Asymptotic UV-safe Unification of Gauge and Yukawa Couplings: An exceptional case

Giacomo Cacciapaglia
IP2I Lyon, France
@ Portorož 2023
with A. Deandrea, R. Pasechnik, Z.W. Wang 2302.11671 (also w. A.Cornell, A.Deandrea, C.Cot in 2012.14732)

Traditional GUTs

- SM gauge couplings expected to be equal at the GUT scale
- supersymmetry helps building "realistic" models
- proton decay inevitable!

Tradilional GUTs

- SM gauge couplings expected to be equal at the GUT scale
- supersymmetry helps building "realistic" models
- proton decay inevitable!

However:

- Large malter represenkalions needed to break the gauge symmetry!
- Landau pole!!!!

a symplotic CUT (abUT)

- Gauge couplings are never equal, but tend to the same UV fixed point!

A) Realised in asympt. safe theories (via large Nf resum)

(Intermediate Pati-Salam unification needed)

Molinaro et al, PRD 98 (2018) 11

a symplotic CUT (a<UT)

- Gauge couptings are never equal, but tend to the same UV fixed point!

B) Extra compact dimensions

$$
2 \pi \frac{d \alpha}{d \ln \mu}=\mu R b_{5} \alpha^{2}
$$

$\tilde{\alpha}=\mu R \alpha$ (t Hooft coupling in SD)
$2 \pi\left(\tilde{\alpha}+\frac{d \tilde{\alpha}}{d \ln \mu}\right)=b_{5} \tilde{\alpha}^{2}$

$$
\tilde{\alpha}_{U V}=-\frac{2 \pi}{b_{5}}
$$

> Gies, PRD $68(2003)$
> Morris, JHEP $01(2005) 002$

Minimal SUSs) a GUT

Cacciapaglia et al, PRD 104 (2021) 7

$$
\begin{gathered}
\left(P_{0}\right) \Rightarrow\left\{\begin{array}{l}
A_{\mu}^{a}(x,-y)=P_{0} A_{\mu}^{a}(x, y) P_{0}^{\dagger}, \\
A_{y}^{a}(x,-y)=-P_{0} A_{y}^{a}(x, y) P_{0}^{\dagger},
\end{array}\right. \\
\left(P_{1}\right) \Rightarrow\left\{\begin{array}{l}
A_{\mu}^{a}(x, \pi R-y)=P_{1} A_{\mu}^{a}(x, y) P_{1}^{\dagger}, \\
A_{y}^{a}(x, \pi R-y)=-P_{1} A_{y}^{a}(x, y) P_{1}^{\dagger},
\end{array}\right. \\
P_{0}=(+++--), \\
P_{1}=(+++++) .
\end{gathered}
$$

$$
\psi_{5}=\binom{B^{c}}{l} \begin{aligned}
& (-+) \\
& (++)
\end{aligned} \text { Lh zero }
$$

- TU(5) broken in $y=0$ to the SM by boundary conditions
- SM fermions cannot be embedded in complete multiples of SU(5)!!!

Yukawa non-unificalion

The most general bulk Lagrangian reads:

$$
\begin{aligned}
\mathcal{L}_{S U(5)} & =-\frac{1}{4} F_{M N}^{(a)} F^{(a)^{M N}}-\frac{1}{2 \xi}\left(\partial_{\mu} A^{\mu}-\xi \partial_{5} A_{y}\right)^{2}+i \overline{\psi_{5}} D \psi_{5}+i \overline{\psi_{5}} D \psi_{\overline{5}}+i \overline{\psi_{10}} D \psi_{10} \\
& +i \overline{\psi_{\overline{10}}} D \psi_{\overline{10}}-\left(\sqrt{2} Y_{\tau} \overline{\psi_{5}} \psi_{\overline{10}} \phi_{5}^{*}+\sqrt{2} Y_{b} \overline{\psi_{5}} \psi_{10} \phi_{5}^{*}+\frac{1}{2} Y_{t} \epsilon_{5} \overline{\psi_{10}} \psi_{10} \phi_{5}+\text { h.c. }\right) \\
& +\left|D_{M} \phi_{5}\right|^{2}-V\left(\phi_{5}\right)+i \overline{\bar{v}_{1}} \phi \psi_{1}-\left(Y_{\nu} \overline{\psi_{1}} \psi_{5} \phi_{5}+\text { h.c. }\right),
\end{aligned}
$$

- Yukawas DO NOT unify!
- Baryon and Lepton numbers can be defined (no proton decay processes)

The Yukawa sector runs into problems

For smaller values of the KK scale the Yukawas run to Landau poles

Localising all Yukawas except the kop, allows for UV fixed point.

But hard to do: $S 0(10)$ is ruled out, in fact!

Khojali et al, 2210,03596

Supersymmelry lo the rescue

- Supersymmetry allows to generate fermions as gauge fields (gauginos)
- In E6, the adjoint 78 contains the right states (but in vector-like pairs)

See Kobayashi, Raby, Zhang, Null. Phys. B704, 3 (2005)

The exceptional case

$\operatorname{SO}(10) \times \mathrm{U}(1)_{\psi}$		$\mathrm{SU}(6)_{\mathrm{L}} \times \operatorname{SU}(2)_{\mathrm{R}}$
Z_{2}	E_{6}	Z_{2}^{\prime}
	2727^{\prime} 78	
$\mathrm{x}^{5}=0$		$\mathrm{x}^{5}=\pi \mathrm{R}$

Cacciapaglia et al, 2302.11671

> 4D gauge symmetry: $\operatorname{SU}(4) \times \operatorname{SU}(2)_{L} \times \operatorname{SU}(2)_{R} \times U(1)_{\psi}$

Bulk interactions limited To (SUSY) gauge!

- Right-handed SM fermions from the adjoint (gauginos)
- Left-handed and Higgs(es) from the 27
- 27' to give mass to unwanted stakes

The exceplional case

Cacciapaglia el al, 2302.11671

$\mathrm{SO}(10) \times \mathrm{U}(1)_{\psi}$		$\mathrm{SU}(6)_{\mathrm{L}} \times \mathrm{SU}(2)_{\mathrm{R}}$
Z_{2}	E_{6}	Z_{2}^{\prime}
		2727^{\prime}
	78	
$\mathrm{x}^{5}=0$		$\mathrm{x}^{5}=\pi \mathrm{R}$

4 D gauge symmetry: $\mathbf{S U}(4) \times \mathbf{S U}(2)_{L} \times \mathbf{S U}(2)_{R} \times \mathbf{U}(1)_{\psi}$

Bulk interactions limited To (SUSY) gauge!

The exceptional case

$g \Phi_{27}^{c} \Phi_{78} \Phi_{27} \supset \frac{g}{\sqrt{2}}(\mathbf{1}, \mathbf{2}, \mathbf{2})_{2}(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2})_{-3}(\mathbf{4}, \mathbf{2}, \mathbf{1})_{1}$
$g \Phi_{27^{\prime}}^{c} \Phi_{78} \Phi_{27^{\prime}} \supset-\frac{g}{\sqrt{2}}(\mathbf{1}, \mathbf{1}, \mathbf{1})_{-4}(\mathbf{4}, \mathbf{1}, \mathbf{2})_{3}(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2})_{1}$ $+\frac{g}{\sqrt{2}}(\mathbf{6}, \mathbf{1}, \mathbf{1})_{2}(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2})_{-3}(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2})_{1}$
\rightarrow SM Yukawa couplings!
\rightarrow Gives mass to unwanted Chiral skates via U(1) breaking

The exceptional case

$\left.\left.g \Phi_{27}^{c} \Phi_{78} \Phi_{27} \supset \frac{g}{\sqrt{2}}(\mathbf{1}, \mathbf{2}, \mathbf{2})_{2}(\mathbf{4}, \mathbf{1}, \mathbf{2})\right)_{3}(\mathbf{4}, \mathbf{2}, \mathbf{1})_{1}\right)$
\rightarrow SM Yukawa couplings!
$g \Phi_{27^{\prime}}^{c} \Phi_{78} \Phi_{27^{\prime}} \supset-\frac{g}{\sqrt{2}}(\mathbf{1}, \mathbf{1}, \mathbf{1})_{-4}(\mathbf{4}, \mathbf{1}, \mathbf{2})_{3}(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2})_{1}$ $+\frac{g}{\sqrt{2}}(\mathbf{6}, \mathbf{1}, \mathbf{1})_{2}(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2})_{-3}(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2})_{1}$
\rightarrow Cives mass to unwanked Chiral skates via U(1) breaking

Bulk inkeractions preserve Baryon number!

The exceptional case

$g \Phi_{27}^{c} \Phi_{78} \Phi_{27} \supset \frac{g}{\sqrt{2}}(\mathbf{1}, \mathbf{2}, \mathbf{2})_{2}(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2})_{-3}(\mathbf{4}, \mathbf{2}, \mathbf{1})_{1}$
$\left.\left.g \Phi_{27^{\prime}}^{c} \Phi_{78} \Phi_{27^{\prime}} \supset-\frac{g_{(}}{\sqrt{2}}(\mathbf{1}, \mathbf{1}, \mathbf{1})\right)(\mathbf{4}, \mathbf{1}, \mathbf{2})_{3}\right)\left(\overline{\left.\mathbf{4}, \mathbf{1}, \mathbf{2})_{1}\right)}\right.$ $+\frac{g}{\sqrt{2}}(\mathbf{6}, \mathbf{1}, \mathbf{1})_{2}(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2})_{-3}(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2})_{1}$
\rightarrow SM Yukawa couplings!
\rightarrow Gives mass to unwanted Chiral skates via U(1) breaking

Bulk interactions preserve Baryon number!

The fixed point

$$
b_{5}=-\frac{\pi}{2}\left(C(G)-\sum_{i} T_{i}\left(R_{i}\right)\right)=-3 \pi \quad \tilde{\alpha}^{*}=\frac{2}{3}
$$

$$
C(G)=12 \quad T(27)=3
$$

No more than one generation allowed in the bulk!

- PS breaking due to a gauge-scalar
- U(1) breaking by singlet in 27^{\prime}
- SUSy breaking to be studied

Predicting the light generations (from gauge anomalies)

- The zero modes generate an anomaly for the $U(1)$ gauge symmetry:

$$
\mathscr{A}_{16_{1}}-\mathscr{A}_{10_{-2}+1_{4}}=2 \mathscr{A}_{16_{1}}
$$

Predicting the light generations (from gauge anomalies)

- The zero modes generate an anomaly $\mathrm{SO}(10) \mathrm{xU}(1)_{Y}$ for the $U(1)$ gauge symmetry:

$$
\mathscr{A}_{16_{1}}-\mathscr{A}_{10_{-2}+1_{4}}=2 \mathscr{A}_{16_{1}}
$$

- Add exactly two generations on the so(10) boundary!

Z_{2}	E_{6}	Z_{2}^{\prime}
	2727^{\prime}	
16_{-1}	78	
16_{-1}		
$\mathrm{x}^{5}=0$		$\mathrm{x}^{5}=\pi \mathrm{R}$

Two model avenues:

Model 1 :

- Predicts 2 generations
- "Usual" SO(10) model building allowed
- Scale pushed high by proton decay baryon number predicted

One gen in

$$
(16,1)+(6,2)
$$

Model 2:

- Light generations preserve
- Number of generations not
- Scale can be lowered (1000's Tel) from PS breaking

Conclusions and perspectives

- Asymptotic CUT is a novel paradigm, avoiding many shortcomings of traditional CUTs
- SUSY + bulk E6 allows ko a-unify gauge and Yukawa couplings (for one generation)
- Two light generation PREDICTED by gauge anomalies on the SO(10) boundary - Model 1
- Low-scale possibility also allowed - Model 2
- Many aspects of phenomenology and model building remain to be explored!

Bonus tracks

The Yukawa seckor runs

Figure 3. Running of the localized Yukawa couplings compared to the bulk gauge ones for two sample values of the compactification scale. The bands indicate the uncertainty related to KK gauge couplings (see text). The largest value of t corresponds to the 5D Planck mass value.

Localised Yukawas - SU(s) brane

Indalo slates

Multiplets	Fields	L	B	Q	Q_{3}
$\psi_{\overline{5}}$	B_{R}^{c}	$1 / 2$	$1 / 6$	$1 / 3$	0
	τ_{L}	1	0	-1	-1
	ν_{L}	1	0	0	1
ψ_{5}	b_{R}	0	$1 / 3$	$-1 / 3$	0
	\mathcal{T}_{L}^{c}	$-1 / 2$	$1 / 2$	1	1
	\mathcal{N}_{L}^{c}	$-1 / 2$	$1 / 2$	0	-1
ψ_{10}	T_{R}^{c}	$1 / 2$	$1 / 6$	$-2 / 3$	0
	\mathcal{T}_{R}^{c}	$-1 / 2$	$1 / 2$	1	0
	t_{L}	0	$1 / 3$	$2 / 3$	1
	b_{L}	0	$1 / 3$	$-1 / 3$	-1
$\psi_{\overline{10}}$	t_{R}	0	$1 / 3$	$2 / 3$	0
	τ_{R}	1	0	-1	0
	T_{L}^{c}	$1 / 2$	$1 / 6$	$-2 / 3$	-1
	B_{L}^{c}	$1 / 2$	$1 / 6$	$1 / 3$	1
ψ_{1}	N	1	0	0	0
ϕ_{5}	H	$1 / 2$	$-1 / 6$	$-1 / 3$	0
	ϕ^{+}	0	0	1	1
	ϕ_{0}	0	0	0	-1
A_{X}	X	$1 / 2$	$-1 / 6$	$-4 / 3$	-1
	Y	$1 / 2$	$-1 / 6$	$-1 / 3$	1

- Non-SM components carry unusual B and L charges
- Hence, they cannot decay into SM states
- States with mass 1/R stable

$Q=$ Indalo

- Prehistoric symbol found in Almería caves, Spain
- It means "creation" or "nature" in Zulu

Indalo-genesis

Multiplets	Fields	L	B	Q	Q_{3}
ψ_{5}	B_{R}^{c}	$1 / 2$	1/6	1/3	0
	τ_{L}	1	0	-1	-1
	ν_{L}	1	0	0	1
ψ_{5}	b_{R}	0	$1 / 3$	-1/3	0
	\mathcal{T}_{L}^{c}	-1/2	$1 / 2$	1	1
	\mathcal{N}_{L}^{c}	-1/2	$1 / 2$	0	-1
ψ_{10}	T_{R}^{c}	1/2	$1 / 6$	-2/3	0
	\mathcal{T}_{R}^{c}	-1/2	$1 / 2$	1	0
	t_{L}	0	$1 / 3$	$2 / 3$	1
	b_{L}	0	$1 / 3$	-1/3	-1
ψ_{10}	t_{R}	0	$1 / 3$	$2 / 3$	0
	τ_{R}	1	0	-1	0
	T_{L}^{c}	$1 / 2$	$1 / 6$	-2/3	-1
	B_{L}^{c}	$1 / 2$	$1 / 6$	$1 / 3$	1
ψ_{1}	N	1	0	0	0
ϕ_{5}	H	$1 / 2$	$-1 / 6$	-1/3	0
	ϕ^{+}	0	0	1	1
	ϕ_{0}	0	0	0	-1
A_{X}	X	$1 / 2$	-1/6	-4/3	-1
	Y	$1 / 2$	-1/6	-1/3	1

- Baryogenesis could also produce on asymmetric abundance of Indalo states

Dark Malter candidate!
$1 / R=2.4 \mathrm{TeV}$

