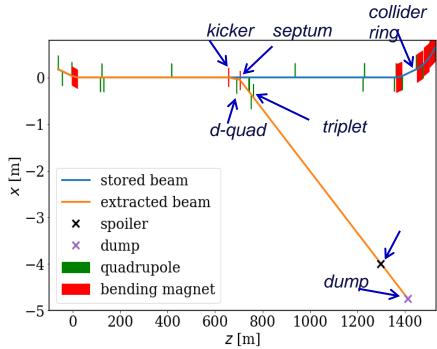

MKI/MKIC each offset 200um

FCC

Impact of optics errors

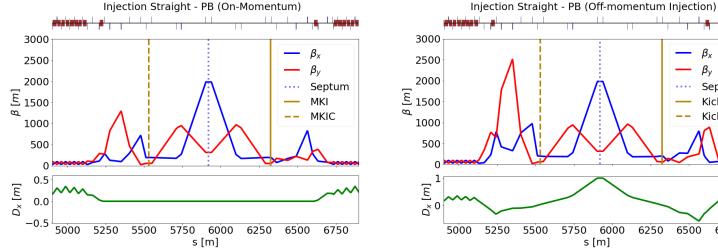
 Similarly, optics errors resulting in distortion of stored beam and reduced injection efficiency

 Tolerable distortions to be studied with tracking studies, including beam-beam

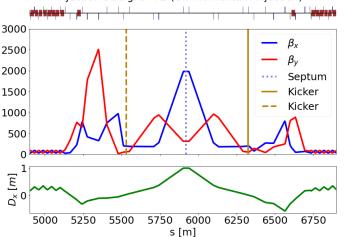

P. Hunchak

Failure scenarios

- Stored beam energy in FCC-ee between ~20MJ (Z) and 0.3 MJ ($t\bar{t}$)
 - Stored energy of injected beam factor ~10 below
- Multipole Kicker Injection has the advantage that beam centroid is (minimally) affected in case of no trigger or mistrigger
 - Erratic turn-on: emittance blowup of stored beam
 - No trigger: injected beam hitting absorber
- In conventional bump injection, failure of one kicker may result in stored beam loss at septum or downstream aperture
 - Injected beam to be absorbed by downstream protection
- Septum failure considered as slow process and active protection is considered
 - Tolerable variation in septum strength dictates beam abort time

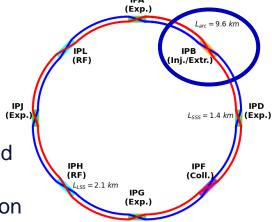

Extraction

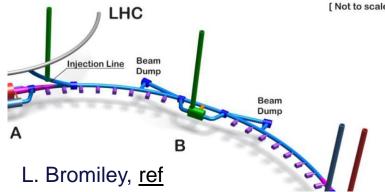
- First study on layout of extraction and requirements presented last workshop [ref]
- After extraction, defocusing triplet to blow up beamsize, propagating for ~700m before hitting spoilers and finally beam dump
- Hardware parameter achievable
 - Kicker: 1 mrad deflection, 3 μs rise time, 300 μs flat top
 - Septum: 5 *mrad* deflection, 5 *cm* separation
- Based on SKEKB experience with "crazy beam", proposal to install extraction upstream of each IP



Integration into collider

- One dedicated straight section (PB) for injection (& extraction)
- For 2-IP lattice, a layout for an injection insertion has been devised ٠ by M. Aiba
 - Compatible with both conventional and Multipole kicker injection





Integration into collider

- One dedicated straight section (PB) for injection (& extraction)
- For 2-IP lattice, a layout for an injection insertion has been devised by M. Aiba
 - Compatible with both conventional and Multipole kicker injection
- For 4-IP lattice, layout under study
 - Combining both injection and extraction in one 2.1km long insertion, requires beam crossing
 LHC
 - Integration of transfer line from booster to collider and extraction line
 - FCC-hh dump at the same location

Conclusions

- Top-up injection key ingredient in reaching luminosity goal
 - Proven technique used in other e⁺e⁻ collider and light sources
- Two feasible injection schemes (with on- and off-momentum variants) identified
 - Studies on tolerances and impact on performance being performed
 - R&D needed for multipole kicker, thin electro static septa
- High stored beam energy requires special attention
 - Slight preference towards MKI for Z-operation mode as failures only lead to stored beam blow-up
- Integration in latest 4-IP lattice started
 - Necessity for extraction/dump upstream of each experiment to be looked into

Thanks for your attention!