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Mixed tunneling phenomena

Potential barrier

Complex trajectories

Adiabatic approximation

Only the a=0 particle can feel
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This has been discussed from 1970’s

There are a few known techniques

No first principle derivation

Only for adiabatic, diabatic or weak-coupling cases
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A previously developed semiclassical theory of molecular collisions based on exact classical mechanics 
is applied to the linear atom-diatom collision (vibrational excitation). Classical, semiclassical, and uniform 
semiclassical results for individual vibrational transition probabilities corresponding to the H2+He system 
are presented and compared to the exact quantum mechanical results of Secrest and Johnson. The purely 
classical results (the classical limit of the exact quantum mechanical transition probability) are seen to be 
accurate only in an average sense; the semiclassical and uniform semiclassical results, which contain inter-
ference effects omitted by the classical treatment, are in excellent agreement (within a few percent) with 
the exact quantum transition probabilities. An integral representation for the S-matrix elements is also 
developed which, although it involves only classical quantities, appears to have a region of validity beyond 
that of the semiclassical or uniform semiclassical expressions themselves. The general conclusion seems 
to be that the dynamics of these inelastic collisions is basically classical, with all quantum mechanical 
structure being of a rather simple interference nature. 

I. INTRODUCTION 

In an earlier paper 1 (referred to hereafter as I) it has 
been shown how the classical limit of the time-independ-
ent quantum mechanical S matrix (i.e., the classical 
S matrix) can be expressed in terms of quantities 
directly obtainable from the solution of the classical 
equations of motion for the collision system under con-
sideration. The basic approach in I is that one employs 
classical dynamics (equation of motion), but quantum 
mechanical superposition (addition of probability ampli-
tudes for indistinguishable processes rather than proba-
bilities themselves2). In light of what has been learned 
about the semiclassical nature of simple elastic scatter-
ing,3 it was argued that many, if not all, of the quantum 
mechanical features in atomic and molecular collisions 
should be accurately contained within this framework. 
The general results of I apply to systems of any number 
of degrees of freedom, and detailed considerations were 
made for the atom-diatom collision system. 

In the present paper we present the numerical results 
of this approach as applied to the linear atom-diatom 
collision (without reaction); with just one internal 
degree of freedom (that of vibration) this is the simplest 
prototype inelastic collision. The system is precisely 
that for which accurate quantum mechanical calcula-
tions have been carried out by Secrest and Johnson,4 
and it is these essentially exact quantum mechanical 
results to which we compare. 

In order to provide a severe test for the various semi-
classical expressions, the mass ratio and potential 
parameters were chosen to correspond to a highly 
quantumlike system, H 2+ He. The results are presented 
and discussed in following sections, and uniform, or 
extended, semiclassical expressions are developed; in 
Sec. IVan integral representation for the S matrix is 
obtained which appears to have an even wider region 
of validity. 

To summarize our findings briefly, there are typically 
two independent classical trajectories which contribute 
to a particular "classically allowed" transition (a term 
which will become clear in Sec. II) ; the purely classical 
approximation to the transition probability is the sum 
of a probability associated with each of these two 
trajectories, and is accurate only in an average sense. 
Figure 1 shows typical results, and one sees quite clearly 
the failure of the classical approximation to account for 
individual transition probabilities. The semiclassical 
treatment takes account of quantum mechanical inter-
ference between the two trajectories and accurately 
reproduces the exact quantum mechanical values, 
except for final states near the "classically forbidden" 
region; the uniform semiclassical expressions are valid 
even through this transition region, so that on the scale 
of Fig. 1 there is essentially no difference between the 
uniform semiclassical and exact quantum results; Table 
I gives the numerical values corresponding to Fig. 1. 
The conclusion seems to be, therefore, that the dynamics 
of these inelastic collisions is essentially classical, and 
all quantum mechanical structure is due to interference 
between the several classicallike terms. 

II. DESCRIPTION OF THE COLLISION SYSTEM 
AND CLASSICAL RESULTS 

The linearly constrained atom-diatom collision sys-
tem has been studied by a number of authors,4,5 using a 
variety of techniques. The particular version of the 
model we choose is that used by Secrest and Johnson,4 
and one should consult their paper for details, such as 
reduction to dimensionless variables, etc. The principal 
features of this version of the model are that the diatom 
is taken as a harmonic oscillator, and the interaction is 
an exponential repulsion between the atom and the 
closest end of the diatom. 

The translational or scattering degree of freedom is 
3578 

Tunneling time itself has been a controversial issue of QM
Huygens principle

Construction of wave fronts, computationally very hard 
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Separable problem

Potential barrier

Only the a=0 particle can feel
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I. POLYCHRONIC TUNNELING WITHOUT GRAVITY

A. Quantum Mechanics

We first consider (2N + 1) separable quantum systems of

H =
NX

a=�N

p
2
a

2m
+ �a0V (xa), (I.1)

where only a = 0 has a potential,

V (x) =

8
><

>:

V0 0 < x < 1,

0 otherwise
. (I.2)

We assume each particle has energy of " < V0. In the following, we calculate the probability

to find that all the particles are above one, all starting below zero.

Let us see the wrong formulation first. We consider solving the following time-independent

Schrödinger equation.

Ĥ = E . (I.3)

with

E = (2N + 1)". (I.4)

We expand the solution as

 = exp


i

~⇥
(0) +⇥(1) + . . .

�
. (I.5)

At the leading order, the Schrödinger equation becomes

1

2m

X

a

✓
@⇥(0)

@xa

◆2

= E � V (x0). (I.6)

Since this is a Hamilton-Jacobi equation, a solution is given by []

⇥(0)({xa(sf )})�⇥(0)({xa(si)}) =

Z
sf

si

ds
p

2m(E � V (x0))

vuutX

a

✓
dxa

ds

◆2

. (I.7)

This implies, however, the tunneling probability is one for V0 < E. This is apparently wrong

since we know one particle needs to tunnel. Here, the issue is the use of the total energy.

In the original problem, each particle has its own energy, and it cannot be transferred to

another particle.
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Hamiltonian

Initial kinetic energy

x=0 x=1

There are (2N+1) independent particles

All particles have the same energy

What is expected?
Only a=0 particle tunnels with probability

figs/cdl-p1-integrand.pdf

figs/wt-p1-integrand-inic.pdf figs/wt-p1-integrand-inig.pdf

FIG. 6. The integrand, I(s, r), for the CDL bounce (top) and for the PT path (bottom) with

(, k, V0) = (0.5, 0.3, 0). The bottom left panel is with the CDL initial path and the bottom right

one is with the Gaussian initial path. The hatched region corresponds to ↵
2
> 0.

Here, one can smoothen the potential if needed. We assume each particle has energy of

E < V0. In the following, we calculate the probability to find that all the particles are above

one, all starting below zero.

Let us see the wrong formulation first. We consider solving the following time-independent

Schrödinger equation.

Ĥ = E . (VI.14)

with

E = (2N + 1)E . (VI.15)

33

figs/cdl-p2-integrand.pdf figs/wt-p2-integrand-inic.pdf

FIG. 8. The same figure as Fig. 6 but with (, k, V0) = (10�5
, 0.3, 0). The left panel is for the CDL

bounce and the right panel is for the PT path with the CDL initial path.

Let us see what is wrong in the above derivation. Since the particles are independent of

each other, we have separated equations,

Ĥa = 0, (VI.19)

with

Ha =
p2
a

2m
+ �a0V (xa)� E . (VI.20)

Solving these separately, we obtain

⇥(0)({xa(sf )})�⇥(0)({xa(si)}) =
NX

a=�N

Z
sf

si

ds
p
2m(E � �a0V (xa))

s✓
dxa

ds

◆2

. (VI.21)

Thus, the tunneling probability is

P =
| (sf )|2
| (si)|2

' exp


�2

~

Z
1

0

dx
p
2m(V0 � E)

�
. (VI.22)

For x < 0 and x > 1, Eq. (VI.21) agrees with Eq. (VI.18) after substituting the Lorentzian

equations of motion. However, for 0 < x < 1, we have to substitute the Euclidean or

the Lorentzian equations of motion depending on the particles and the results disagree.

From Eq. (VI.21), we can see that the left-hand side of Eq. (VI.17) is not positive definite.

This implies that the Hamilton-Jacobi equation cannot be solved in the ordinary way for

0 < x < 1 and this led to the wrong result.

35
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Ĥ = E . (I.3)

with

E = (2N + 1)". (I.4)

We expand the solution as

 = exp


i

~⇥
(0) +⇥(1) + . . .

�
. (I.5)

At the leading order, the Schrödinger equation becomes

1

2m

X

a

✓
@⇥(0)

@xa

◆2

= E � V (x0). (I.6)

Since this is a Hamilton-Jacobi equation, a solution is given by []

⇥(0)({xa(sf )})�⇥(0)({xa(si)}) =

Z
sf

si

ds
p

2m(E � V (x0))

vuutX

a

✓
dxa

ds

◆2

. (I.7)

This implies, however, the tunneling probability is one for V0 < E. This is apparently wrong

since we know one particle needs to tunnel. Here, the issue is the use of the total energy.

In the original problem, each particle has its own energy, and it cannot be transferred to

another particle.

2

Shroedinger equation
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WKB approximation
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Solution of the Hamilton-Jacobi equation

Semi-classical expansion
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FIG. 6. The integrand, I(s, r), for the CDL bounce (top) and for the PT path (bottom) with

(, k, V0) = (0.5, 0.3, 0). The bottom left panel is with the CDL initial path and the bottom right

one is with the Gaussian initial path. The hatched region corresponds to ↵
2
> 0.

Here, one can smoothen the potential if needed. We assume each particle has energy of

E < V0. In the following, we calculate the probability to find that all the particles are above

one, all starting below zero.

Let us see the wrong formulation first. We consider solving the following time-independent

Schrödinger equation.

Ĥ = E . (VI.14)

with

E = (2N + 1)E . (VI.15)
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Since this is a Hamilton-Jacobi equation, a solution is given by []

⇥(0)({xa(sf )})�⇥(0)({xa(si)}) =

Z
sf

si

ds
p

2m(E � V (x0))

vuutX
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✓
dxa
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This implies, however, the tunneling probability is one for V0 < E. This is apparently wrong

since we know one particle needs to tunnel. Here, the issue is the use of the total energy.

In the original problem, each particle has its own energy, and it cannot be transferred to

another particle.
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FIG. 6. The integrand, I(s, r), for the CDL bounce (top) and for the PT path (bottom) with

(, k, V0) = (0.5, 0.3, 0). The bottom left panel is with the CDL initial path and the bottom right

one is with the Gaussian initial path. The hatched region corresponds to ↵
2
> 0.

Here, one can smoothen the potential if needed. We assume each particle has energy of

E < V0. In the following, we calculate the probability to find that all the particles are above

one, all starting below zero.

Let us see the wrong formulation first. We consider solving the following time-independent

Schrödinger equation.

Ĥ = E . (VI.14)

with

E = (2N + 1)E . (VI.15)
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WKB approximation
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FIG. 8. The same figure as Fig. 6 but with (, k, V0) = (10�5
, 0.3, 0). The left panel is for the CDL

bounce and the right panel is for the PT path with the CDL initial path.

Let us see what is wrong in the above derivation. Since the particles are independent of

each other, we have separated equations,

Ĥa = 0, (VI.19)

with

Ha =
p2
a

2m
+ �a0V (xa)� E . (VI.20)

Solving these separately, we obtain
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Thus, the tunneling probability is

P =
| (sf )|2
| (si)|2

' exp


�2

~

Z
1

0

dx
p
2m(V0 � E)

�
. (VI.22)

For x < 0 and x > 1, Eq. (VI.21) agrees with Eq. (VI.18) after substituting the Lorentzian

equations of motion. However, for 0 < x < 1, we have to substitute the Euclidean or

the Lorentzian equations of motion depending on the particles and the results disagree.

From Eq. (VI.21), we can see that the left-hand side of Eq. (VI.17) is not positive definite.

This implies that the Hamilton-Jacobi equation cannot be solved in the ordinary way for

0 < x < 1 and this led to the wrong result.

35

Correct result!

figs/cdl-p2-integrand.pdf figs/wt-p2-integrand-inic.pdf

FIG. 8. The same figure as Fig. 6 but with (, k, V0) = (10�5
, 0.3, 0). The left panel is for the CDL

bounce and the right panel is for the PT path with the CDL initial path.

Let us see what is wrong in the above derivation. Since the particles are independent of

each other, we have separated equations,
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I. POLYCHRONIC TUNNELING WITHOUT GRAVITY

A. Quantum Mechanics

We first consider (2N + 1) separable quantum systems of

H =
NX

a=�N

p
2
a

2m
+ �a0V (xa), (I.1)

where only a = 0 has a potential,

V (x) =

8
><

>:

V0 0 < x < 1,

0 otherwise
. (I.2)

We assume each particle has energy of " < V0. In the following, we calculate the probability

to find that all the particles are above one, all starting below zero.

Let us see the wrong formulation first. We consider solving the following time-independent

Schrödinger equation.

Ĥ = E . (I.3)

with

E = (2N + 1)". (I.4)

We expand the solution as

 = exp


i

~⇥
(0) +⇥(1) + . . .

�
. (I.5)

At the leading order, the Schrödinger equation becomes

1

2m

X

a

✓
@⇥(0)

@xa

◆2

= E � V (x0). (I.6)

Since this is a Hamilton-Jacobi equation, a solution is given by []

⇥(0)({xa(sf )})�⇥(0)({xa(si)}) =

Z
sf

si

ds
p

2m(E � V (x0))

vuutX

a

✓
dxa

ds

◆2

. (I.7)

This implies, however, the tunneling probability is one for V0 < E. This is apparently wrong

since we know one particle needs to tunnel. Here, the issue is the use of the total energy.

In the original problem, each particle has its own energy, and it cannot be transferred to

another particle.
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This implies, however, the tunneling probability is one for V0 < E. This is apparently wrong

since we know one particle needs to tunnel. Here, the issue is the use of the total energy.

In the original problem, each particle has its own energy, and it cannot be transferred to

another particle.
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0th-order WKB equation

Solution of the Hamilton-Jacobi equation
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equation for the phase 5 of a wave function with en-
ergy I: is"

(VS) = V—E. (3 1)

—exp — (V—E)N (3.2)

where J (E —V)'" is the classical action and the
normalization factor N depends only on the end
points of the path. The total amplitude is just the
sum of Fq. (3.2) over all paths P
In the tunneling region, (V—E) is positive, and

the amplitude is exponentially damped. Therefore,
the dominant contribution to the amplitude comes
from regions near the paths which minimize the
action integral and thus satisfy

(3.3)

The Euler-Lagrange equations following from Eq.
(3.3) are"

where s is the path length. All solutions of Eq.
(3.4) are local stationary points of the action.
However, we are interested in the global minima.
This will eliminate all except a discrete" set of
paths which are just the MPEP's.
Once we have found a set of MPEP's, we must

find approximate solutions to the Schrodinger
equation along these trajectories. As in any semi-
classical or ray description of a wave phenomenon,
we must distinguish two levels of approximation.
At the first level, called geometrical optics or the
eikonal approximation, the phase of the wave func-
tion is approximated by a line integral along the
trajectory, while its amplitude is assumed to be

This is just the Hamilton-Jacobi equation for a
classical system with Hamiltonian p'+ t/'. In one
dimension it reduces to (dS/dx)' = V —E, whose so-
lution is S=+f(V—8)'". For the general multidi-
mensional case it is a nonlinear partial differential
equation. Of course, if the Hamiltonian has a con-
tinuous symmetry, Eq. (3.1) will be separable.
However, Eq. (3.1) is nontrivial in general. The
new multidimensional techniques which we have
discovered simplify the problem of solving Eq.
(3.1) because now we need to solve it only in a
small, approximately one-dimensional region. Our
technique is expressly designed to deal with prob-
lems which do not have continuous symmetries,
and is thus comPlementary to the separation of
variables idea.
We briefly review the path-integral formalism.

The amplitude for a particle of energy E to take a
particular path P in a potential t/' is

constant. This is just zeroth-order WKB. The
second level, called physical optics or first-order
WKB, takes into account the variation of the am-
plitude and the spread of the wave function into the
region around the trajectory. Thus, physical op-
tics is characterized by a set of tubes through
which most of the probability current flows.
These two levels of approximation are clearly

distinguished in our results for the large-order
behavior of perturbation theory. We find that in
general for large n

A, „-KL"I'(Mn+ J)r 1 +0(1/n)] . (3.6)

The constants I., M, and J are determined by geo™
metrical optics alone. Physical optics is needed
to find the value of K.

—=—,x —e (x 3 + cxy ) = 0,BP
Bx

(3.6)
= py —&(y +cx y) = 0.By

Equations (3.6) have nine solutions, namely,

B. Determination of Most Probable Escape Paths

The program we outlined in part A of this section
for finding the MPEP's is of course very difficult.
It involves actually finding closed-form solutions
to Eq. (3.4) and explicitly selecting those solutions
which minimize f(V -E)"'. Fortunately, in many
cases, a heuristic argument enables us to guess
the most probable paths without solving Eq. (3.4)
and these turn out to be straight lines. In fact, it
is generally true that the MPEP's for the equal-
mass oscillators defined in Eq. (1.4) are straight
lines. The more difficult problem of unequal-mass
oscillators, which have curved MPEP's, will be
discussed in the next paper of this series. " It is
easy to show that the straight MPEP's satisfy Eq.
(3.4), but we have no way of proving that they are
global minima of the action. The only convincing
evidence we have for this is the excellent, ".gree-
ment of our results with our computer calculations.
In this section we use geometrical optics to treat

the special case of Eq. (1.1) for which a =b = 1.
This simplifies the notation without obscuring any
of the important features of the problem. In Sec.
IV we use physical optics to treat this same case.
Equation (1.1) is solved in general in Sec. VI.
We expect a straight MPEP to satisfy certain

reasonable criteria. It should be a "path of least
resistance" to tunneling and thus should pass
through a saddle point of the potential V=4x +4y2
——,'e(x'+y'+2cx'y'). The saddle point should be
oriented along the path (which is a radial line). A
saddle point of t/' satisfies the equations
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This is the first in a series of papers on the 1arge-order behavior of perturbation theory for coupled
anharmonic oscillators. We exploit previously published dispersion techniques to convert the calculation
of perturbation theory in large order into a barrier-penetration problem. We then introduce new
semiclassical methods for describing tunneling through nonspherically symmetric, N-dimensional
potentials. To illustrate our new methods, we calculate the large-order behavior of perturbation theory
for a simple system of two equal-mass oscillators with quartic coupling. Our predictions are in complete
agreement with computer calculations. We then extend our results to oscillators with x' coupling,
X-oscillator systems, and some infinite-oscillator systems.

I. INTRODUCTION

In a recent paper Adler' argues that n, the phys-
ical charge on the electron, is an essential singu-
larity of the Gell-Mann-Low function. Since the
location of an essential singularity cannot be af-

fected by the low-order terms in a perturbation
expansion, an asymptotic study of perturbation
theory for quantum electrodynamics in extremely
large order seems indicated.
There has already been much work on the large-

order behavior of perturbation series in quantum

6



Complex Hamilton-Jacobi equation

Since this is a Hamilton-Jacobi equation, a solution can be constructed by the method

of characteristics as [35, 36]

⇥(0)({xa(sf )})�⇥(0)({xa(si)}) =
Z sf

si

ds
p
2m(E � V (x0))

vuut
NX

a=�N

✓
dxa

ds

◆2

, (II.7)

where s parameterizes the trajectory of the particles. This implies, however, that the tun-

neling probability is one if V0 < E. This is contradictory since we know one particle needs

to tunnel. It indicates that the Hamilton-Jacobi equation is non-trivial in general and there

are cases where Eq. (II.7) does not give a correct result, which is also commented in [35].

Aside from the Schrödinger equation, we have separated equations,

Ĥa = 0, (II.8)

with

Ha =
p2a
2m

+ �a0V (xa)� E . (II.9)

We could solve these separately and obtain

⇥(0)({xa(sf )})�⇥(0)({xa(si)}) =
NX

a=�N

Z sf

si

ds
p

2m(E � �a0V (xa))

s✓
dxa

ds

◆2

. (II.10)

It gives the correct tunneling rate of

P =
| (sf )|2
| (si)|2

' exp


�2

~

Z 1

0

dx
p
2m(V0 � E)

�
. (II.11)

Even though Eqs. (II.10) and (II.7) look di↵erent, they agree with each other in some

cases. For x < 0 and x > 1, we can see they give the same result, using the Lorentzian

energy conservation for each particle,

m

2

✓
dxa

dt

◆2

+ �a0V (xa) = E , (II.12)

with identifying t = s. However, for 0 < x < 1, they disagree because one of the particles

does not satisfy the above equation. In this domain, the left-hand side of Eq. (II.6) is

not positive definite and the exponent becomes complex. Following [4, 5, 10, 27], let us

decompose the exponent as

⇥(0) = WR + iWI . (II.13)
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Then, Eq. (II.6) becomes

1

2m

NX

a=�N

"✓
@WR

@xa

◆2

�
✓
@WI

@xa

◆2
#
= E � V (x0), (II.14)

NX

a=�N

✓
@WR

@xa

◆✓
@WI

@xa

◆
= 0. (II.15)

The second equation shows that the degrees of freedom contributing to WR are orthogonal

to those contributing to WI . We separate the first equation as

1

2m

X

A

✓
@WR

@xA
R

◆2

= E � V (x0) + ⌅, (II.16)

1

2m

X

B

✓
@WI

@xB
I

◆2

= ⌅, (II.17)

where ⌅ is an arbitrary parameter and xA
R and xB

I are linear combinations of xa. Here, xA
R

contributes only to WR and xB
I contributes only to WI . Since the left-hand side is now

positive definite, the equations can now be integrated in the conventional way. However, ⌅

and the separation of xA
R and xB

I are not determined solely by the Schrödinger equation and

can even depend on the integration parameter, s. This is a well-known problem in a quantum

many-body system [42] and occurs because the time-independent Schrödinger equation only

has information about the total energy, whereas each particle has its own energy that cannot

be transferred to another particle. We realize that this missing information is precisely the

content of Eq. (II.12)2.

From the above observation, we conjecture that the correct formulas to be used in a

many-body system is not the Schrödinger equation, (Ĥ � E) = 0, but the local energy

conservation law, Ĥa = 0. This is also suggested by quantum gravity, where the corre-

sponding constraint is called the Hamiltonian constraint. Once we adopt this conjecture,

global time disappear from the theory since each particle can now choose Euclidean evolution

or Lorentzian evolution independently. Thus, we cannot rely on the Schrödinger equation,

which describes the evolution of a state in global time. In the Heisenberg picture, this means

2 Instead, one can determine them sequentially following Huygens-type wave fronts from boundary condi-

tions [4, 5, 10, 27]. However, it is only possible along the solution of equations of motion [4] and cannot

be extended to path integral directly.
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Complex Hamilton-Jacobi equation
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FIG. 8. The same figure as Fig. 6 but with (, k, V0) = (10�5
, 0.3, 0). The left panel is for the CDL

bounce and the right panel is for the PT path with the CDL initial path.

Let us see what is wrong in the above derivation. Since the particles are independent of

each other, we have separated equations,

Ĥa = 0, (VI.19)

with

Ha =
p2
a

2m
+ �a0V (xa)� E . (VI.20)

Solving these separately, we obtain

⇥(0)({xa(sf )})�⇥(0)({xa(si)}) =
NX

a=�N

Z
sf

si

ds
p
2m(E � �a0V (xa))

s✓
dxa

ds

◆2

. (VI.21)

Thus, the tunneling probability is

P =
| (sf )|2
| (si)|2

' exp


�2

~

Z
1

0

dx
p
2m(V0 � E)

�
. (VI.22)

For x < 0 and x > 1, Eq. (VI.21) agrees with Eq. (VI.18) after substituting the Lorentzian

equations of motion. However, for 0 < x < 1, we have to substitute the Euclidean or

the Lorentzian equations of motion depending on the particles and the results disagree.

From Eq. (VI.21), we can see that the left-hand side of Eq. (VI.17) is not positive definite.

This implies that the Hamilton-Jacobi equation cannot be solved in the ordinary way for

0 < x < 1 and this led to the wrong result.
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Local energy conservation law

Uniquely determines the decomposition and

Then, Eq. (II.6) becomes
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The second equation shows that the degrees of freedom contributing to WR are orthogonal

to those contributing to WI . We separate the first equation as
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where ⌅ is an arbitrary parameter and xA
R and xB

I are linear combinations of xa. Here, xA
R

contributes only to WR and xB
I contributes only to WI . Since the left-hand side is now

positive definite, the equations can now be integrated in the conventional way. However, ⌅

and the separation of xA
R and xB

I are not determined solely by the Schrödinger equation and

can even depend on the integration parameter, s. This is a well-known problem in a quantum

many-body system [42] and occurs because the time-independent Schrödinger equation only

has information about the total energy, whereas each particle has its own energy that cannot

be transferred to another particle. We realize that this missing information is precisely the

content of Eq. (II.12)2.

From the above observation, we conjecture that the correct formulas to be used in a

many-body system is not the Schrödinger equation, (Ĥ � E) = 0, but the local energy

conservation law, Ĥa = 0. This is also suggested by quantum gravity, where the corre-

sponding constraint is called the Hamiltonian constraint. Once we adopt this conjecture,

global time disappear from the theory since each particle can now choose Euclidean evolution

or Lorentzian evolution independently. Thus, we cannot rely on the Schrödinger equation,

which describes the evolution of a state in global time. In the Heisenberg picture, this means

2 Instead, one can determine them sequentially following Huygens-type wave fronts from boundary condi-

tions [4, 5, 10, 27]. However, it is only possible along the solution of equations of motion [4] and cannot

be extended to path integral directly.
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Since this is a Hamilton-Jacobi equation, a solution can be constructed by the method

of characteristics as [35, 36]
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where s parameterizes the trajectory of the particles. This implies, however, that the tun-

neling probability is one if V0 < E. This is contradictory since we know one particle needs

to tunnel. It indicates that the Hamilton-Jacobi equation is non-trivial in general and there

are cases where Eq. (II.7) does not give a correct result, which is also commented in [35].

Aside from the Schrödinger equation, we have separated equations,

Ĥa = 0, (II.8)

with

Ha =
p2a
2m

+ �a0V (xa)� E . (II.9)

We could solve these separately and obtain

⇥(0)({xa(sf )})�⇥(0)({xa(si)}) =
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It gives the correct tunneling rate of

P =
| (sf )|2
| (si)|2
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�
. (II.11)

Even though Eqs. (II.10) and (II.7) look di↵erent, they agree with each other in some

cases. For x < 0 and x > 1, we can see they give the same result, using the Lorentzian

energy conservation for each particle,

m

2

✓
dxa

dt

◆2

+ �a0V (xa) = E , (II.12)

with identifying t = s. However, for 0 < x < 1, they disagree because one of the particles

does not satisfy the above equation. In this domain, the left-hand side of Eq. (II.6) is

not positive definite and the exponent becomes complex. Following [4, 5, 10, 27], let us

decompose the exponent as

⇥(0) = WR + iWI . (II.13)
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The second equation shows that the degrees of freedom contributing to WR are orthogonal

to those contributing to WI . We separate the first equation as
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where ⌅ is an arbitrary parameter and xA
R and xB

I are linear combinations of xa. Here, xA
R

contributes only to WR and xB
I contributes only to WI . Since the left-hand side is now

positive definite, the equations can now be integrated in the conventional way. However, ⌅

and the separation of xA
R and xB

I are not determined solely by the Schrödinger equation and

can even depend on the integration parameter, s. This is a well-known problem in a quantum

many-body system [42] and occurs because the time-independent Schrödinger equation only

has information about the total energy, whereas each particle has its own energy that cannot

be transferred to another particle. We realize that this missing information is precisely the

content of Eq. (II.12)2.

From the above observation, we conjecture that the correct formulas to be used in a

many-body system is not the Schrödinger equation, (Ĥ � E) = 0, but the local energy

conservation law, Ĥa = 0. This is also suggested by quantum gravity, where the corre-

sponding constraint is called the Hamiltonian constraint. Once we adopt this conjecture,

global time disappear from the theory since each particle can now choose Euclidean evolution

or Lorentzian evolution independently. Thus, we cannot rely on the Schrödinger equation,

which describes the evolution of a state in global time. In the Heisenberg picture, this means

2 Instead, one can determine them sequentially following Huygens-type wave fronts from boundary condi-

tions [4, 5, 10, 27]. However, it is only possible along the solution of equations of motion [4] and cannot

be extended to path integral directly.
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or Lorentzian evolution independently. Thus, we cannot rely on the Schrödinger equation,

which describes the evolution of a state in global time. In the Heisenberg picture, this means

2 Instead, one can determine them sequentially following Huygens-type wave fronts from boundary condi-

tions [4, 5, 10, 27]. However, it is only possible along the solution of equations of motion [4] and cannot

be extended to path integral directly.
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FIG. 8. The same figure as Fig. 6 but with (, k, V0) = (10�5
, 0.3, 0). The left panel is for the CDL

bounce and the right panel is for the PT path with the CDL initial path.

Let us see what is wrong in the above derivation. Since the particles are independent of

each other, we have separated equations,

Ĥa = 0, (VI.19)

with

Ha =
p2
a

2m
+ �a0V (xa)� E . (VI.20)

Solving these separately, we obtain

⇥(0)({xa(sf )})�⇥(0)({xa(si)}) =
NX

a=�N

Z
sf

si

ds
p
2m(E � �a0V (xa))

s✓
dxa

ds

◆2

. (VI.21)

Thus, the tunneling probability is

P =
| (sf )|2
| (si)|2

' exp


�2

~

Z
1

0

dx
p
2m(V0 � E)

�
. (VI.22)

For x < 0 and x > 1, Eq. (VI.21) agrees with Eq. (VI.18) after substituting the Lorentzian

equations of motion. However, for 0 < x < 1, we have to substitute the Euclidean or

the Lorentzian equations of motion depending on the particles and the results disagree.

From Eq. (VI.21), we can see that the left-hand side of Eq. (VI.17) is not positive definite.

This implies that the Hamilton-Jacobi equation cannot be solved in the ordinary way for

0 < x < 1 and this led to the wrong result.
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In our formulation, the starting point is

in the decoupling regime of gravity, a↵ecting phenomenology at an energy scale much lower

than the Planck scale.

The rest of the paper is organized as follows. In the following section, we present our

formulation; we review on the WdW canonical quantization, perform the WKB approxima-

tion, derive the stationary conditions, and define the tunneling rate. Section III is devoted

to the mini-superspace example, and Section IV is to the CDL example. The new possibil-

ity of tunneling processes, the polychronic tunneling, is discussed in Section V. Finally, we

summarize in Section VI.

II. FORMULATION

A. Wheeler-deWitt canonical quantization

Here, we show our setup and give a brief review on the Wheeler-deWitt formulation of

quantum gravity.

We consider the action given by

S =

Z
d4x

p
�g


1

2
R� 1

2
gµ⌫

@�

@xµ

@�

@x⌫
� V (�)

�
, (II.1)

where � is a scalar field, R is the Ricci scalar and  = 8⇡G with G being the Newton’s

constant. We assume the scalar potential, V (�), has a false vacuum at �F and a true vacuum

at �T. We parameterize the metric as

gµ⌫ dx
µ dx⌫ = (�N2 +NiN

i) dt2 + 2Ni dx
i dt+ hij dx

i dxj , (II.2)

where N is called the lapse function and Ni’s are called the shift functions. The ADM

Hamiltonian is a linear combination of constraints together with total derivative terms;

H = �⇡N + �i⇡
i
N +NH +NiHi + @µHµ

bdy
, (II.3)

4

where � and �k are Lagrange multipliers and1

H =
1p
h


2Gijkl⇡

ij⇡kl +
1

2
⇡2

�

�
+
p
h


� 1

2
(3)R+

1

2
hij(@i�)(@j�) + V (�)

�
, (II.4)

Hi = (@i�)⇡� � 2
p
hrj

⇡ij

p
h
, (II.5)

Hs
bdy

= ⇡ijhij, (II.6)

Hi
bdy

= 2⇡ijNj � ⇡klhklN
i +

p
h


@iN. (II.7)

Here, (3)R is the three-dimensional Ricci scalar for hij and

Gijkl =
1

2
(hikhjl + hilhjk � hijhkl). (II.8)

The conjugates of N , Ni, � and hij are denoted as ⇡N , ⇡i
N , ⇡� and ⇡ij, respectively. They

are explicitly given by

⇡N = 0, ⇡i
N = 0, (II.9)

⇡ij =

p
h

2

�
Khij �Kij

�
, (II.10)

⇡� =

p
h

N
(@t��N i@i�), (II.11)

where K = Kijhij and

Kij =
1

2N
(riNj +rjNi � @thij). (II.12)

Throughout this paper, we use ri to denote the three-dimensional covariant derivative.

The primary and the secondary constraints are

⇡N ⇡ 0, ⇡i
N ⇡ 0, H ⇡ 0, Hi ⇡ 0, (II.13)

which are solved after the canonical quantization of the ADM variables;

[ĥij(x), ⇡̂
kl(y)] = i~�k

(i�
l
j)�

3(x� y), (II.14)

[�̂(x), ⇡̂�(y)] = i~�3(x� y), (II.15)

[N̂(x), ⇡̂N(y)] = i~�3(x� y), (II.16)

[N̂i(x), ⇡̂
j
N(y)] = i~�ji �3(x� y). (II.17)

1 In Eq. (II.5), we divide ⇡
ij by

p
h to remind that ⇡ij is a density.
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cf.) Hamiltonian of quantum gravity
Lagrange multiplier Local Hamiltonian

� = A exp

(
�2

Z
sf

si

dsJ
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Z
d3x

✓
V (�) +

1

2
|r�|2 � E

◆)
(27)

= A exp{�(SE(�B)� SE(�F))} (28)

⇡̇N = {⇡N , H} = �H ⇡ 0 (29)

⇡̇
i

N
=
�
⇡
i

N
, H

 
= �H

i
⇡ 0 (30)

(31)
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Not the Schroedinger equation

But the local energy conservation law

Hamiltonian constraint/Wheeler-deWitt equation

=

Z
DX exp


�

Z
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s1

LE({x
a
}, {ẋ

a
})

�
(80)

V
a
> 0 (81)

V
a
< 0 (82)

dt0 (83)

i~ d
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Path integral

Here, we used @Sj/@⌘aj = 0 and ⇠a
j+1
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j
.
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This determines the trajectory of ⌘a
j
and constrains the paths of the path-integral.

Finally, we obtain

hXn|X1i =
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where
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Here, the constrained path-integral,
R
DX�⌘, denotes the integration over the paths satisfy-

ing

d⌘a(s)

ds
=

w
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(xa+1(s)� xa(s))
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dxa+1(s)
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+
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, (VI.83)

Va = �a0V (xa) +
w

2

(xa � xa+1)2 + (xa � xa�1)2

2
� ⌘a + ⌘a�1. (VI.84)

For ↵a(s) ⌘ 1 or ↵a(s) ⌘ �i, Eq. (VI.80) becomes the ordinary Lorentzian or Euclidean

path-integral without ⌘a(s). This gives a formulation of a dynamic tunneling from first

principles.

C. Quantum Field Theory

It is straightforward to extend the previous argument to quantum field theory. We con-

sider

H =

Z
d3x
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⇡2(x) +
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2
(@i�(x))(@

i�(x)) + V (�(x))

�
. (VI.85)
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Path integral formula

With eta satisfying

Here,

[YS; 22]
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It is straightforward to extend the previous argument to quantum field theory. We con-

sider

H =

Z
d3x


1

2
⇡2(x) +

1

2
(@i�(x))(@

i�(x)) + V (�(x))

�
. (VI.85)

43

Here, we used @Sj/@⌘aj = 0 and ⇠a
j+1

= ⇠a
j
.

The second constraint of (VI.67) gives

0 = hXj+1|
h w

2m
(x̂a+1

j
� x̂a

j
)
�
↵a+1

j
p̂j
a+1

+ ↵a

j
p̂j
a

�
� ↵a

j
⇡̂⇠j

a

i
|Xji

'
"
w

2
(xa+1

j
� xa

j
)

 
xa+1

j+1
� xa+1

j

�s
+

xa

j+1
� xa

j

�s

!
�

⌘a
j+1

� ⌘a
j

�s

#
hXj+1|Xji . (VI.79)

This determines the trajectory of ⌘a
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and constrains the paths of the path-integral.
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Here, the constrained path-integral,
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a)

#
(80)

V
a
> 0 (81)

V
a
< 0 (82)

4

=

Z
DX exp

"
�

NX

a=�N

Z
sn

s1

LE(x
a
, ẋ
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FIG. 8. The same figure as Fig. 6 but with (, k, V0) = (10�5
, 0.3, 0). The left panel is for the CDL

bounce and the right panel is for the PT path with the CDL initial path.

Let us see what is wrong in the above derivation. Since the particles are independent of

each other, we have separated equations,

Ĥa = 0, (VI.19)
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Solving these separately, we obtain
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Thus, the tunneling probability is
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For x < 0 and x > 1, Eq. (VI.21) agrees with Eq. (VI.18) after substituting the Lorentzian

equations of motion. However, for 0 < x < 1, we have to substitute the Euclidean or

the Lorentzian equations of motion depending on the particles and the results disagree.

From Eq. (VI.21), we can see that the left-hand side of Eq. (VI.17) is not positive definite.

This implies that the Hamilton-Jacobi equation cannot be solved in the ordinary way for

0 < x < 1 and this led to the wrong result.
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Path integral formula

With eta satisfying

Here,

[YS; 22]
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One-dimensional chain explanation
CDL tunneling

Euclidean evolution Lorentzian evolution

Real exponent 
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One-dimensional chain explanation
Polychronic tunneling

Euclidean evolution Lorentzian evolution Euclidean evolution

Complex exponent 

Potential is higher

due to springs

Potential is lower

due to springs

Repetition in infinitesimal time
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Numerical analysis
Setup

involves both the Euclidean and the Lorentzian evolution, which cannot be considered in

the CDL formulation since ↵2 is negative definite as we can see from Eq. (IV.21).

We consider a path with two degrees of freedom14, �(s, r) and ⌘(s, r);

� = �(s, r), (V.1)

hij dx
i dxj = e⌘(s,r) dr2 + r2(d✓2 + sin2 ✓ d�2), (V.2)

which give

K =
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Here, we adopt

V (�) =
�4

4
� k + 1

3
�3 +

k

2
�2 + V0, (V.5)

where 0 < k < 0.5 and V0 are constants. The units for the dimensionful quantities are

determined by the value of .

For the initial conditions, we take

�(0, r) = �F, (V.6)

⌘(0, r) = � ln

✓
1� r2

3
V (�F)

◆
. (V.7)

Here, we took ⌘(0, r) so that the initial state is at the endpoint of the tunnel, i.e. V = 0.

Notice that, from the classical Hamiltonian constraint, it also means (⇡(0)

� )2 = 2hK/↵2 = 0,

where ⇡(0)

� is the classical momentum for �.

To avoid the numerical di�culties around the pole of hrr, we concentrate on the case

where the field deformation occurs within r < rmax with rmax ⌧
p
3//V (�F ). In this

regime, the contribution of the thermal jump process is negligible.

As we have explained in Section II, a WKB solution can be constructed with an arbitrary

path that satisfies the momentum constraints; there is only one non-trivial constraint,

@s⌘ = r(@r�)(@s�). (V.8)

14 These are su�cient to solve all the equations of motion. We have a classical Hamiltonian constraint, a

classical momentum constraint, and three stationary conditions. Two of them are not independent. We

use the classical Hamiltonian constraint to solve ↵ and the classical momentum constraint to solve ⌘. The

remaining one gives the equations of motion for �.
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SO(3) x R Ansatz

False vacuum

involves both the Euclidean and the Lorentzian evolution, which cannot be considered in

the CDL formulation since ↵2 is negative definite as we can see from Eq. (IV.21).

We consider a path with two degrees of freedom14, �(s, r) and ⌘(s, r);
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Here, we took ⌘(0, r) so that the initial state is at the endpoint of the tunnel, i.e. V = 0.

Notice that, from the classical Hamiltonian constraint, it also means (⇡(0)

� )2 = 2hK/↵2 = 0,

where ⇡(0)

� is the classical momentum for �.

To avoid the numerical di�culties around the pole of hrr, we concentrate on the case

where the field deformation occurs within r < rmax with rmax ⌧
p
3//V (�F ). In this

regime, the contribution of the thermal jump process is negligible.

As we have explained in Section II, a WKB solution can be constructed with an arbitrary

path that satisfies the momentum constraints; there is only one non-trivial constraint,

@s⌘ = r(@r�)(@s�). (V.8)
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use the classical Hamiltonian constraint to solve ↵ and the classical momentum constraint to solve ⌘. The

remaining one gives the equations of motion for �.
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Notice that, from the classical Hamiltonian constraint, it also means (⇡(0)

� )2 = 2hK/↵2 = 0,
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� is the classical momentum for �.

To avoid the numerical di�culties around the pole of hrr, we concentrate on the case

where the field deformation occurs within r < rmax with rmax ⌧
p
3//V (�F ). In this

regime, the contribution of the thermal jump process is negligible.

As we have explained in Section II, a WKB solution can be constructed with an arbitrary

path that satisfies the momentum constraints; there is only one non-trivial constraint,

@s⌘ = r(@r�)(@s�). (V.8)

14 These are su�cient to solve all the equations of motion. We have a classical Hamiltonian constraint, a

classical momentum constraint, and three stationary conditions. Two of them are not independent. We
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=> Search for a complex saddle point
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Numerical analysis
CDL vs PT FIG. 4. The CDL bounce and the PT path with (, k, V0) = (0.5, 0.3, 0). The top panels are for

the CDL bounce and the other ones are for the PT path. We take the CDL initial path in the

middle panels and the Gaussian initial path in the bottom panels. The left panels are for � and

the right ones are for ⌘. Darker blue colors correspond to smaller values of s. Where the lines

become gray and dashed, ↵2 is positive. The red dotted line indicates the location of the top of

the potential barrier.

left panel of Fig. 4). Around r ⇠ 3, we also see a small wall assisting the tunneling, which

often appears when we optimize the path starting from the CDL initial path. The horizontal

stripe patterns are due to the freedom to rescale s independently of r. We show I(s, r) for
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the CDL bounce and the other ones are for the PT path. We take the CDL initial path in the

middle panels and the Gaussian initial path in the bottom panels. The left panels are for � and

the right ones are for ⌘. Darker blue colors correspond to smaller values of s. Where the lines

become gray and dashed, ↵2 is positive. The red dotted line indicates the location of the top of

the potential barrier.
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the CDL bounce and the other ones are for the PT path. We take the CDL initial path in the

middle panels and the Gaussian initial path in the bottom panels. The left panels are for � and

the right ones are for ⌘. Darker blue colors correspond to smaller values of s. Where the lines

become gray and dashed, ↵2 is positive. The red dotted line indicates the location of the top of

the potential barrier.
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FIG. 6. The integrand, I(s, r), for the CDL bounce (top) and for the PT path (bottom) with

(, k, V0) = (0.5, 0.3, 0). The bottom left panel is with the CDL initial path and the bottom right

one is with the Gaussian initial path. The hatched region corresponds to ↵
2
> 0.

the decoupling limit of gravity, the tunneling rate is enhanced very much. This is because

the sign of ↵2 can flip regardless of the value of . As we can see from Eq. (V.4), even when

the change of ⌘ is O(), its e↵ect on V remains O(1). Since the local flip of the sign cannot

happen in the CDL formulation, we have been just unaware of the PT paths.
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Thus, for given �(s, r) and ⌘(0, r), we can determine ⌘(s, r) uniquely. Since a change of

�(s, r) in 0 < s < 1 a↵ects ⌘(sf , r), we do not fix the final state.

We consider a set of �(s, r)’s having non-trivial final states that satisfy ↵2 > 0 everywhere.

Within this set, we maximize the following functional15;

ln �(0)[�(s, r)] = �16⇡

Z
1

0

ds

Z rmax

0

dr I(s, r), (V.9)

where

I(s, r) = r2e⌘/2
p
KRe

⇣p
V
⌘
. (V.10)

Here, we rescaled s so that s = 0 corresponds to the initial state and s = 1 to the final state.

We execute the Monte Carlo optimization to maximize ln �(0)[�(s, r)] on a 200 ⇥ 200

lattice16 of (s, r). The details of the numerical analysis are given in Appendix E.

For the first example, we take  = 0.5, k = 0.3 and V0 = 0. The CDL bounce is shown

in the top panels of Fig. 4, where the left panel is for � and the right one is for ⌘. The color

gradient shows di↵erent s and darker blue colors correspond to smaller values of s. The

interval of the lines is �s = 0.05, which corresponds to 10 times the lattice spacing. The

CDL bounce gives a tunneling rate of ln �(0) ' �710.

We optimize the path taking the CDL bounce as the initial path. The optimization

history is shown in the left panel of Fig. 5. The red dashed line shows the tunneling rate

of the CDL bounce. Each thin line shows an attempt of the optimization. There are 64

attempts and each one is optimized with a CPU core for about two days. We can see that

there exist paths that have higher tunneling rates than that with the CDL bounce. The

path with the highest tunneling rate is shown in the middle panels of Fig. 4. Where the lines

become dashed, ↵2 is positive and hence it corresponds to the region with the Lorentzian

evolution. We call the path as the polychronic tunneling (PT) path and it gives a tunneling

rate of ln �(0) ' �242.

In Fig. 6, we show the integrand, I(s, r), for the CDL bounce (top) and the PT path

(bottom left). For the CDL bounce, a small bubble is created and then its wall moves

outwards until the bubble materializes. Thus, we have a brighter region diagonally. On the

other hand, for the PT path, the wall around r ⇠ 12 mainly tunnels (see also the middle

15 As we have explained in Subsection IID, it is enough to optimize only Im⇥(0). For a numerical check,

the result with optimizing both Re⇥(0) and Im⇥(0) is given in Appendix D.
16 We have checked that increasing it to a 300⇥ 300 lattice does not change our results.
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Appendix D: Optimization of Re⇥(0)

Here, we show the results with optimizing both Re⇥(0) and Im⇥(0). We define

ln "[�(s, r)] = �16⇡

Z
1

0

ds

Z rmax

0

J(s, r), (D.1)

where

J(s, r) = r2e⌘/2
p
K Im

⇣p
V
⌘
. (D.2)

In this appendix, we take  = 0.5, k = 0.3 and V0 = 0. We repeat the optimization

of ln �(0) for 200 refinements and optimization of ln " for 100 refinements in tern. The

optimization history is shown in Fig. 10 and the paths with the highest tunneling rate are

shown in Figs. 11 and 12. The left panels show ln �(0) and the right ones show ln ". The top

panels are for the CDL initial path and the bottom ones are for the Gaussian initial path.

Since the maximization of ln �(0) prefers less ↵2 < 0 region and that of ln " prefers less

↵2 > 0 region, the lines fluctuate inevitably. In fact, the lines with highest numbers of

refinements exhibit random walks due to the accidental balance between them. In addition,

the maximization of ln " stints the evolution after the tunneling and optimizes the final state

severely, which increases the probability to be caught by a local maximum. Even so, for

the path with the highest tunneling rate, both of ln �(0) and ln " seem to approach their

local maxima and the change of ln " is O(2⇡) during the last 105 refinements. We get the

highest tunneling rate of ln �(0) ' �232 for the CDL initial path and ln �(0) ' �228 for the

Gaussian initial path, which are in agreement with those without optimizing ln ".

Since the path we obtained in this appendix is an approximate saddle point of ⇥(0), we

can discuss the field evolution of the regions with ↵2 > 0 as well. From the top left panel

of Fig. 11, we have the following interpretation of the path; (i) the regions around r ⇠ 5

and r ⇠ 15 precede the deformation and enter the tunnel, (ii) they pull the regions nearby

until the innermost region goes over the potential top (� = 0.3), (iii) the innermost region

and the region around r ⇠ 10 roll down the potential and overtake the tunneling regions,

(iv) the tunneling regions are pulled by the rolling regions and escape from the tunnel. The

bottom left panel of Fig. 11 has a similar behavior but the tunneling region around r ⇠ 5

pulls the field more strongly.
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Summary

• Quantum tunneling in a many-body system is non-trivial and the conventional 
techniques sometimes fail to give the correct results


• Our starting point is not the Schroedinger equation, but the local energy 
conservation law


• We have formulated path-integral for mixed tunneling and polychronic 
tunneling


• In QFT, we have found faster tunneling processes than the CDL one
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