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Mixed tunneling




Mixed tunneling phenomena

a=2

a=1

Only the a=0 particle can feel

Potential barrier

This has been discussed from 1970’s

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 53, NUMBER 9 1 NOVEMBER 1970

Classical S Matrix: Numerical Application to Inelastic Collisions
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A previously developed semiclassical theory of molecular collisions based on exact classical mechanics
is applied to the linear atom—diatom collision (vibrational excitation). Classical, semiclassical, and uniform
semiclassical results for individual vibrational transition probabilities corresponding to the Ho-+He system
are presented and compared to the exact quantum mechanical results of Secrest and Johnson. The purely
classical results (the classical limit of the exact quantum mechanical transition probability) are seen to be
accurate only in an average sense; the semiclassical and uniform semiclassical results, which contain inter-
ference effects omitted by the classical treatment, are in excellent agreement (within a few percent) with
the exact quantum transition probabilities. An integral representation for the S-matrix elements is also
developed which, although it involves only classical quantities, appears to have a region of validity beyond
that of the semiclassical or uniform semiclassical expressions themselves. The general conclusion seems
to be that the dynamics of these inelastic collisions is basically classical, with all quantum mechanical
structure being of a rather simple interference nature.

There are a few known techniques

Complex trajectories

No first principle derivation

Adiabatic approximation
Only for adiabatic, diabatic or weak-coupling cases
Tunneling time itself has been a controversial issue of QM

Huygens principle
Construction of wave fronts, computationally very hard




Separable problem

Only the a=0 particle can feel

Potential barrier ‘

x=0 x=1

Hamiltonian

There are (2N+1) independent particles

N y
Pq | a
H = Z . | 5a0V(CE ), vy

a=—N

Initial kinetic energy

All particles have the same energy

E <V

What is expected?

Only a=0 particle tunnels with probability

_ WGP ]2 1 -
P =T =7 |, e VA6

0<x <1,

otherwise




The wrong calculation

Standard way of solving the Hamilton-Jacobi equation

‘ Shroedinger equation
HY = EY. &

‘ WKB approximation

f Semi-classical expansion
Only the a=0 particle can feel

Y = exp [%@(0) +eW 4 . ]
Potential barrier ‘ 2 Oth-order WKB equation

1 00O\’
= — - — E - V 0 .
x=0 X=1 o 2 ( S ) (x7)
‘ 3 Solution of the Hamilton-Jacobi equation

(2N +1)E.

@(0)({xa(3f)}) — @(0)({55@(30}) = /Sf ds \/QW(E — V(:UO))\




The wrong calculation

Standard way of solving the Hamilton-Jacobi equation

‘ Shroedinger equation
HY = EY. &

‘ WKB approximation

f Semi-classical expansion
Only the a=0 particle can feel

Y = exp [%@(0) +eW 4 . ]
Potential barrier ‘ 2 Oth-order WKB equation

1 00O\’
= — - — E - V 0 .
x=0 X=1 o 2 ( S ) (x7)
‘ 3 Solution of the Hamilton-Jacobi equation

(2N +1)E.

@(0)({xa(3f)}) — @(0)({55@(30}) = /Sf ds \/QW(E— V(CEO))\

‘ No tunneling if V[ < E ???




What was wrong?

Coupled Anharmonic Oscillators. I. Equal-Mass Case

Shroedinger equation for each particle Thomas Banks*
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WKB approximation
equation for the phase S of a wave function with en-
Execute the WKB approximation for each particle ergy E is'®

d$a>2 (VSR =V ~E. (3.1)

ds \/2m(€ — 5a0V(x“))\/( T

O ({z(s))}) =0V {a"(s)}) = > /Sf

u— NV si This is just the Hamilton-Jacobi equation for a

Correct result! classical system with Hamiltonian p? + V. In one
» 2. ] dimension it reduces to (dS/dx)> =V - E, whose so-
S 2 lution is S=+ [(V -~ E)"?. For the general multidi-
P:W( /)| ~exp|—= [ daz2m(Vy — &) . f(. . ) : sEaere .
[(s)]? ko, mensional case it is a nonlinear partial differential
equation. Of course, if the Hamiltonian has a con-

What was wrong? tinuous symmetry, Eq. (3.1) will be separable.

However, Eq. (3.1) is nontrivial in general. The
2 Oth-order WKB equation new multidimensional techniques which we have

1 90O\ 2 discovered simplify the problem of solving Eq.
— < ) = FE - V(a").

om Da (3.1) because now we need to solve it only in a

small, approximately one-dimensional region. Our

3 Solution of the Hamilton-Jacobi equation technique is expressly designed to deal with prob-

5 a2 lems which do nof/ have continuous symmetries,

O ({z%(sy)}) — 0 ({2(5:)}) =/ ds v/2m(E — V(SUO))J > ( ) - and is thus complementary to the separation of
variables idea.




Complex Hamilton-Jacobi equation

Complex exponent
00 = Wy +iW;.

Hamilton-Jacobi equation

N 2 2
1 OWg oW B 0
2m {(890@) _(axa> = b=V,
a=—N
i OWr\ (WY _
oz oxe )
a=—N
Decomposition
CE}% : contribute only to Wx
SE? : contribute only to W;
T

) AN

No information from
time-independent Schroedinger equation

We can solve these in the conventional way
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Complex Hamilton-Jacobi equation

Complex exponent
0O = Wr + W,
Hamilton-Jacobi equation

1o [ (OWR)® (oW
2m Oz Oz

a—=

= F - V(a"),

Local energy conservation law
N

a;v (gﬁ) (%ZV;) -0 7:[ ?ﬁ B

Decomposition

A . - 2
X :contribute only to Wg H = Qp;;b V() — &
SE? : contribute only to W;

T

Uniquely determines the decomposition and =

1 OWr\ 2
— ( f) = E— V() +E,
- 0xs o—

1 <8W1)2 o \\
B

2m OxP - No information from
\ time-independent Schroedinger equation

We can solve these in the conventional way
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Formulation

In our formulation, the starting point is

Not the Schroedinger equation

d A
v = Hy

v

But the local energy conservation law

H,h =0,

HCL + 5&0‘/(

2m

) -

E.

cf.) Hamiltonian of quantum gravity

Lagrange multiplier Local Hamiltonian

\ /
H — )\WN )\’LT‘-N NHZ a Hbdy

» H~0

Hamiltonian constraint/Wheeler-deWitt equation

1 1
H = NG [2%Gijkﬂ”77 T 27%] ™ \f[_ YR+ ihw(aﬂ)(aj@ +V(9)|,
H' = (0'¢)my — 2vh

T4

i

HE = i p 1
bdy J Gz’jk:l — §(hzkjh]l + hilhjk: o h’bjhkl)

H%)dy — 27‘(‘2‘7Nj — WklhklNZ + £82N
K




Path integral

Path integral formula [YS; 22]

/ DXénexp — Z / ds 2+/K(s \/—Va(s)_

i a——N

Here,
m (dz®\°
O =
2 < ds ) ’

Va — 5a0v(xa) |

W (Qfa o CL“G’_H)Q e (xa L :Ea,—l)Q
2 2

With eta satisfying




Path integral

[YS; 22]

., m(dz“ ?
= 2 (ds ) ’
Va — 5aQV(£IJa) |

W (xa o CL“G’_H)Q e ($a o :Ea,—l)Q
2 2

With eta satisfying

dn“(s) _ w (dﬂf““(é’) | dx(:is)).

T = 5@ (s) =2 ()| —;

Path integral formula

/DX(Snexp — Z/ ds 24/K2(s)/—Va(s)
i a——N 5

Here,

Lorentzian path integral

:/DXexp z /n dsL({:v“},{fif“}):

Euclidean path integral

:/DXeXp {— /n dSLE({ZUa},{ia})}

Separable example

aiN /f ds v/2m(€ — 5aoV(xa))\/<ddza> )




Polychronic tunneling
~ new tunneling process in QFT ~
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Lorentzian evolution

Euclidean evolution

* Real exponent
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One-dimensional chain explanation

Polychronic tunneling

Potential is higher Potential is lower
due to springs due to springs

Euclidean evolution Lorentzian evolution Euclidean evolution

Repetition in infinitesimal time

* Complex exponent

12




Numerical analysis
Setup

Potential

SO(3) x R Ansatz

O = P(s,7),
hi; da’ da? = e”57) dr? 4 12 (dh* + sin® 0 d¢?),

False vacuum

?(0,7) = or.
7(0,7) = —In (1 “§QV(¢F)>.

=> Search for a complex saddle point

Unit of parameters are setby K — 87‘(’ G




Numerical analysis
CDL vs PT (e, k, Vo) = (0.5,0.3,0)
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Numerical analysis

CDL vs PT
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(k, k, Vo) = (0.5,0.3,0)
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Numerical analysis
CDL vs PT (e, k, Vo) = (0.5,0.3,0)

1io- 0.00

-0.05

E -0.10 S
CDL 5 = O

CDL :

4 0
. ~0.20 lﬂ "Y( ) ~ —710
i -0.25| ?
-0.30 - 0
‘ | ‘ ‘ ‘ ‘ i | | | | | | | | | | | | | | | | | | | | | | | | |
20 25 0 5 10 15 20 25
r
,
Dashed: Lorentzian | 0.00
] ~0.05" :
] 0.10 ]
s PT | < 015 Iy PT o

- . A * ]
A , i «_’ ,I ;! ]
. ] 025" N :
i i \ / 1

* -0.30 - S ; .

= e e e ] : -t : i PT
L1 | | | | | | | | | | | | | | | | | | ] J.
6 é 1‘0 1‘5 2‘0 2‘5 0 5 10 15 20 25 I (D Ilt') '
r r

14-3




Numerical analysis

Interpretation

Classical roll down

0.8
0.6
0.4
0.2

0.0

Dragged

Potential top
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Summary

 Quantum tunneling in a many-body system is non-trivial and the conventional
techniques sometimes fail to give the correct results

* Qur starting point is not the Schroedinger equation, but the local energy
conservation law

 We have formulated path-integral for mixed tunneling and polychronic
tunneling

* In QFT, we have found faster tunneling processes than the CDL one




