

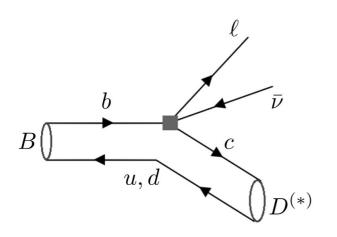
Probing flavor in semileptonic transition at High- p_T

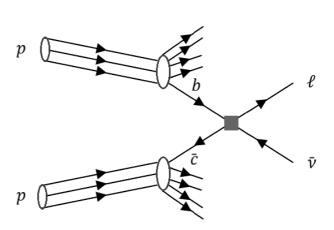
Florentin Jaffredo, INFN,

In collaboration with:

L. Allwicher, D. A. Faroughy, O. Sumensari, F. Wilsch [2207.10714] & [2207.10756]

Motivations

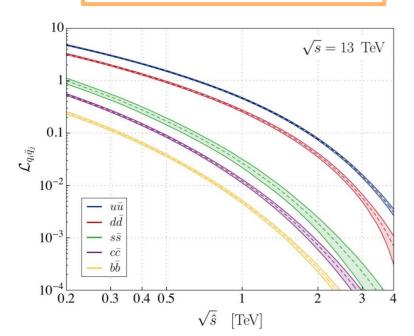

- The flavor content of the proton can be used to probe New Physics at the LHC.
- Constraints resulting from the distribution of high- p_T tails are complementary to low-energy observables. Farina, Panico, Pappadopulo, Ruderman, Torre, Wulzer [1609.08157]


Greljo, Marzocca [1704.09015] Greljo, Camalich, Ruiz-Álvarez [1811.07920] Angelescu, Faroughy, Sumensari [2002.05684]

Faroughy, Greljo, Kamenik [1609.07138]

Fuentes-Martin, Greljo, Camalich, Ruiz-Alvarez [2003.12421]

Endo, Iguro, Kitahara, Takeuchi, Watanabe [2111.04748]


Reinterpreting high-energy measurements for specific scenarios requires heavy machinery.

Drell-Yan and Flavor

- We consider $\begin{cases} pp \to \ell\nu + \text{soft jets} \\ pp \to \ell^+\ell^- + \text{soft jets} \end{cases}$
- Factorization leads to 2 distinct flavor effects:

$$\sigma\left(pp\to\ell_{\alpha}\bar{\ell}'_{\beta}\right)=\sum_{ij}\int\frac{\hat{s}}{s}\mathcal{L}_{ij}(\hat{s})\left[\hat{\sigma}(\bar{q}_{i}q_{j}\to\ell_{\alpha}\bar{\ell}'_{\beta})\right]$$

Parton-parton luminosity

$$\mathcal{A}(ar{q}_i q_j
ightarrow \ell_{lpha} ar{\ell}'_{eta}) \ \propto C^{ij}_{lphaeta} \qquad ext{(EFT)} \ \propto g^{ij} g^{lphaeta} \qquad ext{(s-channel)} \ \propto y^{ilpha} y^{jeta}, \ ... \qquad ext{(t,u-channel, ...)}$$

Energy Enhanced

Form Factor Parameterization

We parameterize the amplitude in terms of Form Factors:

$$\mathcal{A}(\bar{q}_{i}q_{j} \to \ell_{\alpha}^{-}\ell_{\beta}^{+}) = \frac{1}{v^{2}} \sum_{XY} \left\{ \begin{array}{c} \left(\bar{\ell}_{\alpha}\gamma^{\mu}\mathbb{P}_{X}\ell_{\beta}\right) \left(\bar{q}_{i}\gamma_{\mu}\mathbb{P}_{Y}q_{j}\right) & \left[\mathcal{F}_{X}^{XY,\,qq}(\hat{s},\hat{t})\right]_{\alpha\beta ij} \\ + \left(\bar{\ell}_{\alpha}\mathbb{P}_{X}\ell_{\beta}\right) \left(\bar{q}_{i}\mathbb{P}_{Y}q_{j}\right) & \left[\mathcal{F}_{S}^{XY,\,qq}(\hat{s},\hat{t})\right]_{\alpha\beta ij} \\ + \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell_{\beta}\right) \left(\bar{q}_{i}\sigma^{\mu\nu}\mathbb{P}_{X}q_{j}\right) \delta^{XY} & \left[\mathcal{F}_{T}^{X,\,qq}(\hat{s},\hat{t})\right]_{\alpha\beta ij} \\ + \left(\bar{\ell}_{\alpha}\gamma_{\mu}\mathbb{P}_{X}\ell_{\beta}\right) \left(\bar{q}_{i}\sigma^{\mu\nu}\mathbb{P}_{Y}q_{j}\right) & \frac{ik_{\nu}}{v} & \left[\mathcal{F}_{D_{q}}^{XY,\,qq}(\hat{s},\hat{t})\right]_{\alpha\beta ij} \\ + \left(\bar{\ell}_{\alpha}\sigma^{\mu\nu}\mathbb{P}_{X}\ell_{\beta}\right) \left(\bar{q}_{i}\gamma_{\mu}\mathbb{P}_{Y}q_{j}\right) & \frac{ik_{\nu}}{v} & \left[\mathcal{F}_{D_{\ell}}^{XY,\,qq}(\hat{s},\hat{t})\right]_{\alpha\beta ij} \end{array} \right\},$$

 $u_i \bar{u}_j \to \ell_{\alpha}^+ \ell_{\beta}^-,$ $d_i \bar{d}_j \to \ell_{\alpha}^+ \ell_{\beta}^-,$ $u_i \bar{d}_j \to \ell_{\alpha}^+ \nu_{\beta}.$

- Encodes every possible tree-level dynamics.
 - → Local and non-local interaction
- For NLO corrections, see [Haisch, Schnella, Schultea `22 '23],

Form Factor Parameterization

Analyticity hypothesis:

$$\mathcal{F}^{I}(\hat{s},\hat{t}) = \frac{\mathcal{F}^{I}_{\text{Reg}}}{\mathcal{F}_{\text{Reg}}^{I}}(\hat{s},\hat{t}) + \mathcal{F}^{I}_{\text{Poles}}(\hat{s},\hat{t})$$

$$\mathcal{F}_{\text{Reg}}^{I}(\hat{s}, \hat{t}) = \sum_{n, m=0}^{\infty} \mathcal{F}_{I(n,m)} \left(\frac{\hat{s}}{v^2}\right)^n \left(\frac{\hat{t}}{v^2}\right)^m$$

- Contact interaction.
- Sum over coupling dimension.

Match to the

4-fermion SMEFT (d=6).

$$\mathcal{F}_{\text{Poles}}^{I}(\hat{s},\hat{t}) = \sum_{a} \frac{v^{2} \mathcal{S}_{I(a)}}{\hat{s} - \Omega_{a}} + \sum_{b} \frac{v^{2} \mathcal{T}_{I(b)}}{\hat{t} - \Omega_{b}} - \sum_{c} \frac{v^{2} \mathcal{U}_{I(c)}}{\hat{s} + \hat{t} + \Omega_{c}}$$

- Resolved interaction.
- Sum over all possible mediators.

Match to SM+NP mediators and 2-fermion SMEFT (d=6).

Matching to the SMEFT

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \sum_{i} \frac{C_{i}^{(8)}}{\Lambda^{4}} \mathcal{O}_{i}^{(8)} + \mathcal{O}\left(\frac{1}{\Lambda^{6}}\right).$$

• Consistent expansion up to order $\mathcal{O}\left(\Lambda^{-4}\right)$.

Grzadkowski, Iskrzynski, Misiak, Rosiek [1008.4884] Murphy [2005.00059]

$$\sigma \sim |A_{\rm SM}|^2 + \frac{2}{\Lambda^2} \text{Re}(A_{\rm SM}^* A^{(6)}) + \frac{1}{\Lambda^4} |A^{(6)}|^2 + \frac{2}{\Lambda^4} \text{Re}(A_{\rm SM}^* A^{(8)}) + \mathcal{O}\left(\frac{1}{\Lambda^6}\right)$$

Dimension		<i>d</i> = 6			d = 8			
Operator classes		ψ^4	$\psi^2 H^2 D$	$\psi^2 XH$	$\psi^4 D^2$	$\psi^4 H^2$	$\psi^2 H^4 D$	$\psi^2 H^2 D^3$
Amplitude scaling		E^2/Λ^2	v^2/Λ^2	vE/Λ^2	E^4/Λ^4	v^2E^2/Λ^4	v^4/Λ^4	v^2E^2/Λ^4
Parameters	# Re	456	45	48	168	171	44	52
	# Im	399	25	48	54	63	12	12

Most energy-enhanced

≈ 550 operators at dimension 6.

+ 350 operators at dimension 8.

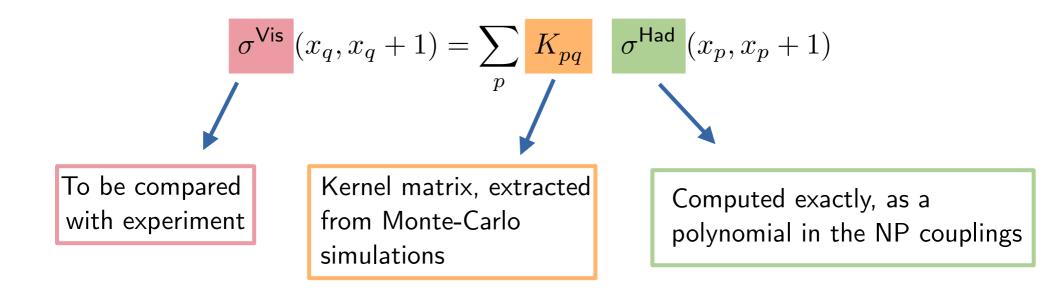
Comparing with data

- We introduce HighPT, a Mathematica package for automatic extraction of bound from high- p_T tail distribution.
 - Support for the latest LHC searches relevant for semileptonic transitions.
 - Support for both SMEFT and tree-level mediators.

Process	Experiment	Luminosity
$pp \to \tau \tau$	ATLAS	$139{\rm fb}^{-1}$
$pp \to \mu\mu$	CMS	$140{\rm fb^{-1}}$
$pp \rightarrow ee$	CMS	$137{\rm fb}^{-1}$
$pp \to \tau \nu$	ATLAS	$139{\rm fb}^{-1}$
$pp \to \mu \nu$	ATLAS	$139{\rm fb}^{-1}$
$pp \to e\nu$	ATLAS	$139{\rm fb}^{-1}$
$pp \to \tau \mu$	CMS	$137.1{\rm fb}^{-1}$
$pp \to \tau e$	CMS	$137.1{\rm fb}^{-1}$
$pp \rightarrow \mu e$	CMS	$137.1{\rm fb^{-1}}$

$$\chi^{2}(\theta) = \sum_{A \in \mathcal{A}} \left(\frac{\mathcal{N}_{A}(\theta) + \mathcal{N}_{A}^{b} - \mathcal{N}_{A}^{\text{obs}}}{\sqrt{\delta \mathcal{N}_{A}^{b}^{2} + \mathcal{N}_{A}^{\text{obs}}}} \right)^{2}$$

Predicted number of events, NP only

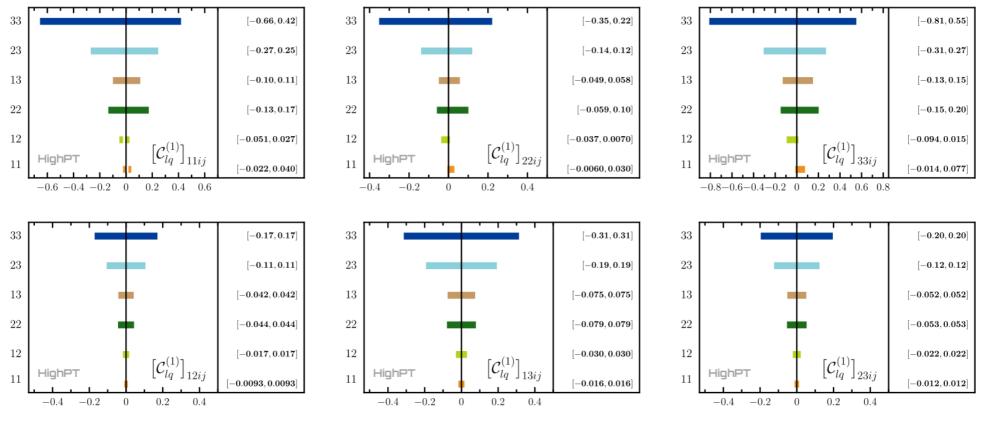

SM+Background, provided by experiments

In[3]:= chi2 = ChiSquareLHC["di-muon-CMS"] // Total;

Data

Recast procedure

- To compare with experiment, we need to take into account detector effects.
- For Bins $[x_1, ... x_n]$:

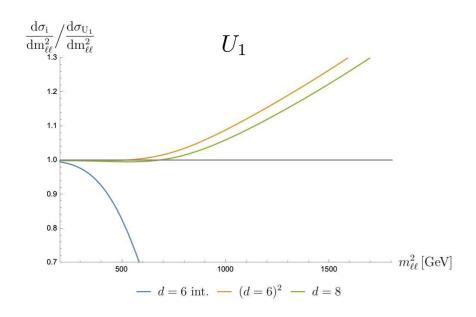


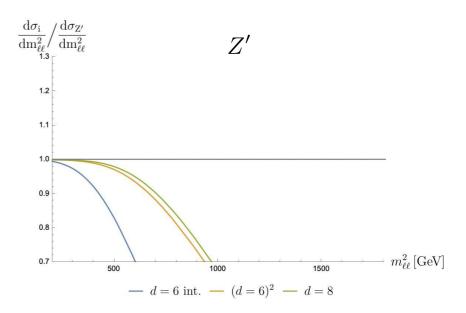
- MC simulations using *Madgraph* + *Pythia* + *Delphes*.
- Simulations have to reproduce the event selection of the experimental searches.
- One kernel matrix for each combination of interfering FF.

SMEFT Results

- Comparing with data, we obtain constraints on individual NP couplings.
- No excess is observed at more than 2σ .
- A few examples:

[Greljo, Camalich, Ruiz-Alvarez `19], [Marzocca, Min, Son `20], [Iguro, Takeuchi, Watanabe `21],[Jaffredo `21],

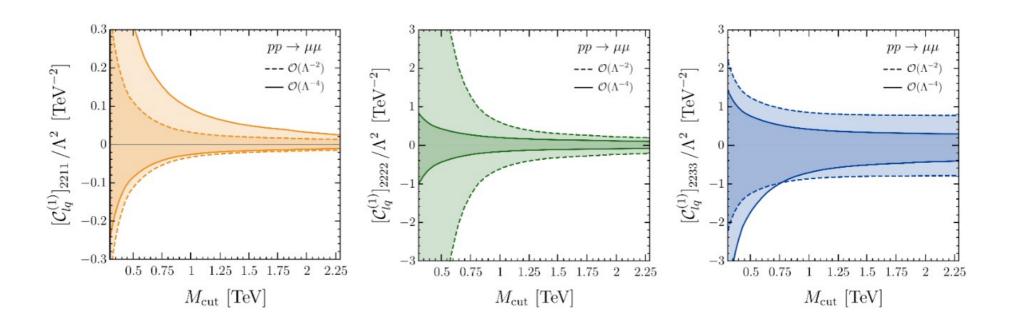



$$\mathcal{O}_{lq \alpha\beta ij}^{(1)} = (\bar{L}_{\alpha}\gamma^{\mu}L_{\beta})(\bar{Q}_{i}\gamma_{\mu}Q_{j})$$

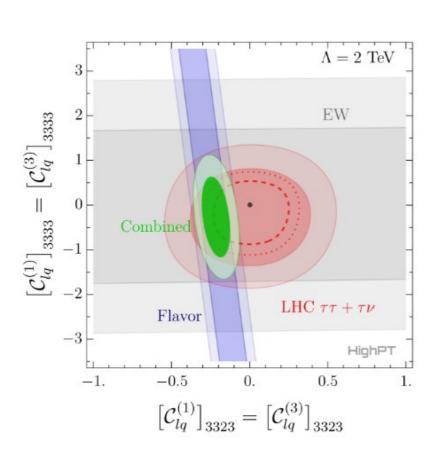
Concerning the EFT validity

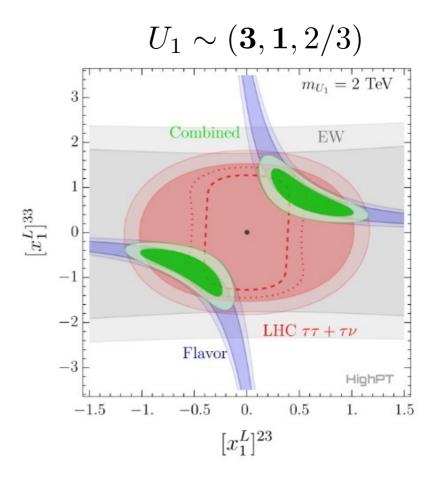
- If the NP scale is not higher the most energetic events, effects can potentially be huge.
- Results in over-constraining bounds for t- and u-channel mediators:

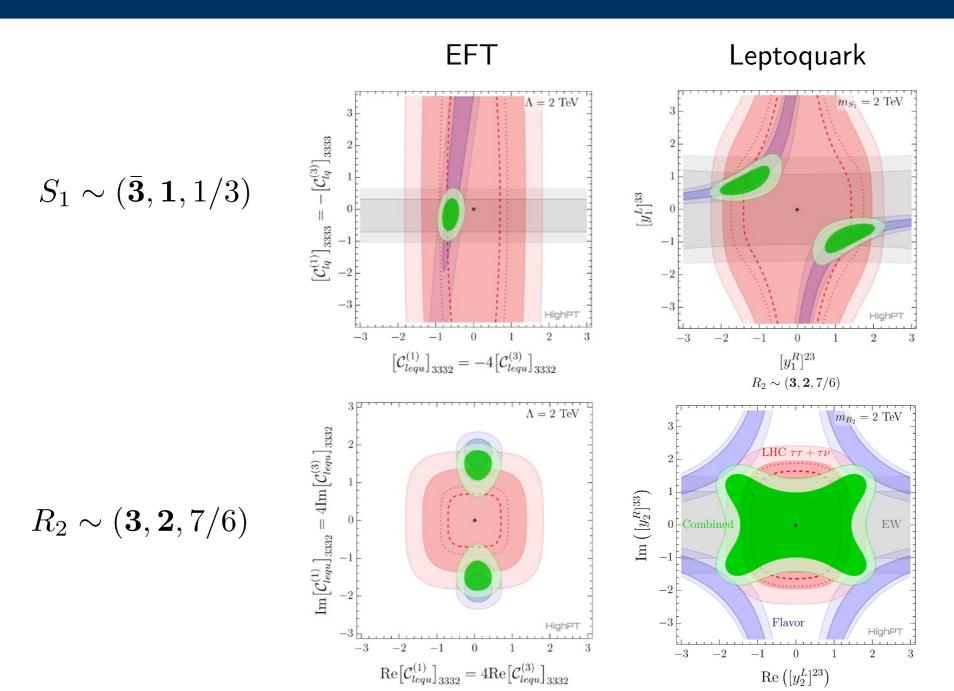
$$\frac{1}{t-m^2} \simeq -\frac{1}{m^2} \left(1 + \frac{t}{m^2} + \dots \right), \quad t, u \in [-s, 0]$$



• Effects can be \approx 40% for m=1.5 TeV, even for non-resonant processes.

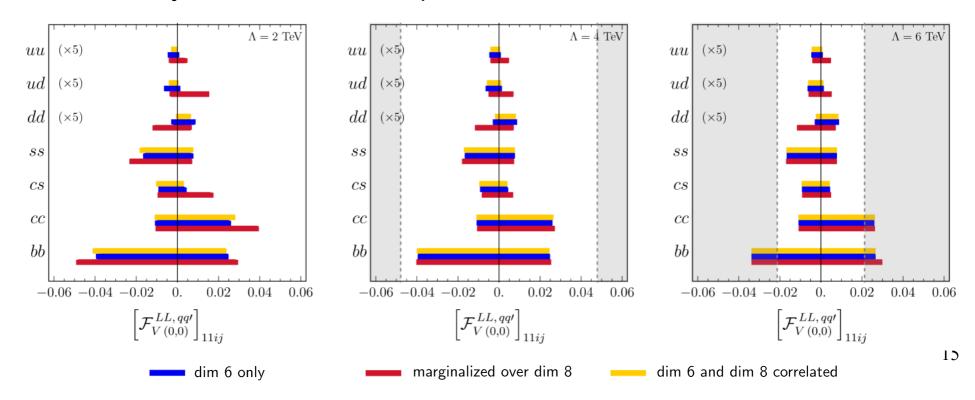

Concerning the EFT validity


- To ensure the validity of the EFT, neglect events above a threshold.
- Removing highest bins lead to comparatively worse constraints.


High- p_T tails applied to $R_{D^{(st)}}$

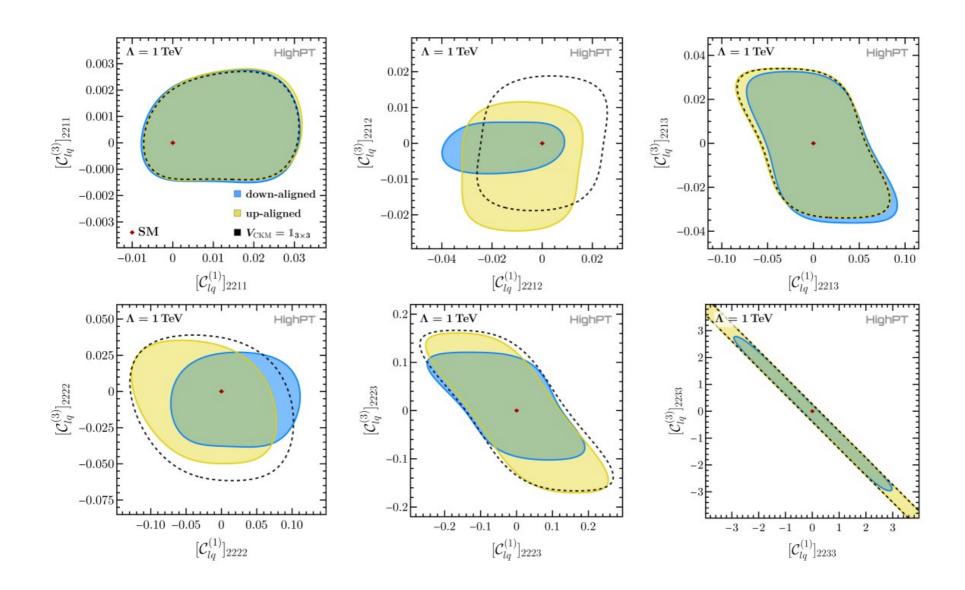
- We combine flavor, EW pole, and high- p_T observables.
- High- p_T constraints are already competitive.

High- p_T tails applied to $R_{D^{(st)}}$

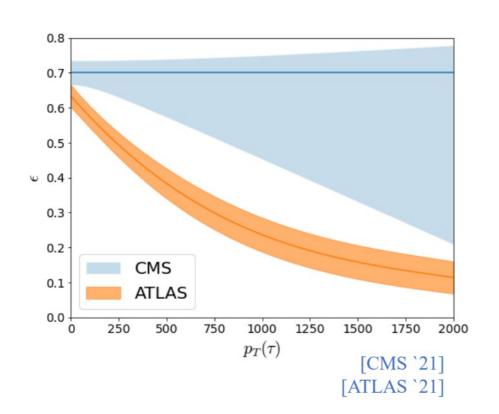


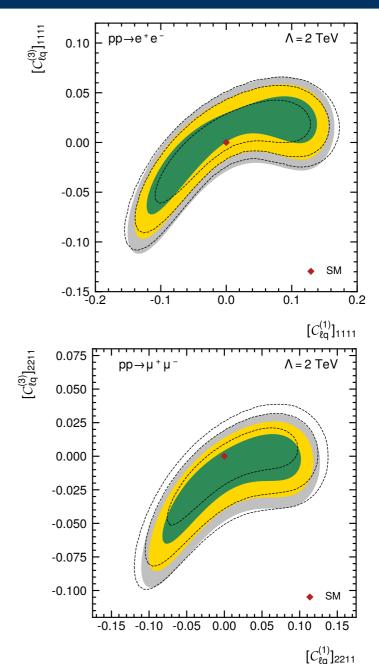
Conclusion

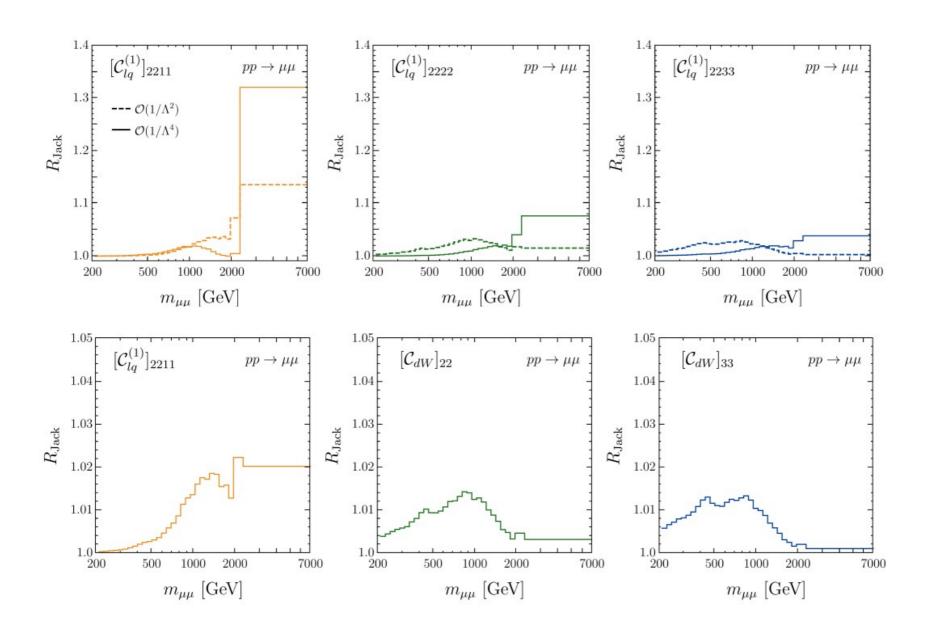
- Drell-Yan high- p_T tails are crucial probes of NP, complementary to low-energy observables.
- We construted the full flavor likelihood for Drell-Yan processes at LHC, both for the SMEFT and for tree-level BSM mediators.
- No significant excess is observed, but we are able to constrain a large number of NP coefficients
- All results are available in the package HighPT.
- We explicitly checked the validity of the EFT expansion.
- Resulting constraints are already competitive with flavor.
- What next?
 - More observable: Forward-Backward Asymmetry, EW pole, Flavor, ...
 - Future experimental searches
 - Refinement of current constraints: QCD correction, b-jet tagging...


Backup: Impact of dimension 8 operators

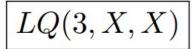
- Dimension 8 operators do **not** increase the validity range of the EFT. They modify the last term of the expansion, but the truncation remains $1/\Lambda^4$.
- They can have a sizable impact on the constraints for dimension 6 operators (light flavors), depending in the NP scale.
- Generally not relevant for explicit scenarios.

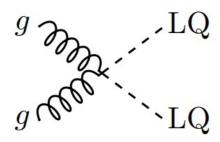

Backup: SMEFT flavor basis

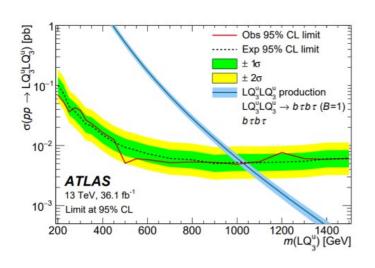

The choice of flavor basis (sometimes) matter.


Backup: CLs vs Chi square

• Multiplicative effects such as the *error on* the tau reconstruction efficiency cannot be accounted for with a χ^2 .


Backup: Jack-knife analysis




Backup: List of tree-level mediators

_	SM rep.	Spin	$\mathcal{L}_{ ext{int}}$
Z'	$({\bf 1},{\bf 1},0)$	1	$\mathcal{L}_{Z'} = \sum_{\psi} [g_1^{\psi}]_{ab} \bar{\psi}_a Z' \psi_b \ , \ \psi \in \{u, d, e, q, l\}$
W'	$({f 1},{f 3},0)$	1	$\mathcal{L}_{W'} = [g_3^q]_{ij} \bar{q}_i \mathcal{W}' q_j + [g_3^l]_{\alpha\beta} \bar{l}_\alpha \mathcal{W}' l_\beta$
\widetilde{Z}	(1 , 1 ,1)	1	$\mathcal{L}_{\widetilde{Z}} = [\widetilde{g}_1^q]_{ij} \bar{u}_i \widetilde{Z} d_j + [\widetilde{g}_1^\ell]_{\alpha\beta} \bar{e}_\alpha \widetilde{Z} N_\beta$
$\Phi_{1,2}$	$({f 1},{f 2},1/2)$	0	$\mathcal{L}_{\Phi} = \sum_{a=1,2} \left\{ [y_u^{(a)}]_{ij} \bar{q}_i u_j \widetilde{\Phi}_a + [y_d^{(a)}]_{ij} \bar{q}_i d_j \Phi_a + [y_e^{(a)}]_{\alpha\beta} \bar{l}_{\alpha} e_{\beta} \Phi_a \right\} + \text{h.c.}$
S_1	$(\mathbf{\bar{3}},1,1/3)$	0	$\mathcal{L}_{S_1} = [y_1^L]_{i\alpha} S_1 \bar{q}_i^c \epsilon l_\alpha + [y_1^R]_{i\alpha} S_1 \bar{u}_i^c e_\alpha + [\bar{y}_1^R]_{i\alpha} S_1 \bar{d}_i^c N_\alpha + \text{h.c.}$
\widetilde{S}_1	$({f \bar{3}},{f 1},4/3)$	0	$\mathcal{L}_{\widetilde{S}_1} = [\widetilde{y}_1^R]_{i\alpha} \widetilde{S}_1 \bar{d}_i^c e_\alpha + \text{h.c.}$
U_1	(3 , 1 ,2/3)	1	$\mathcal{L}_{U_1} = [x_1^L]_{i\alpha} \bar{q}_i \psi_1 l_\alpha + [x_1^R]_{i\alpha} \bar{d}_i \psi_1 e_\alpha + [\bar{x}_1^R]_{i\alpha} \bar{u}_i \psi_1 N_\alpha + \text{h.c.}$
\widetilde{U}_1	$({f 3},{f 1},5/3)$	1	$\mathcal{L}_{\widetilde{U}_1} = [\widetilde{x}_1^R]_{i\alpha} \bar{u}_i \widetilde{U}_1 e_{\alpha} + \mathrm{h.c.}$
R_2	(3 , 2 ,7/6)	0	$\mathcal{L}_{R_2} = -[y_2^L]_{i\alpha} \bar{u}_i R_2 \epsilon l_\alpha + [y_2^R]_{i\alpha} \bar{q}_i e_\alpha R_2 + \text{h.c.}$
\widetilde{R}_2	(3 , 2 ,1/6)	0	$\mathcal{L}_{\widetilde{R}_2} = -[\widetilde{y}_2^L]_{i\alpha} \bar{d}_i \widetilde{R}_2 \epsilon l_\alpha + [\widetilde{y}_2^R]_{i\alpha} \bar{q}_i N_\alpha \widetilde{R}_2 + \text{h.c.}$
V_2	$(\bar{\bf 3},{\bf 2},5/6)$	1	$\mathcal{L}_{V_2} = [x_2^L]_{i\alpha} \bar{d}_i^c V_2 \epsilon l_\alpha + [x_2^R]_{i\alpha} \bar{q}_i^c \epsilon V_2 e_\alpha + \text{h.c.}$
\widetilde{V}_2	$(\mathbf{\bar{3}},2,-1/6)$	1	$\mathcal{L}_{\widetilde{V}_2} = [\widetilde{x}_2^L]_{i\alpha} \bar{u}_i^c \widetilde{V}_2 \epsilon l_\alpha + [\widetilde{x}_2^R]_{i\alpha} \bar{q}_i^c \epsilon \widetilde{V}_2 N_\alpha + \text{h.c.}$
S_3	$({f \bar 3},{f 3},1/3)$	0	$\mathcal{L}_{S_3} = [y_3^L]_{i\alpha} \bar{q}_i^c \epsilon S_3 l_\alpha + \text{h.c.}$
U_3	(3, 3, 2/3)	1	$\mathcal{L}_{U_3} = [x_3^L]_{i\alpha} \bar{q}_i(\tau \cdot U_3) l_\alpha + \text{h.c.}$

Backup: Limits from pair production

Decays	Scalar LQ limits	Vector LQ limits	$\mathcal{L}_{ ext{int}}$
$jj auar{ au}$	-	-	-
$bar{b} auar{ au}$	1.0(0.8) TeV	1.5(1.3) TeV	$36 \; {\rm fb}^{-1}$
$tar{t} auar{ au}$	1.4(1.2) TeV	2.0(1.8) TeV	$140 \; {\rm fb}^{-1}$
$jj\muar{\mu}$	1.7(1.4) TeV	2.3(2.1) TeV	$140 \; {\rm fb}^{-1}$
$bar{b}\muar{\mu}$	1.7(1.5) TeV	2.3(2.1) TeV	$140 \; {\rm fb}^{-1}$
$tar{t}\muar{\mu}$	1.5(1.3) TeV	2.0(1.8) TeV	$140 \; {\rm fb}^{-1}$
jj uar u	1.0(0.6) TeV	1.8(1.5) TeV	$36 \; {\rm fb}^{-1}$
$bar{b} uar{ u}$	1.1(0.8) TeV	1.8(1.5) TeV	36 fb^{-1}
$tar{t} uar{ u}$	1.2(0.9) TeV	$1.8(1.6) { m TeV}$	$140 \; {\rm fb}^{-1}$

[Atlas, CMS '18-'20]

Assuming a branching fraction of 1 (0.5).