Standard Model Predictions for Rare K and B Decays without New Physics Infection and Z^{\prime} at Work

Andrzej J. Buras

(Technical University Munich TUM-IAS)

Portoroz 2023

April, 2023

Portoroz Sonata

Movement
Standard Model Predictions for Rare K and B Decays without New Physics Infection

$2^{\text {nd }}$

Movement
: Z' at Work

```
3rd
Movement
```

: Summary + Outlook

1st Movement:

Standard Model Predictions
for Rare K and B Decays
without New Physics Infection

General Expression for Branching Ratios in the Standard Model

Calculable in the SM
Br (Decay) $=[$ CKM factor $]$.

Not predicted by SM

If CKM parameters are determined in a global fit that includes processes which are infected by New Physics, the resulting BR cannot be considered as genuine SM predictions.

Lattice QCD HQEFT
Dual QCD ChPT

Presently known with high precision

AJB:
Book
Review to appear in Physics Reports (1102.5650v6)

AJB: 2209.03968

Problems with SM Predictions for TH "clean" Rare K and B Decays

(AJB 2209.03968)
In a global fit New Physics can infect them through CKM parameters.

Tensions in the determination of $\left|\mathbf{V}_{\mathrm{cb}}\right|$ and $\left|\mathbf{V}_{\mathrm{ub}}\right|$ from inclusive vs exclusive tree level decays. (Lower the precision and should be presently avoided)

Hadronic uncertainties in some observables included in the fit are much larger than in many rare K and B decays. (Lower the precision and should be presently avoided)

Suggested Strategy

\(\begin{array}{cl}AJB+E.Venturini \& 2109.11032
" \& 2203.11960\end{array}\)
AJB 2209.03968

Remove CKM dependence by calculating suitable ratios of branching ratios to $\Delta \mathbf{M}_{\mathrm{d}}, \Delta \mathbf{M}_{\mathrm{s}},\left|\varepsilon_{\mathrm{k}}\right|$

CKM can be fully eliminated for all rare B decays. For K decays only the dependence on β remains. (γ dependence irrelevant!!)

No New Physics!

Set $\Delta M_{d}, \Delta M_{s}, \varepsilon_{k}$ and $S_{\psi K_{s}}$ to experimental values ($\Delta \mathrm{F}=2$)
Very precise predictions for rare decays branching ratios independent of CKM parameters!

Rapid test of New Physics infection in the $\Delta \mathrm{F}=2$ sector using $\left|\mathbf{V}_{\mathrm{cb}}\right|-\gamma$ plots

$B V 1+B V 2$
 $+$

AJB 2204.10337

Determination of CKM parameters from $\Delta F=2$ only.

Advantages over full global fits

$\Delta \mathrm{F}=2$ sector appears to be free of NP infection:
NP is not required.
The remaining observables outside the " $\Delta \mathrm{F}=2$ archipelago" that could be infected by NP can be predicted within the SM and the pulls can be better estimated.
$\left|\mathbf{V}_{\mathrm{cb}}\right|$ and $\left|\mathbf{V}_{\mathrm{ub}}\right|$ tensions can be avoided.

UT fitter CKM fitter PDG

Global Fitter

Searching for New Physics in Rare B and K Decays without $\left|\mathrm{V}_{\mathrm{cb}}\right|$ and $\left|\mathrm{V}_{\mathrm{ub}}\right|$ Uncertainties

$\left|\mathrm{V}_{\mathrm{cb}}\right|$ and $\left|\mathrm{V}_{\mathrm{ub}}\right|$ Tensions

$$
\begin{aligned}
& \left|V_{c b}\right|_{\text {inclusive }}=(42.16 \pm 0.50) \cdot 10^{-3} \quad \begin{array}{l}
\text { Bordone, Capdevilla, } \\
\begin{array}{l}
\text { Gambino (2107.00604) } \\
\text { (see Keri Voss, Portoroz) }
\end{array} \\
\left|\mathbf{V}_{\mathrm{cb}}\right|_{\text {exclusive }}=(39.21 \pm 0.62) \cdot 10^{-3}
\end{array} \begin{array}{l}
\text { (FLAG) } \\
\text { (2022) }
\end{array}
\end{aligned}
$$

(see also Bordone, Gubernari, van Dyk, Jung (1912.09335)

$$
\begin{array}{ll}
\left|\mathbf{V}_{\mathrm{ub}}\right|_{\text {inclusive }}=(4.10 \pm 0.28) \cdot 10^{-3} & \begin{array}{l}
\text { (Belle 2021) } \\
\text { (larger values before } 20
\end{array} \\
\left|\mathbf{V}_{\mathrm{ub}}\right|_{\text {exclusive }}=(3.73 \pm 0.14) \cdot 10^{-3} & \text { (FLAG) } \\
\left|\mathbf{V}_{\mathrm{ub}}\right|_{\text {exclusive }}=(3.77 \pm 0.15) \cdot 10^{-3} & \begin{array}{l}
\text { (Light-cone Sum Rules) } \\
\text { Leljak, Melic, van Dyk } \\
\text { (2102.07233) }
\end{array}
\end{array}
$$

$\left|\mathrm{V}_{\mathrm{cb}}\right|$ and $\left|\mathrm{V}_{\mathrm{ub}}\right|$ Tensions are a disaster for those who spent decades to calculate NLO and NNLO QCD Corrections to basically all important rare K and B decays.

Achieving the reduction of TH uncertainties to $1 \%-\mathbf{2 \%}$ level.

Similar disaster for Lattice QCD which for $\Delta \mathbf{M}_{\mathrm{s}}, \Delta \mathrm{M}_{\mathrm{d}}, \varepsilon_{\mathrm{K}}$ and weak decay constants achieved accuracy below 5%. Moreover experimental data are very precise for them.

Note: Changing $\left|V_{c b}\right|: 39 \cdot 10^{-3} \Rightarrow 42 \cdot 10^{-3}$

$$
\text { changes } \begin{aligned}
&\left|\mathbf{V}_{\mathrm{cb}}\right|^{2}: \text { by } 16 \%\left(\mathbf{B}_{\mathrm{s}, \mathrm{~d}} \rightarrow \mu^{+} \mu^{-}, \Delta \mathbf{M}_{\mathrm{s}, \mathrm{~d}}\right) \\
&\left|\mathbf{V}_{\mathrm{cb}}\right|^{3}: \text { by } 25 \%\left(\mathbf{K}^{+} \rightarrow \pi^{+} v \overline{\mathrm{v}}, \varepsilon_{\mathrm{K}}\right) \\
&\left|\mathbf{V}_{\mathrm{cb}}\right|^{4}: \text { by } 35 \%\left(\mathrm{~K}_{\mathrm{L}} \rightarrow \pi^{0} v \overline{\mathrm{v}}, \mathrm{~K}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)
\end{aligned}
$$

Basic Strategy for Rare B and K Decays

AJB + E. Venturini (2109.11032)

Use as basic parameters

$$
\lambda,\left|\mathbf{V}_{\mathrm{cb}}\right|, \beta, \gamma
$$

Construct $\left|\mathbf{V}_{\mathrm{cb}}\right|$ independent Ratios $\mathbf{R}_{\mathrm{i}}(\beta, \gamma)$

16 Ratios involving
$\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}, \mathrm{B}_{\mathrm{d}} \rightarrow \mu^{+} \mu^{-}$
$\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} v \bar{v}, \mathrm{~B}^{0} \rightarrow \mathrm{~K}^{0 \times} \nu \bar{v}$
$\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}, \mathrm{~K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}, \mathrm{~K}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}$

Once γ and β will be precisely measured very good test of SM

Additional ratios with $\mathbf{B} \rightarrow \mathbf{K}\left(\mathbf{K}^{*}\right) \mu^{+} \mu^{-}, \mathrm{B}_{\mathrm{s}} \rightarrow \varphi \mu^{+} \mu^{-}$in 2209.03968

"Critical Exponents" of Flavour Physics

AJB + Venturini (2109.11032) (All decays TH clean)

$$
\begin{aligned}
& \operatorname{Br}\left(\mathbf{K}^{+} \rightarrow \pi^{+} v \bar{v}\right) \sim\left|\mathbf{V}_{\mathrm{cb}}\right|^{2.8}[\sin \gamma]^{1.4} \operatorname{Br}\left(\mathbf{K}_{\mathrm{L}} \rightarrow \pi^{0} v \overline{\mathrm{v}}\right) \sim\left|\mathbf{V}_{\mathrm{cb}}\right|^{4}[\sin \gamma]^{2}[\sin \beta]^{-} \\
& \operatorname{Br}\left(\mathbf{K}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)_{\mathrm{SD}} \sim\left|\mathbf{V}_{\mathrm{cb}}\right|^{4}[\sin \gamma]^{2}[\sin \beta]^{2} \quad\left|\varepsilon_{\mathrm{K}}\right| \sim\left|\mathbf{V}_{\mathrm{cb}}\right|^{3.4}[\sin \gamma]^{1.67}[\sin \beta]^{0.87}
\end{aligned}
$$

$$
\operatorname{Br}\left(\mathbf{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right) \sim\left|\mathbf{V}_{\mathrm{cb}}\right|^{2} \quad \operatorname{Br}\left(\mathbf{B}_{\mathrm{d}} \rightarrow \mu^{+} \mu^{-}\right) \sim\left|\mathbf{V}_{\mathrm{cb}}\right|^{2}[\sin \gamma]^{2}
$$

$$
\operatorname{Br}\left(\mathbf{B}^{+} \rightarrow \mathrm{K}^{+} v \bar{v}\right) \sim\left|\mathbf{V}_{\mathrm{cb}}\right|^{2} \quad \mathrm{Br}\left(\mathbf{B}^{0} \rightarrow \mathrm{~K}^{0^{*}} v \bar{v}\right) \sim\left|\mathbf{V}_{\mathrm{cb}}\right|^{2}
$$

$$
\Delta \mathbf{M}_{\mathrm{s}} \sim\left|\mathbf{V}_{\mathrm{cb}}\right|^{2} \quad \Delta \mathbf{M}_{\mathrm{d}} \sim\left|\mathbf{V}_{\mathrm{cb}}\right|^{2}[\sin \gamma]^{2}
$$

$$
S_{\psi k_{s}}=\sin 2 \beta
$$

$\left|\mathrm{V}_{\mathrm{cb}}\right|$ Independent Ratios in the SM

AJB + E. Venturini (B-K Correlations)

$$
\mathbf{R}_{1}(\beta, \gamma)=\frac{\operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)}{\left[\overline{\operatorname{Br}}\left(\mathbf{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)\right]^{1.4}}=\mathbf{C}_{1}(\sin \gamma)^{1.4}\left(\mathrm{~F}_{\mathrm{B}_{\mathrm{s}}}\right)^{-2.8}
$$

$$
\mathbf{R}_{\mathbf{2}}(\beta, \gamma)=\frac{\operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)}{\left[\overline{\operatorname{Br}}\left(\mathrm{B}_{\mathrm{d}} \rightarrow \mu^{+} \mu^{-}\right)\right]^{1.4}}=\mathbf{C}_{2}(\sin \gamma)^{-1.4}\left(\mathrm{~F}_{\mathrm{B}_{\mathrm{d}}}\right)^{-2.8}
$$

$$
\mathbf{R}_{3}(\beta, \gamma)=\frac{\operatorname{Br}\left(K_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}\right)}{\left[\overline{\operatorname{Br}}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)\right]^{2}}=\mathbf{C}_{3}[\sin \beta \sin \gamma]^{-2}\left(\mathrm{~F}_{\mathrm{B}_{\mathrm{s}}}\right)^{-4}
$$

$$
\mathbf{R}_{4}(\beta, \gamma)=\frac{\operatorname{Br}\left(K_{L} \rightarrow \pi^{0} v \bar{v}\right)}{\left[\overline{\operatorname{Br}}\left(\mathbf{B}_{\mathrm{d}} \rightarrow \mu^{+} \mu^{-}\right)\right]^{2}}=\mathbf{C}_{4}\left[\frac{\sin \beta}{\boldsymbol{\operatorname { s i n }} \gamma}\right]^{2}\left(\mathrm{~F}_{\mathrm{B}_{\mathrm{d}}}\right)^{-4}
$$

V_{cb}-independent correlations between K and B Decays

$\mathrm{C}_{\mathrm{i}}=$ CKM

 independent known factors
Important V_{cb} - Independent Formulae

AJB + E. Venturini (2109.11032)

$$
\frac{\operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)}{\left|\varepsilon_{\mathrm{K}}\right|^{0.82}}=(1.31 \pm 0.05) \cdot 10^{-8}\left[\frac{\sin 22.2}{\sin \beta}\right]^{0.71}\left[\frac{\sin \gamma}{\sin 67^{\circ}}\right]^{0.015}
$$

$$
\frac{\operatorname{Br}\left(K_{L} \rightarrow \pi^{0} v \bar{v}\right)}{\left|\varepsilon_{K}\right|^{1.18}}=(3.87 \pm 0.06) \cdot 10^{-8}\left[\frac{\sin \beta}{\sin 22.2}\right]^{0.98}\left[\frac{\sin \gamma}{\sin 67^{\circ}}\right]^{0.030}
$$

$$
\left\{\left|\varepsilon_{\kappa}\right|_{\text {exp }}, S_{\psi K_{s}}^{\exp }=\sin 2 \beta\right\} \Rightarrow\left\{\begin{array}{l}
\text { Most accurate } \\
\text { Predictions to } \\
\text { date }
\end{array}\right\}
$$

Note: practically γ-independent

Important reduction of TH uncertainties in ε_{K} (Brod, Gorbahn, Stamou, 1911.06822)

$\operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \mu^{+} v \overline{\mathrm{v}}\right)_{\mathrm{SM}}$ and $\operatorname{Br}\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \overline{\mathrm{v}}\right)_{\mathrm{SM}}$

AJB + E. Venturini (2109.11032)

$$
\underbrace{\operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)_{\exp }=\left(10.6_{-3.5}^{+4.0}\right) \cdot 10^{-11}}_{\text {NA62 }} \frac{\operatorname{Br}\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}\right)_{\exp } \leq 3.0 \cdot 10^{-9}}{\text { KOTO }}
$$

$\operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \overline{\mathrm{v}}\right)_{\mathrm{Sm}}=(8.60 \pm 0.42) \cdot 10^{-11} \quad \mathrm{~V}_{\mathrm{cb}}$ and γ independent

$$
\operatorname{Br}\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \overline{\mathrm{v}}\right)_{\mathrm{SM}}=(2.94 \pm \mathbf{0 . 1 5}) \cdot 10^{-11}
$$

Most Precise V_{cb} - Independent Estimates

BV: 2109.11032

$$
\begin{aligned}
& \operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)=(8.60 \pm 0.42) \cdot 10^{-11} \\
& \operatorname{Br}\left(\mathrm{~K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}\right)=(2.94 \pm 0.15) \cdot 10^{-11} \\
& \overline{\operatorname{Br}}\left(\mathrm{~B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)=(3.78 \pm 0.12) \cdot 10^{-9} \\
& \overline{\operatorname{Br}}\left(\mathrm{~B}_{\mathrm{d}} \rightarrow \mu^{+} \mu^{-}\right)=(1.02 \pm 0.04) \cdot 10^{-10}
\end{aligned}
$$

2203.11960

Only β-dependent (γ-dependence very weak)

CKM-independent (use $\Delta \mathrm{M}_{\mathrm{s}, \mathrm{d}}$)

Based on $\varepsilon_{\mathrm{K}}, \mathbf{S}_{\psi K_{s}}, \Delta \mathbf{M}_{\mathrm{s}}, \Delta \mathbf{M}_{\mathrm{d}}$
Supersede the usual quoted values (with $\left.\mathbf{V}_{\mathrm{cb}} \approx\left(\mathbf{V}_{\mathrm{cb}}\right)_{\text {incl }}\right)$

$$
\begin{array}{ll}
\operatorname{Br}\left(\mathrm{K}^{+}\right)=(8.4 \pm 1.0) \cdot 10^{-11} & \operatorname{Br}\left(\mathrm{~K}_{\mathrm{L}}\right)=(3.4 \pm 0.6) \cdot 10^{-11} \quad(1503.02693) \\
\operatorname{Br}\left(\mathrm{B}_{\mathrm{s}}\right)=(3.66 \pm 0.12) \cdot 10^{-9} & \operatorname{Br}\left(\mathrm{~B}_{\mathrm{s}}\right)=\left(\begin{array}{l}
1.03 \pm 0.05) \cdot 10^{-10} \\
\text { (Beneke et al. })
\end{array}\right.
\end{array}
$$

The Story of $B_{s} \rightarrow \mu^{+} \mu^{-}$continues

$$
\begin{array}{ll}
\overline{\operatorname{Br}}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=(3.78 \pm 0.12) \cdot 10^{-9} & \begin{array}{l}
\text { AJB + Venturini } \\
\\
\\
\overline{\operatorname{Br}}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=(3.45 \pm 0.29) \cdot 11960 \\
\\
\overline{\operatorname{Br}}\left(B_{s} \rightarrow \boldsymbol{1 0}^{+} \mu^{-}\right)=(3.47 \pm 0.14) \cdot \mathbf{1 0}^{-9} \\
\text { HFLAV } \\
\text { (CMS, LHCb, ATLAS) } \\
\\
\text { UTfitter } \\
2212.1051
\end{array}
\end{array}
$$

Bobeth, Gorbahn, Stamou (2013) NLO EW Hermann, Misiak, Steinhauser (2013) NNLO QCD Beneke, Bobeth, Szafron $(2017,2019)$ QED

$\left|\mathbf{V}_{\mathrm{cb}}\right|-\gamma$ Plot $=$ Rapid Test

Perfect consistency between $\Delta \mathbf{M}_{\mathbf{s}}, \Delta \mathbf{M}_{\mathrm{d}}, \varepsilon_{\mathrm{K}}, \mathrm{S}_{\psi K}$
AJB + Venturini 2203.11960

Positive Tests

AJB + Venturini 2203.11960

Precise Lattice QCD and higher order QCD calculations are necessary to make the rapid tests reliable!

Rapid Test: cover picture of EPJC Vol. 83 number 1, January 2023

Particles and Fields

SM without uncertainties

Impact of New Physics

$$
\mathbf{V}_{\mathrm{cb}}-\gamma \text { Plot }
$$

Superior over UT-triangle
 plots: $\left|\mathbf{V}_{\mathrm{cb}}\right|$ seen, γ better exposed AJB 2204.10337

$\left|\mathrm{V}_{\mathrm{cb}}\right|$ from $\varepsilon_{\mathrm{K}}, \Delta \mathbf{M}_{\mathrm{s}}, \Delta \mathbf{M}_{\mathrm{d}}, \mathbf{S}_{\mathrm{wK}}$
 AJB + E. Venturini (2109.11032) (2203.11960)

$$
\begin{aligned}
& \varepsilon_{\mathrm{K}} \Rightarrow\left|\mathbf{V}_{\mathrm{cb}}\right|=\mathbf{F}_{1}(\beta, \gamma) \quad\left(\hat{\mathbf{B}}_{\mathrm{K}}\right) \\
& \Delta \mathbf{M}_{\mathrm{s}} \Rightarrow\left|\mathbf{V}_{\mathrm{cb}}\right| \approx \beta \text { and } \gamma \text { independent } \quad\left(\sqrt{\hat{\mathrm{B}}_{\mathrm{s}}} \mathbf{F}_{\mathrm{B}_{\mathrm{s}}}\right) \\
& \Delta \mathbf{M}_{\mathrm{d}} \Rightarrow\left|\mathbf{V}_{\mathrm{cb}}\right|=\mathbf{F}_{3}(\gamma) \quad\left(\sqrt{\hat{\mathbf{B}}_{\mathrm{d}}} \mathbf{F}_{\mathrm{B}_{\mathrm{d}}}\right)
\end{aligned}
$$

The only existing FCNC processes in which TH and EXP uncertainties are very small (except $B \rightarrow X_{s} \gamma$)

CKM Matrix from $\varepsilon_{K}, \Delta M_{s}, \Delta M_{d}, S_{\psi K_{s}}$

AJB + Venturini (2203.11960)

$$
\begin{aligned}
&\left|\mathrm{V}_{\mathrm{us}}\right|=0.2243(8)\left|\mathrm{V}_{\mathrm{cb}}\right|=42.6(4) \cdot 10^{-3} \quad\left|\mathrm{~V}_{\mathrm{ub}}\right|=3.72(11) \cdot 10^{-3} \\
&\left|\mathrm{~V}_{\mathrm{ts}}\right|=41.9(4) \cdot 10^{-3}\left|\mathrm{~V}_{\mathrm{td}}\right|=8.66(14) \cdot 10^{-3} \\
& \gamma=64.6(16)^{\circ} \quad \beta=22.2(7)^{\circ} \quad \operatorname{Im}\left(\mathrm{V}_{\mathrm{ts}}^{*} \mathrm{~V}_{\mathrm{td}}\right)=1.43(5) \cdot 10^{-4}
\end{aligned}
$$

$$
\left|V_{c b}\right|=42.2(5) \cdot 10^{-3}
$$

(Inclusive: Gambino et al)
$\left|V_{\text {cb }}\right|=42.0(5) \cdot 10^{-3}$ Utfitter (22)

$$
\left|\mathrm{V}_{\mathrm{ub}}\right|=3.61(13) \cdot 10^{-3}
$$

FLAG

$$
\left|\mathrm{V}_{\mathrm{cb}}\right|=41.8(8) \cdot 10^{-3}
$$ PDG (22)

$$
\gamma=63.8(36)^{\circ}
$$

LHCb

CKMfitter (22)

$\mathbf{R}_{i}(\beta, \gamma)$ can now be predicted in the SM

AJB 2209.03968

$$
\frac{\operatorname{Br}\left(K^{+} \rightarrow \pi^{+} v \bar{v}\right)}{\left[\overline{\operatorname{Br}}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)\right]^{1.4}}=53.69 \pm 2.75
$$

$$
\frac{\operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)}{\left[\operatorname{Br}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} v \bar{v}\right)\right]^{1.4}}=(1.90 \pm 0.13) \cdot 10^{-3}
$$

Many other results in 2209.03968

Largest Anomalies in Single Branching Ratios following from this Strategy

(AJB: 2209.03968)

\[

\]

New Formfactors from HPQCD (2207.13371, 2207.12468)

$$
\left(\varepsilon^{\prime} / \varepsilon\right)_{\exp }=(16.6 \pm 2.3) \cdot 10^{-4}
$$

$$
\left(\varepsilon^{\prime} / \varepsilon\right)_{\mathrm{SM}}=(14 \pm 5) \cdot 10^{-4}
$$

Hep-arxiv: 2101.00020

$$
\left(\varepsilon^{\prime} / \varepsilon\right)_{\mathrm{SM}}=(21.7 \pm 8.4) \cdot 10^{-4}
$$

Chiral Perturbation Theory (Pich et al)

No Anomaly

$$
\left(\varepsilon^{\prime} / \varepsilon\right)_{\mathrm{SM}}=(5 \pm 2) \cdot 10^{-4}
$$

$\begin{aligned} & \text { Insight from } \\ & \text { Dual QCD }\end{aligned}+\begin{gathered}\text { NNLO } \\ \text { QCD }\end{gathered}$
(AJB + Gérard) Anomaly

RBC - UKQCD
No Anomaly

2nd Movement: \mathbf{Z}^{\prime} at Work

Peculiar Pattern of Flavour Data

```
\Delta\mp@subsup{\varepsilon}{\textrm{K}}{\textrm{NP}}=0
Indirect CP
Violation
```

but $\quad \begin{array}{r}\Delta\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right)^{N P}>0 \quad \text { (significant) } \\ \\ \text { Direct CP Violation }\end{array}$ Direct CP Violation

Required $\bar{s} \mathrm{~d}$ coupling from New Physics \Rightarrow Impact on ε_{K}

```
|M
```

$\mathbf{S}_{\Psi K_{\mathrm{s}}}, \mathbf{S}_{\Psi \varphi} \quad$ but

$$
\begin{array}{|lc|}
\hline \operatorname{Br}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right) & (\text {pull -5.1 } \sigma) \\
\operatorname{Br}\left(B_{s} \rightarrow \varphi \mu^{+} \mu^{-}\right) & (\text {pull -4.8 } \sigma) \tag{1.1,6}
\end{array}
$$

Required \bar{b} s coupling from New Physics \Rightarrow Impact on $\Delta M_{\mathrm{s},} S_{\psi \varphi}, \ldots$

Which NP scenario can reproduce this pattern?

$$
\varepsilon_{\mathrm{K}}, \varepsilon^{\prime} / \varepsilon, \Delta \mathrm{M}_{\mathrm{K}}, \mathrm{~K}^{+} \rightarrow \pi^{+} \nu \bar{v}, \mathrm{~K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}
$$

New heavy gauge boson $Z^{\prime}: \Delta_{\mathrm{L}}^{\text {sd }}\left(\mathbf{Z}^{\prime}\right)=\left|\Delta_{\mathrm{L}}^{\text {sd }}\left(\mathbf{Z}^{\prime}\right)\right| \mathrm{e}^{\mathrm{i} \varphi}$

$$
\begin{aligned}
& \varepsilon_{\mathrm{K}}^{\mathrm{NP}} \sim \operatorname{Im}\left(\Delta_{\mathrm{L}}^{\text {sd }}\left(\mathbf{Z}^{\prime}\right)\right)^{2} \sim\left[\operatorname{Re} \Delta_{\mathrm{L}}^{\mathrm{sd}}\left(\mathbf{Z}^{\prime}\right)\right]\left[\operatorname{Im} \Delta_{\mathrm{L}}^{\text {sd }}\left(\mathbf{Z}^{\prime}\right)\right] \\
& \left(\varepsilon^{\prime} / \varepsilon \varepsilon^{\mathrm{NP}} \sim \operatorname{Im} \Delta_{\mathrm{L}}^{\text {sd }}\left(\mathbf{Z}^{\prime}\right)\right. \\
& \Delta \mathbf{M}_{\mathrm{K}}^{\mathrm{NP}} \backsim\left(\operatorname{Re} \Delta_{\mathrm{L}}^{\text {sd }}\left(\mathbf{Z}^{\prime}\right)\right)^{2}-\left(\operatorname{Im} \Delta_{\mathrm{L}}^{\text {sd }}\left(\mathbf{Z}^{\prime}\right)\right)^{2} \quad\left(\mathbf{K}^{0}-\overline{\mathbf{K}}^{0}\right)
\end{aligned}
$$

With $\operatorname{Re} \Delta_{\mathrm{L}}^{\mathrm{Sd}}\left(\mathbf{Z}^{\prime}\right) \ll \operatorname{Im} \Delta_{\mathrm{L}}^{\mathrm{Sd}}\left(\mathbf{Z}^{\prime}\right)$
(Imaginary coupling)
$\varepsilon_{\mathrm{K}}^{\mathrm{NP}} \simeq 0 \quad\left(\varepsilon^{\prime} / \varepsilon\right)^{\mathrm{NP}}$ can be enhanced
$\Delta \mathbf{M}_{\mathrm{K}}$ can be suppressed + Interesting implications (possibly required by \quad for $K \rightarrow \pi v \bar{v}$ Lattice QCD)

Aebischer AJB
Kumar
2302.00013

Monika Blanke
Based on the insights from Monika Blanke (0904.1545)

Kaon Physics without New Physics in ε_{k}

$$
\begin{aligned}
R_{\nu \bar{\nu}}^{+}=\frac{\mathcal{B}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)}{\mathcal{B}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)_{S M}}, \quad R_{\nu \bar{\nu}}^{0}=\frac{\mathcal{B}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)}{\mathcal{B}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)_{S M}}, \\
R_{\mu^{+} \mu^{-}}^{S}=\frac{\mathcal{B}\left(K_{S} \rightarrow \mu^{+} \mu^{-}\right)_{\mathrm{SD}}}{\mathcal{B}\left(K_{S} \rightarrow \mu^{+} \mu^{-}\right)_{S M}^{S D}}, \quad R_{\pi \ell^{+} \ell^{-}}^{0}=\frac{\mathcal{B}\left(K_{L} \rightarrow \pi^{0} \ell^{+} \ell^{-}\right)}{\mathcal{B}\left(K_{L} \rightarrow \pi^{0} \ell^{+} \ell^{-}\right)_{S M}}, \\
R_{\Delta M_{K}}=\frac{\Delta M_{K}^{B S M}}{\Delta M_{K}^{\exp }, \quad \Delta\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right)=\kappa_{\varepsilon^{\prime}} \cdot 10^{-3}, \quad \Delta\left(\varepsilon_{K}\right)=\kappa_{\varepsilon} \cdot 10^{-3}},
\end{aligned}
$$

December 2022
 $\mu-e$ Universality Violation 0.2σ

(LHCb) $\sqrt{\square}$

Heavy Z' gauge boson remains an important candidate behind suppressed branching ratios for $\mathrm{B} \rightarrow \mathrm{K}\left(\mathrm{K}^{*}\right) \mu^{+} \mu^{-}, \mathrm{B}_{\mathrm{s}} \rightarrow \varphi \mu^{+} \mu^{-}$

But how a Z^{\prime} can explain these anomalies without destroying $\left(\Delta M_{s}\right)_{\text {exp }}=\left(\Delta M_{s}\right)_{S M}$?

Explaining b $\rightarrow \mathbf{s} \mu^{-} \mu^{+}$ anomalies

Contributing to $\Delta \mathbf{M}_{\mathrm{s}}$

$\Delta \mathbf{M}_{\mathbf{s}}, \mathbf{B}^{+} \rightarrow \mathbf{K}^{+} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}, \mathbf{B}_{\mathbf{s}} \rightarrow \boldsymbol{\varphi} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$

$$
\Delta M_{s}=2\left|M_{12}^{S M}+M_{12}^{\mathrm{NP}}\right| \quad \Longrightarrow
$$

One has to eliminate $\mathrm{M}_{12}^{\text {NP }}$ keeping $\Delta_{\mathrm{L}}^{\mathrm{bs}}\left(\mathrm{Z}^{\prime}\right) \neq 0$ and this is not possible!!

$$
\begin{aligned}
& \text { Choosing } \\
& \operatorname{Re}\left(\Delta_{\mathrm{L}}^{\overline{\mathrm{b}} s}\left(\mathrm{Z}^{\prime}\right)\right)=0 \\
& \text { does not help! }
\end{aligned}
$$

But GIM solved similar problem by adding to (u, d, s) charm quark!
Let us add second Z^{\prime}

New Physics Scenario : Z' -Tandem

AJB 2302.01354

Two heavy neutral gauge bosons: $\mathbf{Z}_{1}^{\prime}, \mathrm{Z}_{2}^{\prime}$
Collaborate to forbid New Physics in quark mixing ($\Delta \mathbf{M}_{s}, \Delta \mathbf{M}_{\mathrm{d}}, \varepsilon_{\mathrm{K}}$)

Collaborate to explain anomalies in $B \rightarrow K\left(K^{*}\right) \mu^{+} \mu^{-}, B_{s} \rightarrow \varphi \mu^{+} \mu^{-}$

Solution: \mathbf{Z}^{\prime}-Tandem

AJB 2302.01354

Z_{1}^{\prime} and \mathbf{Z}_{2}^{\prime} collaborate to get $\mathrm{M}_{12}^{\mathrm{NP}}=0$

Conditions \(\left.\quad \frac{\left|\Delta_{\mathrm{L}}^{\overline{\mathrm{b} s}}\left(\mathrm{Z}_{1}^{\prime}\right)\right|}{\mathrm{M}_{1}}=\frac{\left|\Delta_{\mathrm{L}}^{\overline{\mathrm{b} s}}\left(\mathrm{Z}_{2}^{\prime}\right)\right|}{\mathrm{M}_{2}}, \quad \begin{array}{c}\varphi_{2}=\varphi_{1}+90^{\circ}

New CPV Phase\end{array}\right] \quad\)| No tree-level |
| :--- |
| contributions |
| to $\Delta M_{\mathbf{s}}$ |

But sizeable contributions to $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mu^{+} \mu^{-}, \mathrm{B}_{\mathrm{s}} \rightarrow \boldsymbol{\varphi} \mu^{+} \mu^{-}$ and interesting implications for $K \rightarrow \pi \nu \bar{v}$ if applied to K-system

Z'- Tandem Framework

$$
\Delta_{\mathrm{ij}}\left(\mathbf{Z}_{2}^{\prime}\right)=\Delta_{\mathrm{ij}}\left(\mathbf{Z}_{1}^{\prime}\right) \frac{\mathbf{M}_{2}}{\mathbf{M}_{\mathbf{1}}} \mathbf{e}^{\mathbf{i 9 9}} \quad(\mathbf{i} \neq \mathbf{j})
$$

Determine CKM Parameters from Quark Mixing only and predict SM Branching Ratios (without NP infection)
($\mathbf{Z}_{1}^{\prime}, \mathrm{Z}_{2}^{\prime}$) collaborate to remove NP from quark mixing

Determine Parameters
$\Delta_{\mathrm{ij}}\left(\mathbf{Z}_{1}^{\prime}\right)$ and $\Delta_{\mathrm{ij}}\left(\mathbf{Z}_{2}^{\prime}\right)$
from B, D, K decays
Only tree level NP contribution relevant

However: Other solutions with a single Z^{\prime} exist with some tuning of parameters

AJB, De Fazio, Girrbach-Noe, 1404.3824
AJB, Buttazzo, Girrbach-Noe, Knegjens, 1408.0728

Another Solution: Single Z'

NP removed from ε_{k}, as in ABK

Fine tuning in $\Delta \mathbf{M}_{\mathrm{q}} \quad \mathbf{q}=\mathrm{d}, \mathrm{s}$
suppression factor

$$
\begin{aligned}
& \mathbf{M}_{12}\left(\mathbf{Z}^{\prime}\right) \sim[1\left.+\left(\frac{\Delta_{\mathrm{R}}^{\mathrm{bq}}\left(\mathbf{Z}^{\prime}\right)}{\Delta_{\mathrm{L}}^{\mathrm{bq}}\left(\mathbf{Z}^{\prime}\right)}\right)+2 \mathbf{K}_{\mathbf{b d}} \frac{\Delta_{\mathrm{R}}^{\mathrm{bq}}}{\Delta_{\mathrm{L}}^{\mathrm{bq}}}\right] \frac{\Delta_{\mathrm{L}}^{\mathrm{bq}}\left(\mathbf{Z}^{\prime}\right)}{\mathbf{M}_{\mathbf{Z}^{\prime}}^{2}} \\
& \mathbf{K}_{\mathbf{b q}}=\frac{\left\langle\widehat{\mathbf{Q}}_{1}^{\mathrm{LR}}\left(\mathbf{M}_{\mathbf{Z}^{\prime}}\right)\right\rangle^{\mathbf{b q}}}{\left\langle\widehat{\mathbf{Q}}_{1}^{\mathrm{VLL}}\left(\mathbf{M}_{\mathbf{Z}^{\prime}}\right)\right\rangle^{\mathbf{b q}}} \approx-5 \quad \Delta_{\mathrm{R}}^{\mathrm{bq}}\left(\mathbf{Z}^{\prime}\right) \ll \Delta_{\mathbf{L}}^{\mathrm{bq}}\left(\mathbf{Z}^{\prime}\right)
\end{aligned}
$$

AJB, De Fazio, Girrbach-Noe 1404.3824
AJB, Buttazzo, Girrbach-Noe 1408.0728
Crivellin, Hofer, Matias, Nierste, Pokorski, Rosiek 1504.07928

3rd Movement: Summary + Outlook

Main Points to take to your Homeoffice

Multitude of $\left|\mathbf{V}_{\mathrm{cb}}\right|$-independent SM ratios of flavour observables $\mathbf{R}_{\mathrm{i}}(\beta, \gamma)$ will test SM once β and γ will be precisely known.

Assuming negligible NP contributions to $\Delta \mathbf{M}_{s}, \Delta \mathbf{M}_{\mathrm{d}}, \varepsilon_{K}, \mathbf{S}_{\psi K \mathrm{~K}}, \mathbf{S}_{\psi \varphi}$ results in most accurate to date SM predictions for 26 branching ratios for rare semi-leptonic K and B decays with $\mu^{+} \mu^{-}$, $v \bar{v}$ in the final state. (2203.11960, 2209.03968)
$\left|\mathbf{V}_{\mathrm{cb}}\right|-\gamma$ plots: Rapid tests of NP infection.

Interesting implications for correlations between observables and anomalies in $\mathbf{B} \rightarrow \mathbf{K}^{+}\left(\mathbf{K}^{*}\right) \mu^{+} \mu^{-}, B_{s} \rightarrow \varphi \mu^{+} \mu^{-}$(2209.03968)
Z^{\prime} alone or in $\left(Z_{1}^{\prime}, Z_{2}^{\prime}\right)$ tandem could be behind them.

Main Points to take to your Homeoffice

Multitude of $\left|\mathbf{V}_{\mathrm{cb}}\right|$-independent SM ratios of flavour observables $\mathbf{R}_{\mathrm{i}}(\beta, \gamma)$ will test SM once β and γ will be precisely known.

Assuming negligible NP contributions to $\Delta \mathbf{M}_{s}, \Delta \mathbf{M}_{\mathrm{d}}, \varepsilon_{K}, \mathbf{S}_{\psi K \mathrm{~K}}, \mathbf{S}_{\psi \varphi}$ results in most accurate to date SM predictions for 26 branching ratios for rare semi-leptonic K and B decays with $\mu^{+} \mu^{-}$, $v \bar{v}$ in the final state. (2203.11960, 2209.03968)
$\left|\mathbf{V}_{\mathrm{cb}}\right|-\gamma$ plots: Rapid tests of NP infection.

Interesting implications for correlations between observables and anomalies in $B \rightarrow K^{+}\left(\mathbf{K}^{*}\right) \mu^{+} \mu^{-}, B_{s} \rightarrow \varphi \mu^{+} \mu^{-}$
Z^{\prime} alone or in $\left(Z_{1}^{\prime}, Z_{2}^{\prime}\right)$ tandem could be behind them.

> Thank You !

Backup

Cabibbo Anomaly \Rightarrow Violation of the CKM Unitarity?

$$
\begin{aligned}
& \left|\mathrm{V}_{\mathrm{ud}}\right|^{2}+\left|\mathrm{V}_{\mathrm{us}}\right|^{2}+\left|\mathrm{V}_{\mathrm{ub}}\right|^{2}=0.9985(5) \\
& \left|\mathrm{V}_{\mathrm{ud}}\right|^{2}+\left|\mathrm{V}_{\mathrm{cd}}\right|^{2}+\left|\mathrm{V}_{\mathrm{td}}\right|^{2}=0.9970 \text { (18) }
\end{aligned}
$$

Review A. Crivellin
(2207.02507)

In the absence of new quarks CKM Unitarity cannot be violated! The violation is only apparent due to possible contributions of bosons to decays used to determine $\left|\mathbf{V}_{\text {ud }}\right|,\left|\mathbf{V}_{\text {us }}\right|$, due to hadronic uncertainties or wrong measurements (otherwise GIM mechanism would fail and at one-loop gauge dependence would be present)

In the presence of vector-like quarks CKM Unitarity can be violated with CKM matrix being submatrix of a unitary matrix involving SM quarks + vector quarks.

CKM Uncertainties

AJB, Buttazzo, Girrbach-Noe, Knegjens 1503.02693

$$
\begin{aligned}
& \operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)=(8.39 \pm 0.30) \cdot 10^{-11}\left[\frac{\left|\mathrm{~V}_{\mathrm{cb}}\right|}{0.0407}\right]^{2.8}\left[\frac{\gamma}{73.2^{\circ}}\right]^{0.74} \\
& \operatorname{Br}\left(\mathrm{~K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}\right)=(3.36 \pm 0.05) \cdot 10^{-11}\left[\frac{\left|\mathbf{V}_{\mathrm{ub}}\right|}{3.88 \cdot 10^{-3}}\right]^{2}\left[\frac{\left|\mathbf{V}_{\mathrm{cb}}\right|}{0.0407}\right]^{2}\left[\frac{\sin \gamma}{\sin (73.2)}\right]^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)=(8.39 \pm 0.58) \cdot 10^{-11}\left[\frac{\gamma}{73.2^{\circ}}\right]^{0.81}\left[\frac{\overline{\mathrm{Br}}\left(\mathrm{~B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)}{3.4 \cdot 10^{-9}}\right]^{1.42}\left[\frac{227.7}{\mathrm{~F}_{\mathrm{B}_{\mathrm{s}}}}\right]^{2.84} \\
& \operatorname{Br}\left(\mathrm{~K}^{+} \rightarrow \pi^{+} v \bar{v}\right)=(8.39 \pm 1.11) \cdot 10^{-11}\left[\frac{\left|\varepsilon_{\mathrm{K}}\right|}{2.23 \cdot 10^{-3}}\right]^{1.07}\left[\frac{\gamma}{73.2^{\circ}}\right]^{-0.11}\left[\frac{\mathrm{~V}_{\mathrm{ub}}}{3.88 \cdot 10^{-3}}\right]^{-0.95}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)=(8.4 \pm 1.0) \cdot 10^{-11} \\
& \operatorname{Br}\left(\mathrm{~K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}\right)=(3.4 \pm 0.6) \cdot 10^{-11}
\end{aligned}
$$

CKM Matrix

$$
\mathbf{V}_{\mathrm{us}}, \mathbf{V}_{\mathrm{cb}}, \beta, \gamma
$$

> $V_{c b}$ is not seen in this plot. Cancelled out in construction.
$\operatorname{Br}\left(\mathbf{B}_{\mathrm{s}, \mathrm{d}} \rightarrow \mu^{+} \mu^{-}\right)_{\mathrm{sm}}=\mathrm{F}\left(\beta, \gamma, \mathbf{V}_{\mathrm{cb}}\right)$
AJB + E. Venturini (2109.11032)

$$
\left|\mathbf{V}_{\mathrm{ub}}\right|=\lambda\left|\mathbf{V}_{\mathrm{cb}}\right| \frac{\sin \beta}{\left(1-\lambda \frac{2}{2}\right)}
$$

$$
\overline{\operatorname{Br}}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)_{\exp }=(3.45 \pm 0.29) \cdot 10^{-9} \underset{\substack{\text { LHCb } \\ \text { CMS } \\ \text { ATLAS }}}{\text { LHS }} \quad \text { CMS FLAG22 }
$$

Averages from: 2103.12738, 2103.13370, 2104.10058

$$
\overline{\operatorname{Br}}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)_{\mathrm{SM}}=\left(3.78_{-0.10}^{+0.15}\right) \cdot 10^{-9}
$$

CKM
Independent!

(1.1 σ)

Heavy Z' at Work

AJB, Buttazzo, Girrbach-Noe, Knegjens, 1408.0728

ε_{K} constraint

General discussion: Blanke 0904.2528

No ε_{K} constraint

Colours: different CKM input - SM

SM Relation for $\Delta \mathbf{M}_{s}, \Delta \mathbf{M}_{\mathrm{d}},\left|\varepsilon_{\mathrm{k}}\right|, \beta$

AJB: 2209.03968

$$
R \equiv \frac{\left|\varepsilon_{\mathrm{K}}\right|^{1.18}}{\Delta M_{\mathrm{d}} \Delta M_{\mathrm{s}}}=(8.22 \pm 0.18) \cdot 10^{-5}\left(\frac{\sin \beta}{\sin 22.2^{\circ}}\right)^{1.027} K_{\text {ps }}{ }^{2}
$$

$$
\begin{array}{r}
K=\left(\frac{\widehat{B}_{K}}{0.7625}\right)^{1.18}\left[\frac{210.6 \mathrm{MeV}}{\sqrt{\widehat{\mathrm{~B}}_{\mathrm{B}_{\mathrm{d}}}} \mathrm{~F}_{\mathrm{B}_{\mathrm{d}}}}\right]^{2}\left[\frac{256.1 \mathrm{MeV}}{\sqrt{\widehat{\mathrm{~B}}_{\mathrm{B}_{\mathrm{s}}}} \mathrm{~F}_{\mathrm{B}_{\mathrm{s}}}}\right]^{2} \\
\text { HPQCD }
\end{array}
$$

$$
R_{\exp }=(8.26 \pm 0.06) \cdot 10^{-5} \quad K=1.00 \pm 0.07
$$

$\Delta I=1 / 2$ Rule

$$
\mathrm{R}_{\mathrm{exp}}=\frac{\mathrm{A}\left(\mathrm{~K} \rightarrow(\pi \pi)_{\mathrm{l}=0}\right)}{\mathrm{A}\left(\mathrm{~K} \rightarrow(\pi \pi)_{\mathrm{l}=2}\right)}=22.4
$$

Puzzle since 1954 (Gell-Mann + Pais) $\mathbf{R}_{\mathrm{th}}=\sqrt{2} \quad$ (without QCD)
\(\left.\begin{array}{l}1986

2014\end{array}\right] \quad R=16 \pm 2 \quad\)| Dual |
| :--- |
| $Q C D$ |

Bardeen, AJB, Gérard
$2020 \quad R=19.19 \pm 4.8$
RBC-UKQCD
Lattice Collaboration
AJB
F. de Fazio
J. Girrbach-Noe
(1404.3824)

Dual QCD Approach for Weak Decays

Successful low energy approximation of QCD for $\mathbf{K} \rightarrow \pi \pi \mathbf{K}^{0}-\mathbf{K}^{0}$ mixing

W. Bardeen

AJB

J.-M. Gérard

Good News on $\varepsilon^{\prime} / \varepsilon$

$$
\varepsilon^{\prime} / \varepsilon=\text { QCD Penguins - Electroweak Penguin }
$$

$$
\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right)_{\text {SM }}^{\mathrm{EWP}}=-(7 \pm 1) \cdot 10^{-4} \quad \text { (RBC - UKQCD and DQCD) }
$$

Perfect
Agreement!

Chiral Pert Th: $\approx(-3.5 \pm 2.0) \cdot 10^{-4}$

Disagreements on QCD Penguin contribution.

