

Hadronic contributions to the muon g-2 from lattice QCD

Antoine Gérardin

Particle Physics from Early Universe to Future Colliders

• Muon g-2 Theory Initiative (White Paper, status in 2020)

The anomalous magnetic moment of the muon in the Standard Model [Phys.Rept. 887 (2020) 1-166]

Contribution	$a_{\mu} \times 10^{11}$	
- QED (leptons, 10^{th} order)	$116\ 584\ 718.931 \pm 0.104$	[Aoyama et al. '12 '19]
- Electroweak	153.6 ± 1.0	[Gnendiger et al. '13]
- Strong contributions		
HVP (LO)	$6\ 931\pm40$	[DHMZ '19, KNT '20]
HVP (NLO)	-98.3 ± 0.7	[Hagiwara et al. '11]
HVP (NNLO)	12.4 ± 0.1	[Kurtz et al. "14]
HLbL	92 ± 18	[See WP]
Total (theory)	116 591 810 ± 43	
Experiment	116 592 061 \pm 41	

\rightarrow Error budget dominated by hadronic contributions

- \rightarrow Goal ~ few permille on the HVP contribution
 - below 10% on the HLbL contribution

Theory status just after run 1 at Fermilab E821

Theory status just after run 1 at Fermilab E821

• BMW published their result on the same day (but on the ArXiv ~ 1 year earlier)

 $a_{\mu}^{\mathrm{hvp}} \times 10^{10}$

- other lattice calculations tend to be higher too ...
- ... but with larger errors

► Time-momentum representation [Bernecker, Meyer '11 '13]

$$a_{\mu}^{\text{hvp}} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty \text{d}t \ \widetilde{K}(t) \ G(t)$$
$$G(t) = -\frac{1}{3} \sum_{k=1}^3 \sum_{\vec{x}} \langle V_k(x) V_k(0) \rangle$$

- $\widetilde{K}(t)$: known kernel function

5

- Electromagnetic current :

$$V_{\mu}(x) = \frac{2}{3}\overline{u}(x)\gamma_{\mu}u(x) - \frac{1}{3}\overline{d}(x)\gamma_{\mu}d(x) - \frac{1}{3}\overline{s}(x)\gamma_{\mu}s(x) + \cdots$$

► Noise problem (light-quark contribution)

▶ QED / strong isospin breaking corrections

6

► Continuum extrapolation [BMW '20]

▶ Finite-volume effects O(3%)

$$a_{\mu}^{\min} = \left(\frac{\alpha}{\pi}\right)^2 \sum_{t} G(t) \, \widetilde{K}(t) \, W(t; t_0, t_1)$$

• Short distances :

 $W^{\rm SD}(t;t_0) = [1 - \Theta(t,t_0,\Delta)]$

- Intermediate distances : $W^{\text{ID}}(t;t_0,t_1) = [\Theta(t,t_0,\Delta) \Theta(t,t_1,\Delta)]$
- Long distances :

$$W^{\mathrm{LD}}(t;,t_1) = \Theta(t,t_1,\Delta)$$

Smooth step function : $\Theta(t, t', \Delta) = [1 + \tanh[(t - t')/\Delta]]/2$ Standard parameters : $t_0 = 0.4$ fm, $t_1 = 1.0$ fm, $\Delta = 0.15$ fm

• Intermediate window : $\sim 30\%$ of the total contribution.

Antoine Gérardin

Advantages of the intermediate window

- ▶ much easier to compute on the lattice (and accessible from R-ratio data !)
 - \rightarrow 1-2 permille statistical precision can be reached on the integrand
 - \rightarrow finite-volume effects are strongly suppressed

- ▶ still need to have a good control over the continuum extrapolation
- ▶ Region 600 MeV $\leq \sqrt{s} \leq 900$ MeV (around the rho-resonance) :
 - \rightarrow 55%-60% on both full hvp and window observables !
 - $\rightarrow \sqrt{s} \leq 600~{\rm MeV}$ slightly suppressed, $\sqrt{s} \geq 900~{\rm MeV}$ slightly enhanced.

figure taken from [2301.08696 [hep-lat]]

figure taken from [2301.08696 [hep-lat]]

▶ light quark contribution : \sim 88% of the total!

▶ good agreement among many collaborations (using different discretizations)

Hadronic light-by-light scattering contribution

Dispersive framework ('21)	$a_{\mu} \times 10^{11}$
π^0 , η , η'	93.8 ± 4
pion/kaon loops	-16.4 ± 0.2
S-wave $\pi\pi$	-8 ± 1
axial vector	6 ± 6
scalar $+$ tensor	-1 ± 3
q-loops / short. dist. cstr	15 ± 10
charm + heavy q	3 ± 1
HLbL (data-driven) '20	92 ± 19
LO HVP	6931 ± 40
HLbL (lattice) Mainz '22	109.6 ± 15.9

11

$$\blacktriangleright \Delta a_{\mu}^{\text{exp/SM}} = 251(59) \times 10^{-11} \approx 3 \times a_{\mu}^{\text{hlbl}}$$

Two approaches :

- ► Complete lattice calculation
- $\blacktriangleright~\pi^0$, $\eta,~\eta^\prime$: accessible on the Lattice

• Compute the QED part in position space (continuum + infinite volume) [J. Green et al. '16] [N. Asmussen et al. '16 '17]

$$a_{\mu}^{\text{HLbL}} = \frac{me^{6}}{3} \int d^{4}y \int d^{4}x \, \mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \, i\widehat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y)$$
$$i\widehat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y) = -\int d^{4}z \, z_{\rho} \, \langle J_{\mu}(x)J_{\nu}(y)J_{\sigma}(z)J_{\lambda}(0) \rangle$$

- $\rightarrow \widehat{\Pi}_{
 ho,\mu
 u\lambda\sigma}(x,y)$: four-point correlation function computed on the lattice
- $\rightarrow \mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(x,y)$: QED kernel, computed semi-analytically in position-space
- \rightarrow Avoid $1/L^2$ finite-volume effects from the massless photons $\Rightarrow \sim e^{-m_{\pi}L}$

[Eur.Phys.J.C 80 (2020) 9, 869] [Eur.Phys.J.C 81 (2021) 7, 651] [Eur.Phys.J.C 82 (2022) 8, 664] 2210.12263 [hep-lat]

Subtraction of the pion-pole contribution

Pion-pole subtraction

• Filled symbols : original data

13

- Open symbols : $a_{\mu}^{\text{hlbl,cor}}(a,m_{\pi}) = a_{\mu}^{\text{hlbl,data}}(a,m_{\pi}) + \left(a_{\mu}^{\pi^{0},\text{phys}(a,m_{\pi})} a_{\mu}^{\pi^{0}}(a,m_{\pi})\right)$
- 15% precision close to the target precision ($\sim 10\%)$

 $a_{\mu}^{\text{hlbl}} = 109.6(15.0) \times 10^{-11}$

Lattice inputs for the dispersive framework : the pion-pole contribution

• Pion transition form factor [In collaboration with Mainz group]

• Fully model independant

$$a_{\mu}^{\text{HLbL};\pi^0} = (59.9 \pm 3.6) \times 10^{-11}$$

14

[A. G et al, Phys.Rev. D100 (2019)]

 \rightarrow Compatible with the dispersive result

 $a_{\mu}^{\mathrm{HLbL};\pi^{0}} = 62.6^{+3.0}_{-2.5} \times 10^{-11}$ [Hoferichter et al. '18]

- Work done in collaboration with the BMW collaboration
- More challenging : mixing between η and η' , , quark disconnected contributions

• preliminary continuum extrapolation (statistical errors only) :

 $a_{\mu}^{\mathrm{HLbL};\eta} = (11.6 \pm 2 \pm ??) \times 10^{-11}$

$$a_{\mu}^{\text{HLbL};\eta'} = (15.7 \pm 4 \pm ??) \times 10^{-11}$$

\blacktriangleright First run $\approx 1/20$ of the expected total statistics

- \rightarrow are we close to NP discovery ?
- \rightarrow non-perturbative hadronic contributions dominate the error
- \rightarrow recent lattice results tend to reduce the tension \ldots
- \rightarrow ... but there is now a tension with the dispersive framework.

► Rapid progress on the lattice

- \rightarrow first sub-percent lattice HVP calculation by BMW, intermediate window ...
- \rightarrow first complete lattice HLBL calculation with Mainz

Antoine Gérardin

17

Hadronic contributions to the anomalous magnetic moment of the muon

- Is the continuum extrapolation under control?
 - \rightarrow Based on Symanzik Effective Field Theory : one expects a^2 scaling \ldots
 - \rightarrow ... up to logarithms $a^2/\log(a)^{\Gamma}$!
 - \rightarrow For pure Yang-Mills one has $\Gamma>0.$ Might also be true for QCD [Husung et al '19]
 - \rightarrow Often logarithms are neglected (2 reasons : Γ are not known + lack of data)

