Afflictions of the "minimal" SO(10) GUT

Vasja Susič

IPNP, Charles University

with Kateřina Jarkovská, Michal Malinský
To appear on arXiv very soon. . .

$$
2023-04-11
$$

Portorož 2023: Particle Physics from Early Universe to Future Colliders

Outline

The latest (final?!) chapter in the story of "minimal" SO(10) GUT ...

■ Introduction to the model $45+126+10_{\mathbb{C}}$ (Breaking and Yukawa sector)
■ An obstruction to the usual SM Higgs doublet fine-tuning
■ Fine-tuning. . . ultimately can be done, but only in non-perturbative parameter regions
\rightarrow This affliction of the model does not seem to be curable

The model: $45+126+10_{\mathbb{C}}$

- non-SUSY renormalizable $\mathrm{SO}(10)$ GUT

■ Field content: \rightarrow fermions: $3 \times 16_{F}$
\rightarrow scalars: $45+126+10_{\mathbb{C}}$

The model: $45+126+10_{\mathbb{C}}$

- non-SUSY renormalizable $\mathrm{SO}(10)$ GUT

■ Field content: \rightarrow fermions: $3 \times 16_{F}$
\rightarrow scalars: $45+126+10_{\mathbb{C}}$
■ Motivation: "minimality" and "calculability" of proton decay: no $\left(45{ }_{G} \cdot 45_{G} \cdot S\right) / M_{P I}$ operator, GUT scale more robust

The model: $45+126+10_{\mathbb{C}}$

- non-SUSY renormalizable $\mathrm{SO}(10)$ GUT

■ Field content: \rightarrow fermions: $3 \times 16_{F}$
\rightarrow scalars: $45+126+10_{\mathbb{C}}$

■ Breaking sector: 2-stage breaking (GUT \& seesaw scale)

$$
\mathrm{SO}(10) \quad \xrightarrow{\langle 45\rangle} \quad G \quad \xrightarrow{\langle 126\rangle} \quad \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)
$$

The model: $45+126+10_{\mathbb{C}}$

- non-SUSY renormalizable $\mathrm{SO}(10)$ GUT

■ Field content: \rightarrow fermions: $3 \times 16_{F}$
\rightarrow scalars: $45+126+10_{\mathbb{C}}$

■ Breaking sector: 2-stage breaking (GUT \& seesaw scale)

$$
\mathrm{SO}(10) \quad \xrightarrow{\langle 45\rangle} \quad G \quad \xrightarrow{\langle 126\rangle} \quad \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)
$$

- Yukawa sector: realistic, $Y_{10}, \tilde{Y}_{10}, Y_{126}$ symmetric

$$
\mathcal{L}_{Y u k}=16_{F} 16_{F}\left(Y_{10} 10+\tilde{Y}_{10} 10^{*}+Y_{126} 126^{*}\right)
$$

Symmetry breaking I

■ The $45+126$ Higgs model

$$
\mathrm{SO}(10) \quad \xrightarrow{\langle 45\rangle} \quad G \quad \xrightarrow{\langle 126\rangle} \quad \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)
$$

- 3 SM-singlet VEVs: $\omega_{B L}, \omega_{R} \in 45$ and $\sigma \in 126$
- What are the possibilities for G ?

$$
\begin{aligned}
& \langle 45\rangle \text { direction } \\
& \omega_{B L} \approx \omega_{R} \\
& \omega_{B L} \approx-\omega_{R} \\
& \omega_{B L} \sim \omega_{R} \\
& \omega_{R} \ll \omega_{B L} \\
& \omega_{B L} \ll \omega_{R}
\end{aligned}
$$

Symmetry breaking I

- The $45+126$ Higgs model

$$
\mathrm{SO}(10) \quad \xrightarrow{\langle 45\rangle} \quad G \quad \xrightarrow{\langle 126\rangle} \quad \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)
$$

- 3 SM-singlet VEVs: $\omega_{B L}, \omega_{R} \in 45$ and $\sigma \in 126$
- What are the possibilities for G ?

$\langle 45\rangle$ direction	G
$\omega_{B L} \approx \omega_{R}$	$5 Y 1$
$\omega_{B L} \approx-\omega_{R}$	$5^{\prime} 1^{\prime}$
$\omega_{B L} \sim \omega_{R}$	$3_{C} 2_{L} 1_{R} 1_{B-L}$
$\omega_{R} \ll \omega_{B L}$	$3_{c} 2_{L} 2_{R} 1_{B-L}$
$\omega_{B L} \ll \omega_{R}$	$4 C 2_{L} 1_{R}$

Symmetry breaking I

- The $45+126$ Higgs model

$$
\mathrm{SO}(10) \quad \xrightarrow{\langle 45\rangle} \quad G \quad \xrightarrow{\langle 126\rangle} \quad \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)
$$

- 3 SM-singlet VEVs: $\omega_{B L}, \omega_{R} \in 45$ and $\sigma \in 126$
- What are the possibilities for G ?

$\langle 45\rangle$ direction	G	tree-level
$\omega_{B L} \approx \omega_{R}$	$5_{Y} 1$	\oslash (unification)
$\omega_{B L} \approx-\omega_{R}$	$5^{\prime} 1^{\prime}$	\oslash (unification)
$\omega_{B L} \sim \omega_{R}$	$3_{c} 2_{L} 1_{R} 1_{B-L}$	\oslash (tachyonicity)
$\omega_{R} \ll \omega_{B L}$	$3_{c} 2_{L} 2_{R} 1_{B-L}$	\oslash (tachyonicity)
$\omega_{B L} \ll \omega_{R}$	$4_{C} 2_{L} 1_{R}$	\oslash (tachyonicity)

Symmetry breaking I

- The $45+126$ Higgs model

$$
\mathrm{SO}(10) \quad \xrightarrow{\langle 45\rangle} \quad G \quad \xrightarrow{\langle 126\rangle} \quad \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)
$$

- 3 SM-singlet VEVs: $\omega_{B L}, \omega_{R} \in 45$ and $\sigma \in 126$
- What are the possibilities for G ?

$\langle 45\rangle$ direction	G	one-loop
$\omega_{B L} \approx \omega_{R}$	$5_{Y} 1$	\oslash (unification)
$\omega_{B L} \approx-\omega_{R}$	$5^{\prime} 1^{\prime}$	\oslash (unification)
$\omega_{B L} \sim \omega_{R}$	$3_{c} 2_{L} 1_{R} 1_{B-L}$	\oslash (non-perturbative $\left.\frac{\omega_{B L} \omega_{R}}{\|\sigma\|^{2}}\right)$
$\omega_{R} \ll \omega_{B L}$	$3_{c} 2_{L} 2_{R} 1_{B-L}$	$\checkmark \odot\left(M_{G U T} \approx 10^{18} \mathrm{GeV}\right)$
$\omega_{B L} \ll \omega_{R}$	$4_{C} 2_{L} 1_{R}$	$\checkmark \odot\left(M_{G U T} \approx 10^{15} \mathrm{GeV}\right)$

Symmetry breaking II

■ Focus now on the feasible scenario: $\omega_{B L} \ll|\sigma| \ll \omega_{R}$

- Tachyonic instabilities:

$$
\begin{aligned}
& M_{(8,1,0)}^{2}=-2 a_{2} \omega_{R}^{2} \\
& M_{(1,3,0)}^{2}=+4 a_{2} \omega_{R}^{2}
\end{aligned}
$$

Symmetry breaking II

■ Focus now on the feasible scenario: $\omega_{B L} \ll|\sigma| \ll \omega_{R}$

- Tachyonic instabilities:

$$
\begin{aligned}
& M_{(8,1,0)}^{2}=-2 a_{2} \omega_{R}^{2} \\
& M_{(1,3,0)}^{2}=+4 a_{2} \omega_{R}^{2}
\end{aligned}
$$

Take $\left|a_{2}\right| \ll 1$. Cured by quantum corrections?

Symmetry breaking II

■ Focus now on the feasible scenario: $\omega_{B L} \ll|\sigma| \ll \omega_{R}$

- Tachyonic instabilities:

$$
\begin{aligned}
& M_{(8,1,0)}^{2}=-2 a_{2} \omega_{R}^{2} \\
& M_{(1,3,0)}^{2}=+4 a_{2} \omega_{R}^{2}
\end{aligned}
$$

Take $\left|a_{2}\right| \ll 1$. Cured by quantum corrections?

Yes! Model first consistent at 1-loop.

Higgs model: $45+126$
Full model: $\quad 45+126+10_{\mathbb{C}}$ shown here

Yukawa sector

- 4 doublets $\left(1,2, \pm \frac{1}{2}\right)$: EW VEVs $v_{10}^{u}, v_{10}^{d}, v_{126}^{u}, v_{126}^{d}$

Yukawa sector

- 4 doublets $\left(1,2, \pm \frac{1}{2}\right)$: EW VEVs $v_{10}^{u}, v_{10}^{d}, v_{126}^{u}, v_{126}^{d}$
- Fermion masses:

$$
\mathcal{L}_{Y u k}=16_{F} 16_{F}\left(Y_{10} 10+\tilde{Y}_{10} 10^{*}+Y_{126} 126^{*}\right)
$$

leads to

$$
\begin{aligned}
& M_{U}=Y_{10} v_{10}^{u}+\tilde{Y}_{10} v_{10}^{d *}+Y_{126} v_{126}^{u}, \\
& M_{D}=Y_{10} v_{10}^{d}+\tilde{Y}_{10} v_{10}^{u *}+Y_{126} v_{126}^{d}, \\
& M_{E}=Y_{10} v_{10}^{d}+\tilde{Y}_{10} v_{10}^{u *}-3 Y_{126} v_{126}^{d}, \\
& M_{\nu}^{D}=Y_{10} v_{10}^{u}+\tilde{Y}_{10} v_{10}^{d *}-3 Y_{126} v_{126}^{u} .
\end{aligned}
$$

Yukawa sector

- 4 doublets $\left(1,2, \pm \frac{1}{2}\right)$: EW VEVs $v_{10}^{u}, v_{10}^{d}, v_{126}^{u}, v_{126}^{d}$
- Fermion masses:

$$
\mathcal{L}_{Y_{u k}}=16_{F} 16_{F}\left(Y_{10} 10+\tilde{Y}_{10} 10^{*}+Y_{126} 126^{*}\right)
$$

leads to

$$
\begin{aligned}
& M_{U}=Y_{10} v_{10}^{u}+\tilde{Y}_{10} v_{10}^{d *}+Y_{126} v_{126}^{u}, \\
& M_{D}=Y_{10} v_{10}^{d}+\tilde{Y}_{10} v_{10}^{u *}+Y_{126} v_{126}^{d}, \\
& M_{E}=Y_{10} v_{10}^{d}+\tilde{Y}_{10} v_{10}^{u *}-3 Y_{126} v_{126}^{d}, \\
& M_{\nu}^{D}=Y_{10} v_{10}^{u}+\tilde{Y}_{10} v_{10}^{d *}-3 Y_{126} v_{126}^{u} .
\end{aligned}
$$

(a) SM mass fit possible already with just Y_{10}, Y_{126}
(b) \tilde{Y}_{10} present; Peccei-Quinn would forbid cure for tachoynicity
(c) SM Higgs: must be admixture of 10 - and 126-doublets

Doublet fine-tuning

- Doublet mass matrix:

$$
M_{(1,2, \pm 1 / 2)}^{2}=\left(\begin{array}{ll}
M_{126}^{2} & M_{\text {mix }}^{2} \\
M_{\text {mix }}^{2+} & M_{10}^{2}
\end{array}\right)
$$

SM Higgs obtained by fine-tuning: $\operatorname{det} M_{(1,2, \pm 1 / 2)}^{2}=0$.

Doublet fine-tuning

- Doublet mass matrix:

$$
M_{(1,2, \pm 1 / 2)}^{2}=\left(\begin{array}{ll}
M_{126}^{2} & M_{\text {mix }}^{2} \\
M_{\text {mix }}^{2 \dagger} & M_{10}^{2}
\end{array}\right) \sim\left(\begin{array}{cc}
\omega_{R}^{2} & |\sigma|^{2} \\
|\sigma|^{2} & \omega_{R}^{2}
\end{array}\right)
$$

SM Higgs obtained by fine-tuning: $\operatorname{det} M_{(1,2, \pm 1 / 2)}^{2}=0$.

- Obtaining an admixture:

$$
M_{126}^{2}, M_{10}^{2} \rightarrow|\sigma|^{2}, \quad \text { where }|\sigma|^{2} \lesssim 10^{-6} \omega_{R}^{2}
$$

Doublet fine-tuning

- Doublet mass matrix:

$$
M_{(1,2, \pm 1 / 2)}^{2}=\left(\begin{array}{ll}
M_{126}^{2} & M_{\text {mix }}^{2} \\
M_{\text {mix }}^{2 \dagger} & M_{10}^{2}
\end{array}\right) \sim\left(\begin{array}{cc}
\omega_{R}^{2} & |\sigma|^{2} \\
|\sigma|^{2} & \omega_{R}^{2}
\end{array}\right)
$$

SM Higgs obtained by fine-tuning: $\operatorname{det} M_{(1,2, \pm 1 / 2)}^{2}=0$.

- Obtaining an admixture:

$$
M_{126}^{2}, M_{10}^{2} \rightarrow|\sigma|^{2}, \quad \text { where }|\sigma|^{2} \lesssim 10^{-6} \omega_{R}^{2}
$$

■ Obstruction at tree-level: $M_{126}^{2} \gtrsim 10^{-2} \omega_{R}^{2}$
\rightarrow otherwise other states tachyonic (such as ($\overline{3}, 1,+\frac{1}{3}$))

Doublet fine-tuning

- Doublet mass matrix:

$$
M_{(1,2, \pm 1 / 2)}^{2}=\left(\begin{array}{ll}
M_{126}^{2} & M_{\text {mix }}^{2} \\
M_{\text {mix }}^{2 \dagger} & M_{10}^{2}
\end{array}\right) \sim\left(\begin{array}{cc}
\omega_{R}^{2} & |\sigma|^{2} \\
|\sigma|^{2} & \omega_{R}^{2}
\end{array}\right)
$$

SM Higgs obtained by fine-tuning: $\operatorname{det} M_{(1,2, \pm 1 / 2)}^{2}=0$.

- Obtaining an admixture:

$$
M_{126}^{2}, M_{10}^{2} \rightarrow|\sigma|^{2}, \quad \text { where }|\sigma|^{2} \lesssim 10^{-6} \omega_{R}^{2}
$$

- Obstruction at tree-level: $M_{126}^{2} \gtrsim 10^{-2} \omega_{R}^{2}$
\rightarrow otherwise other states tachyonic (such as ($\left.\overline{3}, 1,+\frac{1}{3}\right)$)
■ Way out: tune down only to next-order corrections
\rightarrow What happens at 1-loop?
\rightarrow If 2-loop order not computed: necessary but not sufficient condition

Numerical analysis - setup

For a point in parameter space:
(1) Compute 1-loop and tree-level spectrum
[interesting problem on its own, but technical; will not discuss further]
(2) Viability considerations:
(2a) non-tachyonicity for all states
(2b) unification of gauge couplings g_{i} @ 2-loop
(2c) perturbativity (degree of arbitrariness in definition)
\rightarrow corrections to masses under control: " $\left|\delta m^{2} / m^{2}\right|<1$ "
\rightarrow RGE for λ under control: up to $M_{G U T} \cdot 10^{+0.5}$
(3) Doublet fine-tuning: considered through quantities

$$
R:=\frac{m_{(1)}^{2}}{m_{0}^{2}}, \quad \eta:=\frac{\delta m_{(1)}^{2}}{m_{0}^{2}}, \quad \text { where } m_{0}^{2} \text { "typical" tree-level mass. }
$$

$$
\text { (use heavy doublet in } 126 \text { as proxy) }
$$

Fine-tuning vs perturbativity I

Radiative corrections increasing

Datasets of viable points:

- \mathcal{D} : generic point
- \mathcal{T} : enhanced RGE perturbativity $10^{ \pm 1} M_{G U T}$
- $\mathcal{S}: M_{126}^{2}$ tuned to 2-loop expectation

Plot: η vs R
Tuning happens at the expense of perturbativity!

Fine-tuning vs perturbativity II

Datasets of viable points:

- \mathcal{D} : generic point
- \mathcal{T} : enhanced RGE perturbativity $10^{ \pm 1} M_{G U T}$
- $\mathcal{S}: M_{126}^{2}$ tuned to 2-loop expectation

Regions with enhanced perturbativity and doublet tuning incompatible!
(best demonstrated in the $\lambda_{2}-\lambda_{4}$ parameter plane)

Summary

$\mathrm{SO}(10)$ GUT model with scalar sector $45+126+10_{\mathbb{C}}$:

\rightarrow Tricky: 1-loop is first consistent perturbative order

- Suitable vacuum only at 1-loop
- Small patch of parameter space viable
- Doublet fine-tuning (1-loop): clashes with perturbativity
\rightarrow Model perturbatively not viable
\rightarrow A more general message:
large \# of fields \Rightarrow perturbativity vs other demands (possible clash)

Summary

$\mathrm{SO}(10)$ GUT model with scalar sector $45+126+10_{\mathbb{C}}$:

\rightarrow Tricky: 1-loop is first consistent perturbative order

- Suitable vacuum only at 1-loop
- Small patch of parameter space viable
- Doublet fine-tuning (1-loop): clashes with perturbativity
\rightarrow Model perturbatively not viable
\rightarrow A more general message:
large \# of fields \Rightarrow perturbativity vs other demands (possible clash)

Thank you for your attention!

Backup: technical challenges

- A lot of particles: scalar mass matrix $M_{S}^{2}(\phi)$ in V_{1} is 297×297 in Higgs model, 317×317 in full theory
- A lot of parameters: the scalar potential written schematically is

$$
\begin{aligned}
V(45,126)= & \mu^{2} 45^{2}+a 45^{4}+ \\
& +\nu^{2}|126|^{2}+\lambda|126|^{4}+\eta 126^{4}+\tau 45 \cdot|126|^{2}+ \\
& +(\alpha, \beta) 45^{2} \cdot|126|^{2}+\gamma 45^{2} \cdot 126^{2}+\text { h.c., } \\
V(45,126,10)= & V(45,126)+\xi^{2} 10^{2}+h 10^{4} \\
+ & \kappa 10^{2} 45^{2}+\zeta 45^{2} \cdot 126 \cdot 10+\rho 10^{2}|126|^{2}+ \\
+ & \rho^{\prime} 10^{2} 126^{2}+\varphi|126|^{2} \cdot 126 \cdot 10+\text { h.c. }
\end{aligned}
$$

(possibly >1 independent contraction, for brevity 10^{*} was written as 10)

- Parameters in full theory:
$(15 \mathbb{R}+14 \mathbb{C})$ dimensionless, $(5 \mathbb{R}+1 \mathbb{C})$ massive

