Probing light Yukawa couplings at the (HL-) LHC

Ramona Gröber

based on work with L. Alasfar and R. Corral Lopez, JHEP 11 (2019)088

> L. Alasfar, C. Grojean, A. Paul, Z. Qían JHEP 11 (2022)045

work with E. Balzani, M. Vitti, to appear

12/04/2023

Higgs couplings

3rd generation fermion and gauge boson couplings to Higgs boson fairly good measured

2nd generation fermion couplings first results available

Higgs self-couplings?

First generation Yukawa couplings?

Light quark Yukawa couplings

HL-LHC prospects for measurement of 1st and 2nd generation quark Yukawa couplings $\kappa = y_q / y_q^{SM}$

Ide Blas, Cepeda, d'Hondt et al '19]

$$|\kappa_u| \le 570$$
, $|\kappa_d| \le 270$, $|\kappa_s| \le 13$, $|\kappa_c| \le 1.2$

global fit, not completely model-independent

Light quark Yukawa couplings

HL-LHC prospects for measurement of 1st and 2nd generation quark Yukawa couplings $\kappa = y_q / y_q^{SM}$

Ide Blas, Cepeda, d'Hondt et al '19]

$$|\kappa_u| \le 570$$
, $|\kappa_d| \le 270$, $|\kappa_s| \le 13$, $|\kappa_c| \le 1.2$

global fit, not completely model-independent

Alternative ways:

• Higgs kinematics: Higgs+jet transverse momentum distribution

[Bishara Haisch, Monni, Re'16; Sorea, Zhu, Zupan '16]

Higgs decays to photon and vector mesons

[Bodwin, Pietrello, Stoynev, Velasco '13; Kagan, Perez, Pietrello, Sorea, Stoynev, Zupan '14; Alte, König, Neubert '16 ATLAS 1712.02758, CMS 2007.05122]

Charm tagging (strange tagging at lepton colliders)

[Perez, Soreq, Stamou, Tobioka '15; Brivio, Goertz, Isidori '15; ATLAS 1802.04329, CMS 1912.01662; Duarte-Campderros, Perez, Schlaffer, Soffer '18]

 various other proposals [Yu '17, Aguilar-Saavedra, Cano, No '18, Falkowski et al. '20, Vignaroli '22]

Light quark Yukawa couplings

HL-LHC prospects for measurement of 1st and 2nd generation quark Yukawa couplings $\kappa = y_q / y_q^{SM}$

Ide Blas, Cepeda, d'Hondt et al '19]

$$|\kappa_u| \le 570$$
, $|\kappa_d| \le 270$, $|\kappa_s| \le 13$, $|\kappa_c| \le 1.2$

global fit, not completely model-independent

Alternative ways:

• Higgs kinematics: Higgs+jet transverse momentum distribution

[Bíshara Haísch, Monní, Re'16; Sorea, Zhu, Zupan '16]

Higgs decays to photon and vector mesons

[Bodwin, Pietrello, Stoynev, Velasco '13; Kagan, Perez, Pietrello, Sorea, Stoynev, Zupan '14; Alte, König, Neubert '16 ATLAS 1712.02758, CMS 2007.05122]

Charm tagging (strange tagging at lepton colliders)

[Perez, Soreq, Stamou, Tobioka '15; Brivio, Goertz, Isidori '15; ATLAS 1802.04329, CMS 1912.01662; Duarte-Campderros, Perez, Schlaffer, Soffer '18]

In this talk: explore the potential of Higgs pair production and off-shell Higgs production for constraining first generation quarks

SMEFT

$$\mathcal{L}_{SM} \supset -\, y^u_{ij} \bar{Q}^i_L \tilde{\phi} u^j_R - y^d_{ij} \bar{Q}^i_L \phi d^j_R + h \,.\, c \,. \label{eq:sm}$$

At dim-6 level the Higgs couplings to fermions are modified by the operator

$$\mathcal{L}_{dim\,6} \supset \frac{c^u_{ij}}{\Lambda^2} (\phi^\dagger \phi) \bar{Q}^i_L \tilde{\phi} u^j_R + \frac{c^d_{ij}}{\Lambda^2} (\phi^\dagger \phi) \bar{Q}^i_L \phi d^j_R + h.c.$$

mass eigenbasis:

$$\tilde{c}_{ij}^q = (V_q^L)_{ki}^* c_{kl}^q V_{lj}^R$$

couplings:

$$g_{h\bar{q}_iq_j} = \frac{m_{q_i}}{v} \delta_{ij} - \frac{v^2}{\Lambda^2} \frac{\tilde{c}_{ij}^q}{\sqrt{2}} \qquad \qquad g_{hh\bar{q}_iq_j} = -\frac{3}{2\sqrt{2}} \frac{v^2}{\Lambda^2} \tilde{c}_{ij}^q \qquad \qquad \text{direct coupling to}$$

$$g_{G_0G_0\bar{q}_iq_j} = -\frac{1}{2\sqrt{2}} \frac{v^2}{\Lambda^2} \tilde{c}_{ij}^q$$

In the following consider only flavour diagonal case.

Notation:

$$g_{h\bar{q}q} = \kappa_q g_{h\bar{q}q}^{SM} \qquad \qquad g_{hh\bar{q}q} = -\frac{3}{2} \frac{1 - \kappa_q}{v} g_{h\bar{q}q}^{SM}$$

Large light quark Yukawas

vectorlike quarks

vectorlike quark+ heavy scalar

concrete models:

2HDM with spontaneous flavour violation

vector-like quarks + flavour symmetries

[Egana-ugrinovic, Homiller, Meade '18, '19]

[Bar-Shalom, Soní '18]

Higgs pair production

Higgs pair production

Higgs pair production in SM, gluon fusion dominated by heavy quark loops

enhanced light Yukawa couplings

contribution most important for 1st generation (given the coupling limits)

Higgs pair production

cut and count analysis: $\kappa_u < 1251$, $\kappa_d < 610$

Machine learning

Can extract both light quark Yukawas and trilinear Higgs self-coupling from di-Higgs?

We use Boosted Decision Trees and a comprehensive set of kinematic variables instead of four-momenta

we are interested in interpretability of our result

$$p_T^{b_1}, p_T^{b_2}, p_T^{\gamma_1}, p_T^{\gamma\gamma}$$

$$\eta_{b_{j1}}, \eta_{b_{j_2}}, \eta_{\gamma_1}, \eta_{\gamma\gamma}$$

$$n_{bjet}, n_{jet}, \Delta R_{min}^{b\gamma}, \Delta \phi_{min}^{bb}$$

$$m_{\gamma\gamma}, m_{bb}, m_{b_1,h}, m_{b\bar{b}h}, H_T$$

To learn the shapes of the various contributions we divide into several categories:

$$Q\bar{Q}h = b\bar{b}h(h \to \gamma\gamma), t\bar{t}h(h \to \gamma\gamma)$$

 $b\bar{b}\gamma\gamma$
 $d\bar{d}hh, u\bar{u}hh$
 $hh_{tri}^{ggF}, hh_{int}^{ggF}$
 hh_{box}^{ggF}

background

background

signal for enhanced light quark couplings signal for trilinear Higgs self-coupling

background

Interpretable ML: Shapley values

measure of importance of a variable from game theory

[L.S. Shapley '51]

marginalised values

most important player

Interpretable ML: Shapley values

relative importance of the various kinematic variables for signal background discrimination

Results

 $\kappa_{\lambda} = [0.53, 1.73]$ 1 parameter fit

 κ_d

[Alasfar, RG, Grojean, Paul, Qían '22]

 $\begin{array}{c} \text{HL-LHC}\\ \text{Best Fit Point:}\\ \kappa_d = 1.0\\ \kappa_\lambda = 1.0 \end{array}$

 κ_{λ}

We performed several one-/twoand three-parameter fits

here we can see that the sensitivity on the trilinear Higgs self-coupling is diluted in twoparameter fit

Results

huge improvement over cut-and count analysis

Off-shell Higgs production

Off-shell Higgs production

Considered as probe of Higgs width

[Kauer, Passarino '12, Carla, Melniko '13, Campbell, Ellis, Willimas '13]

$$\frac{\mu_{on}}{\mu_{off}} \propto \frac{\kappa_{ggh}^2(m_h)\kappa_{hZZ}^2(m_h)}{\Gamma_h/\Gamma_h^{SM}} \frac{1}{\kappa_{ggh}^2(m_{4\ell})\kappa_{hZZ}^2(m_{4\ell})}$$

works for

$$\kappa_{ggh}(m_h) = \kappa_{ggh}(m_{4\ell})$$

CMS: $3.2^{2.4}_{-1.7}$ GeV

[CMS in Nature 18 (2022) 1392]

[Englert, (Soreq), Spannowsky '14]

$$\kappa_{hZZ}(m_h) = \kappa_{hZZ}(m_{4\ell})$$

ATLAS: 4.6^{2.6} GeV

[ATLAS-CONF-2022-068]

For enhanced light quark Yukawa couplings it does not work:

new production channel to be added, spoils the "model-independence" of width measurement

Off-shell Higgs production

Considered as probe of Higgs width

[Kauer, Passarino '12, Carla, Melniko '13, Campbell, Ellis, Willimas '13]

$$\frac{\mu_{on}}{\mu_{off}} \propto \frac{\kappa_{ggh}^2(m_h)\kappa_{hZZ}^2(m_h)}{\Gamma_h/\Gamma_h^{SM}} \frac{1}{\kappa_{ggh}^2(m_{4\ell})\kappa_{hZZ}^2(m_{4\ell})}$$

works for

$$\kappa_{ggh}(m_h) = \kappa_{ggh}(m_{4\ell})$$

CMS: $3.2^{2.4}_{-1.7}$ MeV

[CMS in Nature 18 (2022) 1392]

[Englert, (Soreq), Spannowsky '14]

$$\kappa_{hZZ}(m_h) = \kappa_{hZZ}(m_{4\ell})$$

ATLAS: $4.6^{2.6}_{-2.6}$ MeV

[ATLAS-CONF-2022-068]

For enhanced light quark Yukawa couplings it does not work:

use instead kinematic properties of off-shell production

[works nicely also for other BSM scenarios see Haisch, Koole '21 '22]

Kinematic discriminants

$$D_s^d = \log_{10} \left(\frac{P_{sig}^{d\bar{d}}}{P_{back}^{q\bar{q}} + P_{back}^{gg}} \right)$$

Poisson ratio of likelihoods

$$Z_{i} = \sqrt{2\left[\left(s_{i} + b_{i}\right)\ln\frac{\left(s_{i} + b_{i}\right)\left(b_{i} + \sigma_{b_{i}}^{2}\right)}{b_{i}^{2} + \left(s_{i} + b_{i}\right)\sigma_{b_{i}}^{2}} - \frac{b_{i}^{2}}{\sigma_{b_{i}}^{2}}\ln\left(1 + \frac{s_{i}\sigma_{b_{i}}^{2}}{b_{i}(b_{i} + \sigma_{b_{i}}^{2})}\right)\right]}$$

$$\sigma_{b_i} = \Delta_{b_i} b_i$$

Kinematic discriminants

$$D_s^d = \log_{10}\left(\frac{P_{sig}^{d\bar{d}}}{P_{back}^{q\bar{q}} + P_{back}^{gg}}\right) \qquad \qquad \text{Poisson ratio of likelihoods}$$

$$Z_i = \sqrt{2\left[(s_i + b_i)\ln\frac{(s_i + b_i)(b_i + \sigma_{b_i}^2)}{b_i^2 + (s_i + b_i)\sigma_{b_i}^2} - \frac{b_i^2}{\sigma_{b_i}^2}\ln\left(1 + \frac{s_i\sigma_{b_i}^2}{b_i(b_i + \sigma_{b_i}^2)}\right)\right]}$$

$$\sigma_{b_i} = \Delta_{b_i}b_i$$

$$\sigma_{b_i} = \Delta_{b_i}b_i$$

Conclusion

Higgs pair production: ML helps to improve on the sensitivity, possible to measure both trilinear and light quark Yukawa couplings at the HL-LHC

Off-shell Higgs: Kinematic discriminants extremely helpful to distinguish signal from background

Thanks for your attention!

Backup

Invariant mass distribution

SMEFT trilinear bounds

[Alasfar, RG, Grojean, Paul, Qían '22]

Invariant mass distribution ZZ

up Yukawa coupling

EFT validity

