Impact of non-perturbative Effects in t-Channel Simplified Dark Matter Models

in collaboration with
Emanuele Copello, Julia Harz, Kirtimaan Mohan and Dipan Sengupta
based on 2203.04326, published in JHEP 08 (2022)
supported by DFG Emmy Noether Grant No. HA 8555/1-1.

Motivation I

\Rightarrow How impactful are non-perturbative Effects for experimental exclusion limits

What is new?

\rightarrow A flat correction factor for non-perturbative effects is unapplicable
\rightarrow Corrections on the exclusion limits can be as large as $\mathcal{O}(100 \%)$
\rightarrow Bound State searches close gap between prompt and long-lived searches!

Simplified t-Channel Dark Matter

Universal framework for t-channel DM models [Arina,Fuks,Mantani (2020)]

S3M-uR t-channel Dark Matter

$$
\begin{gathered}
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\mathcal{L}_{\text {kin }, \mathrm{BSM}}+g_{\mathrm{DM}} \bar{\chi}\left(u_{R}\right)_{i}\left(X^{\dagger}\right)_{i}+\text { h.c. } \\
\chi=(\mathbf{1}, \mathbf{1})_{0} \quad X_{i}=(\mathbf{3}, \mathbf{1})_{2 / 3}
\end{gathered}
$$

Simplified t-Channel Dark Matter

Universal framework for t-channel DM models [Arina,Fuks, Mantani (2020)]

S3M-uR t-channel Dark Matter

$$
\begin{gathered}
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\mathcal{L}_{\text {kin }, \mathrm{BSM}}+g_{\mathrm{DM}} \bar{\chi}\left(u_{R}\right)_{i}\left(X^{\dagger}\right)_{i}+\text { h.c. } \\
\chi=(\mathbf{1}, \mathbf{1})_{0} \quad X_{i}=(\mathbf{3}, \mathbf{1})_{2 / 3}
\end{gathered}
$$

- Discrete \mathcal{Z}_{2} : SM fields even, dark sector fields odd
- Majorana fermion DM χ
- 3 generations of mediators X_{i}

$$
\text { Parameters: }\left(m_{\chi}=m_{\mathrm{DM}}, \Delta m=m_{\chi}-m_{\mathrm{DM}}, g_{\mathrm{DM}}\right)
$$

Dark Matter Freeze-Out

Assumptions during DM freeze-out:

- Dark sector in kinetic eq. with the SM.
- Dark sector particles in chemical eq. with themselves.

Coannihilation

$$
\begin{gathered}
\frac{d n}{d t}+3 H n=-\left\langle\sigma_{\text {eff }} v\right\rangle\left(n^{2}-\left(n^{\mathrm{eq}}\right)^{2}\right) \\
\left\langle\sigma_{\text {eff }} v\right\rangle=\sum_{i, j}\left\langle\sigma_{i j} v_{i j}\right\rangle \frac{n_{i}^{\text {eq }}}{n^{\text {eq }}} \frac{n_{j}^{\text {eq }}}{n^{\text {eq }}} \\
n=\sum_{i} n_{i} \quad \text { and } \quad i, j=\left\{\chi, X_{1}, X_{2}, X_{3}\right\}
\end{gathered}
$$

n -gluon exchanges contribute with $\left(\frac{\alpha}{v}\right)^{n}$ for $\alpha \sim v$
\rightarrow Resummation required since $\alpha_{s} \sim v \sim 0.1$
\rightarrow Reduces to Schrödinger Equation for $v \ll 1$. For details Peetaki,Posima, Wiechers(2015)]

SE vs BSF

Modified Coannihilation (Ellis.Luo. ivive2015)

$$
\left\langle\sigma_{\text {eff }} v\right\rangle=\sum_{i, j \in\{\chi, X\}}\left\langle S\left(\alpha / v_{i j}\right) \cdot \sigma_{i j} v_{i j}\right\rangle \frac{n_{i}^{\mathrm{eq}}}{n^{\mathrm{eq}}} \frac{n_{j}^{\mathrm{eq}}}{n^{\mathrm{eq}}}+\left\langle\sigma_{\mathrm{BSF}} v\right\rangle_{\text {eff }}\left(\frac{n_{X}^{\mathrm{eq}}}{n^{\mathrm{eq}}}\right)^{2}
$$

SE vs BSF

Modified Coannihilation (Elisistuo.oiveleots)

$$
\left\langle\sigma_{\mathrm{eff}} v\right\rangle=\sum_{i, j \in\{\chi, X\}}\left\langle S\left(\alpha / v_{i j}\right) \cdot \sigma_{i j} v_{i j}\right\rangle \frac{n_{i}^{\mathrm{eq}}}{n^{\mathrm{eq}}} \frac{n_{j}^{\mathrm{eq}}}{n^{\mathrm{eq}}}+\left\langle\sigma_{\mathrm{BSF}} v\right\rangle_{\mathrm{eff}}\left(\frac{n_{X}^{\mathrm{eq}}}{n^{\mathrm{eq}}}\right)^{2}
$$

$\left\langle\sigma_{\text {eff }} v\right\rangle$	Sommerfeld Effect	Bound State Formation
$g_{\mathrm{DM}} \gg g_{s}$	-	0
$g_{\mathrm{DM}} \ll g_{s}$	+	++

\rightarrow No flat factor
4_{400}^{504}

Figure from [MB,Copello,Harz,Mohan,Sengupta(2022)]
perturbative only

+Sommerfeld Effect

+Bound State Formation

\rightarrow Bound State Formation increases the area where the strong interaction depletes the relic density significantly!

Direct Detection and Prompt Collider Searches

mono-jet + ETmiss search by ATLAS

 [arXiv:1711.03301] perturbative only
+Sommerfeld Effect

+Bound State Formation

- Direct Detection: Inclusion of BSF opens up parameter space in this region
- Prompt Collider Searches: Non-Perturbative effects are mild/absent.

Long-Lived-Particle Searches

\rightarrow Region can not be fully tested when including non-perturbative effects
\rightarrow A precise treatment, assuming conversion driven freeze-out, has been analyzed in [Gary,Helisg (2021)]

Bound State Formation at the LHC

Production Cross Section marineooes)

$$
\sigma\left(p p \rightarrow \mathcal{B}\left(X X^{\dagger}\right)\right)=\frac{\pi^{2}}{8 m_{\mathcal{B}}^{3}} \Gamma\left(\mathcal{B}\left(X X^{\dagger}\right) \rightarrow g g\right) \mathcal{P}_{g g}\left(\frac{m_{\mathcal{B}}}{13 \mathrm{TeV}}\right)
$$

\rightarrow try to observe the bound state resonance in $\gamma \gamma$ final state. atLas (2017)
Efficient for all g_{DM} small enough such that $\Gamma_{X}<E_{B}$, roughly speaking $g_{\mathrm{DM}} \lesssim g_{s}$.

Limits at $37 \mathrm{fb}^{-1}$ relatively weak in mass ($\sim 300 \mathrm{GeV}$)
But huge potential: Closes the gap between prompt and LLP searches

Expected Future Limits

- Highly testable: Parameter space almost completely probed
- Remember: HSCP not a strict exclusion here (BSF@LHC is!)
- Bound State effects enlarge the area still necessary to test

Conclusion

- Non-perturbative Effects can increase or decrease the annihilation cross section of DM
\rightarrow Cannot be handled by a flat correction factor!
- Non-perturbative Effects are non-neglible in scenarios of colored coannihilation and open up small mass parameter space:
Viable Parameter space shifts from $\left(m_{\mathrm{DM}}, \Delta m\right)<(1 \mathrm{TeV}, 30 \mathrm{GeV})$ to (1.4TeV, 40 GeV) (Sommerfeld Effect) and (2.4TeV, 50 GeV) (Bound State Formation)
\rightarrow Sommerfeld Effect alone not a good approximation!
- Bound State searches at colliders close the gap in "coupling space" between prompt and long-lived-particle searches

When is BSF relevant?

No coannihilation required!
\rightarrow Expect potentially large non-perturbative effects for $\alpha \sim v \sim 0.1$

Case I: Massless/light mediator (for instance colored annihilation)

$$
\sigma_{\mathrm{ann}} \sim \frac{\alpha^{2}}{m^{2}} \quad \xrightarrow{\Omega_{\mathrm{DM}} \sim 1 / \sigma_{\mathrm{ann}}} \quad \alpha \sim 0.1 \frac{m}{\mathrm{TeV}}
$$

When is BSF relevant?

No coannihilation required!
\rightarrow Expect potentially large non-perturbative effects for $\alpha \sim v \sim 0.1$
Case I: Massless/light mediator (for instance colored annihilation)

$$
\sigma_{\mathrm{ann}} \sim \frac{\alpha^{2}}{m^{2}} \quad \xrightarrow{\Omega_{\mathrm{DM}} \sim 1 / \sigma_{\mathrm{ann}}} \quad \alpha \sim 0.1 \frac{m}{\mathrm{TeV}}
$$

Case II: Massive mediator with mass M (Yukawa potential)

$$
\sigma_{\mathrm{ann}} \sim \alpha^{2} \frac{m^{2}}{\left(m^{2}+M^{2}\right)^{2}} \quad \xrightarrow{\Omega_{\mathrm{DM} \sim 1 / \sigma_{\mathrm{ann}}}} \quad \alpha \sim 0.1\left(\frac{m}{\mathrm{TeV}}\right)\left(1+\frac{M^{2}}{m^{2}}\right)
$$

But Yukawa suppression sizable if $\alpha m \lesssim M$

How to constrain the "gray" area ?

Freeze-out leads to underabundant DM \rightarrow correct abundance requires alternative production

Out-of-chemical equilibrium estimate

$$
\begin{gathered}
\frac{\Gamma_{X \leftrightarrow \chi}\left(\tilde{g}_{\mathrm{DM}}\right)}{H} \lesssim 1, \text { at freeze-out } \\
\rightarrow \tilde{g}_{\mathrm{DM}} \lesssim \sqrt{\frac{m_{\mathrm{DM}}}{G e V}}\left(10^{-9}+6.8 \cdot 10^{-11} \frac{\Delta m}{m_{\mathrm{DM}}}\right)
\end{gathered}
$$

For $g_{\mathrm{DM}}<\tilde{g}_{\mathrm{DM}} \mathrm{DM}$ production is non-thermal
Long-Lived-Particle (LLP) searches constrain large lifetimes $\rightarrow g_{\mathrm{DM}} \geq g_{\mathrm{DM}}^{\text {LP }}$

2023

Calculation of the Relic Density

We adjusted micrOMEGAs 5.2.7 such that

- the Sommerfeld Effect is included for colored scalars up to the adjoint representation
- Bound State effects are included for colored scalars up to the adjoint representation

Determine $g_{D M, 0}$ for each data point $\left(m_{D M}, \Delta m\right.$) such that DM is not overproduced.

Annihilation Channels

NPE = Non-Perturbative Effects

\Rightarrow No NPE \Rightarrow No NPE
\Rightarrow Subject to NPE

Color Decomposition

Process: $\left(X_{1}\right)_{\mathbf{R}_{1}}+\left(X_{2}\right)_{\mathbf{R}_{2}} \rightarrow S M+S M$

Color Potential

$$
V(r)=-\frac{\alpha_{s}}{2 r}\left[C_{2}\left(\mathbf{R}_{1}\right)+C_{2}\left(\mathbf{R}_{\mathbf{2}}\right)-C_{2}(\mathbf{R})\right]=-\frac{\alpha_{\mathrm{eff},[\mathbf{R}]}}{r}
$$

Color Decomposition

Process: $\left(X_{1}\right)_{\mathbf{R}_{1}}+\left(X_{2}\right)_{\mathbf{R}_{2}} \rightarrow S M+S M$

Color Potential

$$
V(r)=-\frac{\alpha_{s}}{2 r}\left[C_{2}\left(\mathbf{R}_{1}\right)+C_{2}\left(\mathbf{R}_{2}\right)-C_{2}(\mathbf{R})\right]=-\frac{\alpha_{\mathrm{eff}[\mathrm{R}]}}{r}
$$

Color Configurations

$$
\begin{aligned}
& \mathbf{3} \times \overline{\mathbf{3}}=\mathbf{1}+\mathbf{8} \rightarrow \alpha_{\mathrm{eff},[1]}=\frac{4}{3}, \alpha_{\mathrm{eff},[\mathbf{8}]}=-\frac{1}{6} \\
& \mathbf{3} \times \mathbf{3}=\overline{\mathbf{3}}+\mathbf{6} \rightarrow \alpha_{\mathrm{eff},[\overline{3}]}=\frac{2}{3}, \alpha_{\mathrm{eff}[[6]}=-\frac{1}{3}
\end{aligned}
$$

n -gluon exchanges contribute with $\left(\frac{\alpha}{v}\right)^{n}$ for $\alpha \sim v$

Sommerfeld Effect

$$
\sigma\left(X_{1} X_{2} \rightarrow S M S M\right)=S\left(\frac{\alpha_{\text {eff }}}{V}\right) \sigma_{\text {pert. }}
$$

Sommerfeld Factor

$$
S\left(\frac{\alpha_{\text {eff }}}{v}\right)= \begin{cases}1 & , \text { if }\left|\frac{\alpha_{\text {eff }}}{v}\right| \ll 1, \\ \frac{\alpha_{\text {eff }}}{v} & , \text { if }\left|\frac{\alpha_{\text {eff }}}{v}\right| \gg 1 \wedge \alpha_{\text {eff }}>0, \\ \exp \left(2 \pi \frac{\alpha_{\text {eff }}}{v}\right) & , \text { if }\left|\frac{\alpha_{\text {eff }}}{v}\right| \gg 1 \wedge \alpha_{\text {eff }}<0\end{cases}
$$

Figure from Talk by J.Harz @ DM Working Group

Annihilation Channels II

As a rule of thumb, we find:
$g_{\mathrm{DM}}>g_{s} \rightarrow$ Sommerfeld effect reduces annihilation cross section
$g_{\mathrm{DM}}<g_{s} \rightarrow$ Sommerfeld effect increases annihilation cross section

SE vs BSF

Modified Coannihilation (Elis Luo.oivereot5]

$$
\left\langle\sigma_{\text {eff }} V\right\rangle=\sum_{i, j \in\{\chi, X\}}\left\langle S\left(\alpha / v_{i j}\right) \cdot \sigma_{i j} v_{i j}\right\rangle \frac{n_{i}^{\text {eq }}}{n^{\text {eq }}} \frac{n_{j}^{\text {eq }}}{n^{\text {eq }}}
$$

$\left\langle\sigma_{\text {eff }} v\right\rangle$	Sommerfeld Effect	Bound State Formation
$g_{\mathrm{DM}} \gg g_{s}$	-	
$g_{\mathrm{DM}} \ll g_{s}$	+	

Bound State Formation

Bound State Formation (BSF)

$$
\sigma\left(X_{1} X_{2} \rightarrow \mathcal{B}\left(X_{1} X_{2}\right) g\right)=\sigma_{\mathrm{BSF}} \sim \frac{\alpha_{s}^{2}}{m_{X}^{2}} S_{\mathrm{BSF}}\left(\frac{\alpha}{v}\right)
$$

Bound state as an additional particle in the thermal bath.
\Rightarrow Boltzmann Equation needs to be modified
Figures from [Harz,Petraki (2018)]

Modified Coannihilation [Ellis,Luo,Oive(2015)]

$$
\left\langle\sigma_{\mathrm{eff}} v\right\rangle=\sum_{i, j \in\{\chi, X\}}\left\langle\sigma_{i j} v_{i j}\right\rangle \frac{n_{i}^{\mathrm{eq}}}{n^{\mathrm{eq}}} \frac{n_{j}^{\mathrm{eq}}}{n^{\mathrm{eq}}}+\left\langle\sigma_{\mathrm{BSF}} v\right\rangle_{\mathrm{eff}} \frac{n_{X}^{\mathrm{eq}}}{n^{\mathrm{eq}}} \frac{n_{X}^{\mathrm{eq}}}{n^{\mathrm{eq}}}
$$

Bound states effectively provide an additional annihilation channel.

Modified Coannihilation (Elis Luo.oiveleot5]

Bound states effectively provide an additional annihilation channel.

Bound State contribution to $\left\langle\sigma_{\text {eff }} v\right\rangle$

$$
\left\langle\sigma_{\mathrm{BSF}} v\right\rangle_{\mathrm{eff}}=\left\langle\sigma_{\mathrm{BSF}} v\right\rangle \frac{\Gamma_{\mathcal{B} \rightarrow S M}}{\Gamma_{\mathcal{B}, \text { ion }}+\Gamma_{\mathcal{B} \rightarrow S M}}
$$

\rightarrow BSF only contributes to the annihilation cross section of DM if the bound states decay into SM particles!

