Lifetimes of heavy baryons

Ivan Nišandžić

Ruđer Bošković Institute (RBI) Zagreb

Portorož 2023: Particle Physics from Early Universe to Future Colliders

11. April 2023

- Up-to-date predictions for the lifetimes of weakly decaying heavy baryons in Heavy Quark Expansion (HQE) framework
- Baryons names and their quark contents:

Single charm	Single bottom	Double charm
Λ_c^+ (cud)	Λ_b^0 (bud)	Ξ_{cc}^{++} (ccu)
Ξ_c^+ (cus)	Ξ_{b}^{0} (bus)	Ξ_{cc}^+ (ccd)
Ξ_c^0 (cds)	Ξ_b^- (bds)	Ω_{cc}^0 (ccs)
~ 0	\sim	
Ω_c^0 (css)	Ω_b^- (bss)	

Based on:

Charm mesons and single charm baryons: [2204.11935] with J. Gratrex and B. Melić

Bottom baryons:

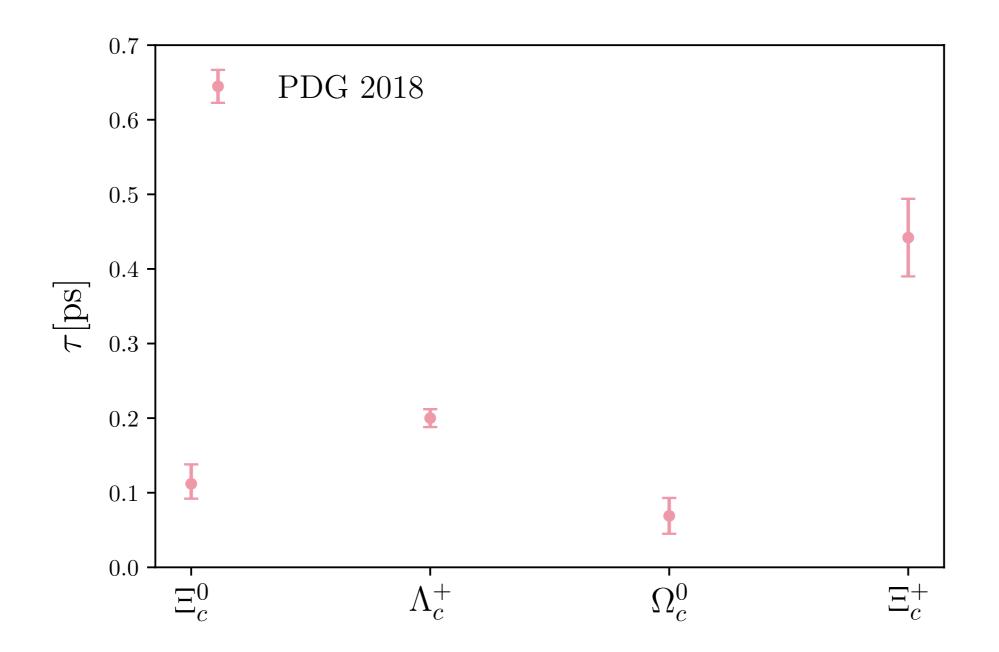
[2301.07698] with J. Gratrex, A. Lenz, B. Melić, M. L. Piscopo and A. V. Rusov

Double charm baryons:

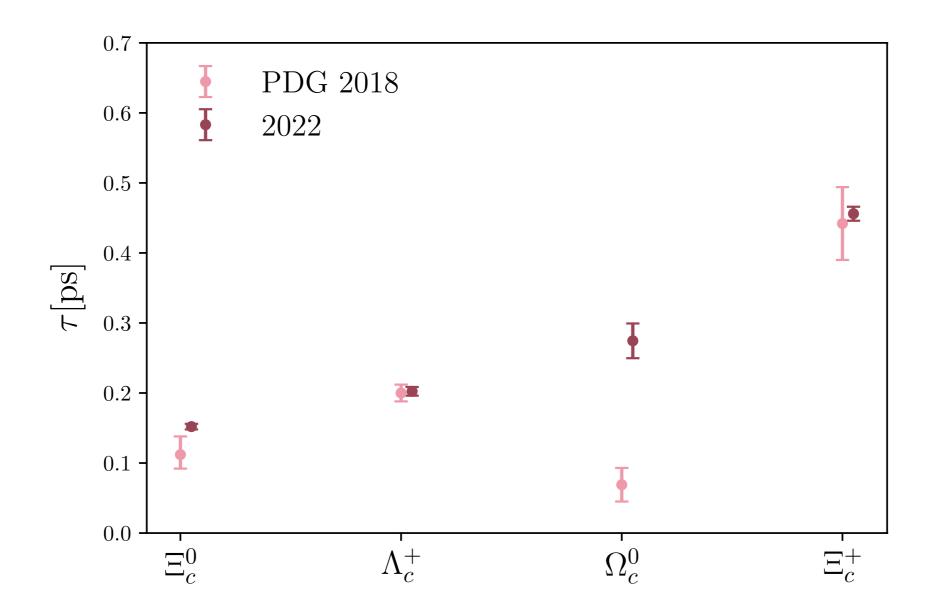
[In preparation] with L. Dulibić, J. Gratrex and B. Melić

Related analyses for heavy mesons can be found in:

[2109.13219] by D. King, A. Lenz, M.L. Piscopo, Th. Rauh, A.V.Rusov, C.Vlahos [2208.02643] by A. Lenz, M.L. Piscopo, A.V. Rusov

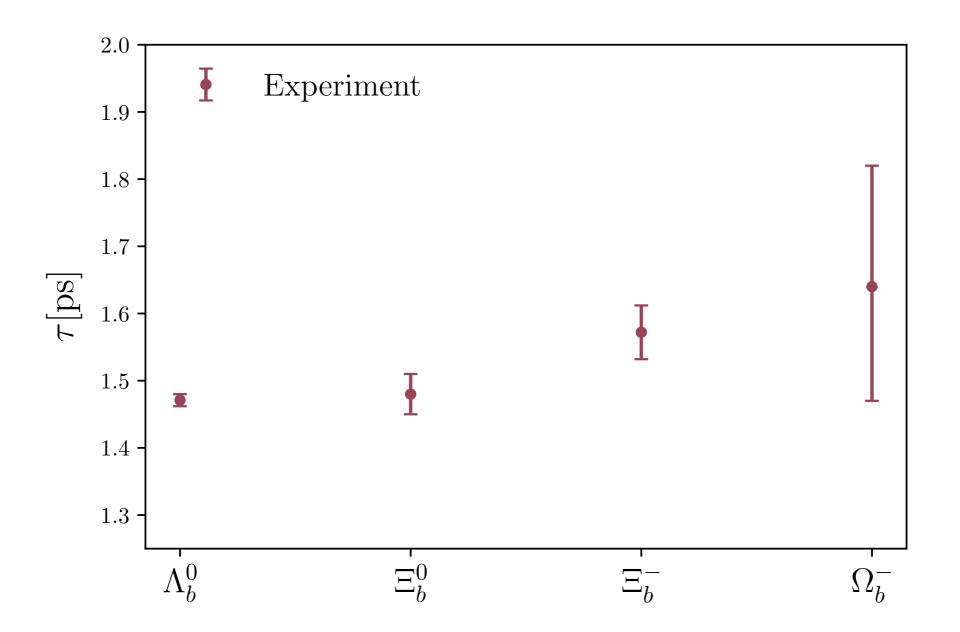

Our analyses involve:

- Implementing new Wilson coefficient for the Darwin operator
- Including radiative QCD corrections to the Wilson coefficients, where available
- Updating numerical inputs, including new estimates of non-perturbative matrix elements


Experimental status

Experimental status

c-baryon lifetimes


LHCb Update

• The latest LHCb measurements [LHCb, 1906.08350, 2109.01334] $\tau(\Omega_c)$ are four times larger than, and inconsistent with earlier findings

Experimental status

b-baryon lifetimes

Theoretical background

Theoretical Background (Heavy Quark Expansion)

 According to optical theorem the total decay width is given by the imaginary part of the forward matrix element (ME) of the transition operator

$$\Gamma_{H} = \frac{1}{2m_{H}} \Im \langle H | T | H \rangle, \qquad T = i \int d^{4}x \, T[\mathscr{H}_{eff}(x) \mathscr{H}_{eff}(0)]$$

 \mathcal{H}_{eff} denotes $\Delta C(\Delta B) = 1$ weak effective Hamiltonian.

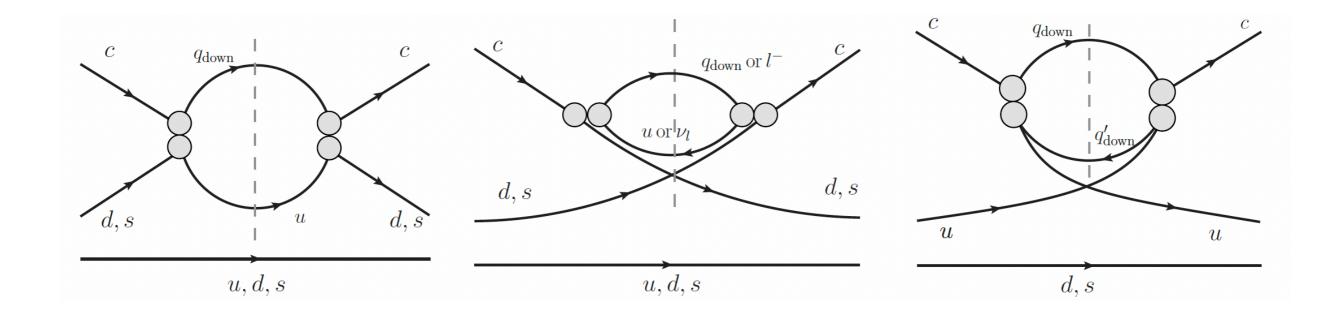
- Given $m_Q \gg \Lambda_{QCD}$, applying the Heavy Quark Expansion (HQE) in powers of $\sim \Lambda_{QCD}/m_Q$, expanding the T in a series of local operators
- The LO term arises from the decay of a free heavy quark, leading to the expectation of equal lifetimes, e.g. $\tau(\Lambda_b)/\tau(B_d) \simeq 1$.

Theoretical Background

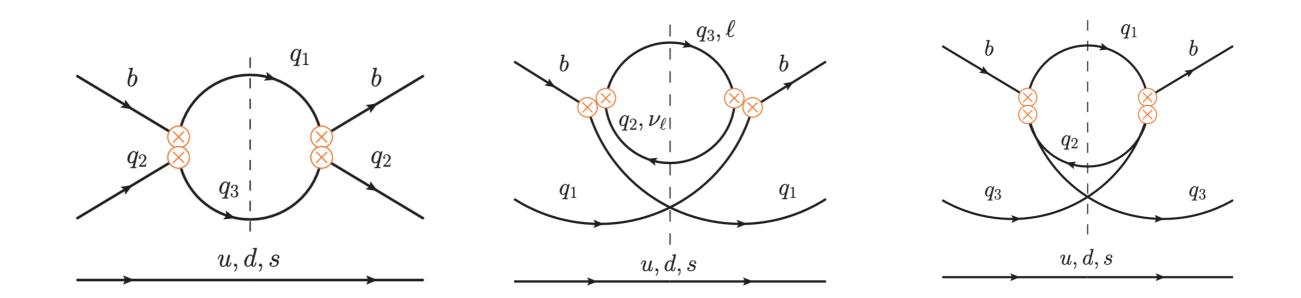
• Decay width in a schematic form:

$$\begin{split} \Gamma(H) &= \frac{G_F^2 m_Q^5}{192 \, \pi^3} \bigg[c_3 + \frac{c_\pi \mu_\pi^2 + c_G \mu_G^2}{m_Q^2} + \frac{c_\rho \rho_D^3}{m_Q^3} + \dots \\ &+ \frac{16 \pi^2}{2 m_H} \bigg(\sum_{i,q} \frac{c_{6,i}^q \langle H | \, O_i^q \, | \, H \rangle}{m_Q^3} + \frac{c_{7,i}^q \langle H | \, P_i^q \, | \, H \rangle}{m_Q^4} + \dots \bigg) \bigg] \end{split}$$

- Wilson coefficients c_i have individual perturbative α_s -expansions
- The hadronic MEs: μ_{π}^2 , μ_G^2 , ρ_D^3 , $\langle H | O_i^q | H \rangle$ are nonperturbative and depend on the hadron H
- First row in the expansion: non-spectator two-quark contributions. Universal up to small differences in values of $\mu_{\pi}^2, \mu_G^2, \rho_D^3$:


$$\begin{split} & 2M_{\mathscr{B}}\mu_{\pi}^{2}(\mathscr{B}) \equiv -\left\langle \mathscr{B} \left| \bar{Q}_{\nu}(iD_{\mu})(iD^{\mu})Q_{\nu} \right| \mathscr{B} \right\rangle, \\ & 2M_{\mathscr{B}}\mu_{G}^{2}(\mathscr{B}) \equiv \left\langle \mathscr{B} \left| \bar{Q}_{\nu}(iD_{\mu})(iD_{\nu})(-i\sigma^{\mu\nu})Q_{\nu} \right| \mathscr{B} \right\rangle, \\ & 2M_{\mathscr{B}}\rho_{D}^{3}(\mathscr{B}) \equiv \left\langle \mathscr{B} \left| \bar{Q}_{\nu}(iD_{\mu})(i\nu \cdot D)(iD^{\mu})Q_{\nu} \right| \mathscr{B} \right\rangle. \end{split}$$

Second row: spectator contributions


• Second row: MEs of four-quark operators. Dimension-6 basis:

$$\begin{aligned} O_1^q &= (\bar{c}_i \, q_i)_{V-A} (\bar{q}_j \, c_j)_{V-A} , \qquad O_2^q &= (\bar{c}_i \, q_i)_{S-P} (\bar{q}_j \, c_j)_{S+P} , \\ \tilde{O}_1^q &= (\bar{c}_i \, q_j)_{V-A} (\bar{q}_j \, c_i)_{V-A} , \qquad \tilde{O}_2^q &= (\bar{c}_i \, q_j)_{S-P} (\bar{q}_j \, c_j)_{S+P} . \end{aligned}$$

- Sensitive to light quark flavours. The primary drivers of lifetime splittings.
- Three topologies relevant for baryons: Weak Exchange, Constructive/ Destructive Pauli interference

Second row: spectator contributions

- $16\pi^2$ factor (loop enhancement) compared the two-quark contributions.
- For the charm, the spectator dimension-6 can even dominate over the 'leading' dimension-3. Compare $16\pi^2(\Lambda_{QCD}/m_c)^3 \sim 6$ to $16\pi^2(\Lambda_{QCD}/m_b)^3 \sim 0.3$
- Unlike in the case of mesons, no expectation of helicity suppression (all topologies relevant)

Matrix elements

Nonspectator MEs

- For μ_{π}^2 , μ_G^2 follow the standard approach by exploiting the HQE for a heavy hadron mass
- Chromomagnetic term for $\Omega_{c(b)}$

$$\mu_G^2(\Omega_Q) = \frac{2}{3}(m_{\Omega_Q^*}^2 - m_{\Omega_Q}^2) + \mathcal{O}(1/m_Q), \quad Q = c \text{ or } b$$

- The spin structure of the light constituents in single-heavy baryon triplet: $\mu_G^2(\mathcal{T}_Q) = 0$
- Extracting μ_{π}^2 involves combining b- and c baryons and mesons and employing more assumptions, e.g. for Λ_b

$$(\overline{M_D} - M_{\Lambda_c}) - (\overline{M_B} - M_{\Lambda_b}) = \left(\frac{1}{2m_c} - \frac{1}{2m_b}\right)(\mu_\pi^2(B) - \mu_\pi^2(\Lambda_b)) + \mathcal{O}\left(\frac{1}{m_c}, \frac{1}{m_b}\right)$$

 \overline{M}_D - spin averaged mass. $\mu_{\pi}^2(B)$ from the fit [Bordone, Capdevila, Gambino, 2107.00604]

Nonspectator MEs: Darwin

- Recently, the Darwin contribution has been evaluated for nonleptonic decays [Mannel, Moreno, Pivovarov, 2004.09485], [Lenz, Piscopo, Rusov, 2004.09527]
- Sizeable contribution for charm, $\sim 20\,\%\,$ of the dimension-three and five
- Relate the Darwin ME to those of dimension-6 via gluon field equation of motion

$$2M_{\mathscr{B}}\rho_D^3(\mathscr{B}) = g_s^2 \sum_{q=u,d,s} \langle \mathscr{B} | -\frac{1}{8}O_1^q + \frac{1}{24}\tilde{O}_1^q + \frac{1}{4}O_2^q - \frac{1}{12}\tilde{O}_2^q | \mathscr{B} \rangle + \mathcal{O}(1/m_Q)$$

- The vacuum insertion approximation (VIA) is not available for baryons
- Treat baryon four-quark matrix elements in non-relativistic constituent quark model (NRCQM) somewhat similar in spirit to the VIA
- The constituent model provides good fit of heavy hadron masses [Karliner, Rosner, 1408.5877]
- Applying such an approach to B mesons, e.g. for the estimate of the decay constant, would lead to the values not inconsistent with measurements/lattice
- The model relates the MEs to baryon wave functions at origin, e.g.

$$\frac{\langle \mathcal{T}_{b} | \mathcal{O}_{1}^{q} | \mathcal{T}_{b} \rangle}{2M_{\mathcal{T}_{b}}} = - |\psi^{\mathcal{T}_{b}}(0)|^{2}, \qquad \frac{\langle \Omega_{b} | \mathcal{O}_{1}^{q} | \Omega_{b} \rangle}{2M_{\Omega_{b}}} = - 6 |\psi^{\Omega_{b}}(0)|^{2}$$

Four-quark MEs: dimension-6

• Use constituent model to express baryon masses in terms of wave functions [Rujula, Georgi, Glashow PRD12 147 (1975)]

$$M_{\mathscr{B}} = \sum_{i} m_{i}^{\mathscr{B}} + \ldots + \sum_{i>j} \frac{16\pi \alpha_{s}}{9} \frac{\langle \vec{s}_{i} \vec{s}_{j} \rangle}{m_{i}^{\mathscr{B}} m_{j}^{\mathscr{B}}} |\psi^{\mathscr{B}}(0)|^{2}$$

Similar equations for mesons, with different spin-term prefactor, $m_i^{\mathscr{B}}$ is constituent quark masses in a baryon - values from mass spectra fits [Karliner, Rosner, 1408.5877]

• Combining these relations for the hyperfine partners (e.g. 1/2⁺ and 3/2⁺) results in the wave functions in terms of the mass splittings, e.g.

$$\frac{\langle \Xi_b^0 | \mathcal{O}_1^u | \Xi_b^0 \rangle}{2M_{\Xi_b}} = \frac{\langle \Xi_b^- | \mathcal{O}_1^d | \Xi_b^- \rangle}{2M_{\Xi_b}} = -y_{\tilde{q}} \frac{4}{3} \frac{M_{\Xi_b^*} - M_{\Xi_b'}}{M_{B^*} - M_B} | \psi^B(0) |^2$$

with $|\psi^{B_q}(0)|^2 = 1/12 F_{B_q}^2(\mu_0).$

• Going one step further in $1/m_O \rightarrow \text{dimension-7 four-quark}$ operators

$$P_1^q = m_q(\bar{Q}_i(1-\gamma_5)q_i)(\bar{q}_j(1-\gamma_5)Q_j), \quad P_2^q = \frac{1}{m_Q}(\bar{Q}_i\overleftarrow{D}_\rho\gamma_\mu(1-\gamma_5)D^\rho q_i)(\bar{q}_j\gamma^\mu(1-\gamma_5)Q_j),$$

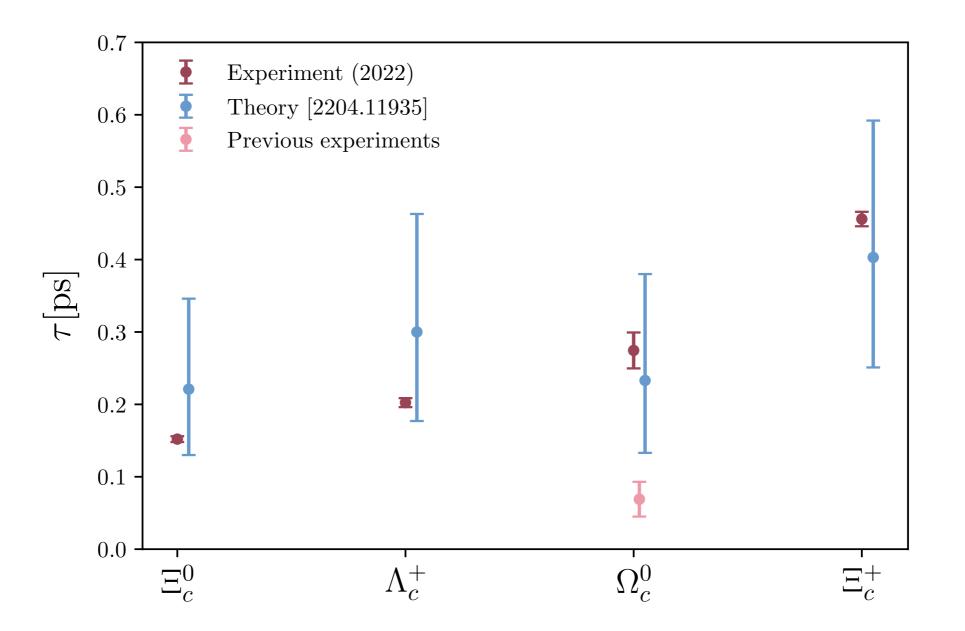
e.t.c

- Initially given in terms of QCD field Q
- Expressing them in terms of HQET field h_v introduces a proliferation of local and nonlocal terms \rightarrow unclear on how to estimate the MEs
- For b-baryons, the $1/m_b$ under control, dimension-7 as an addition to uncertainty
- For charm baryons, dimension seven is up to 50% of the dimension-6
- Constituent model relations/scaling arguments within the QCD basis, e.g.

$$\langle \mathcal{T}_c | P_1^q | \mathcal{T}_c \rangle \simeq \frac{1}{2} m_q | \psi_{cq}^{\mathcal{T}_c}(0) |^2, \qquad \langle \mathcal{T}_c | P_2^q | \mathcal{T}_c \rangle \simeq -\Lambda_{QCD} | \psi_{cq}^{\mathcal{T}_c}(0) |^2$$

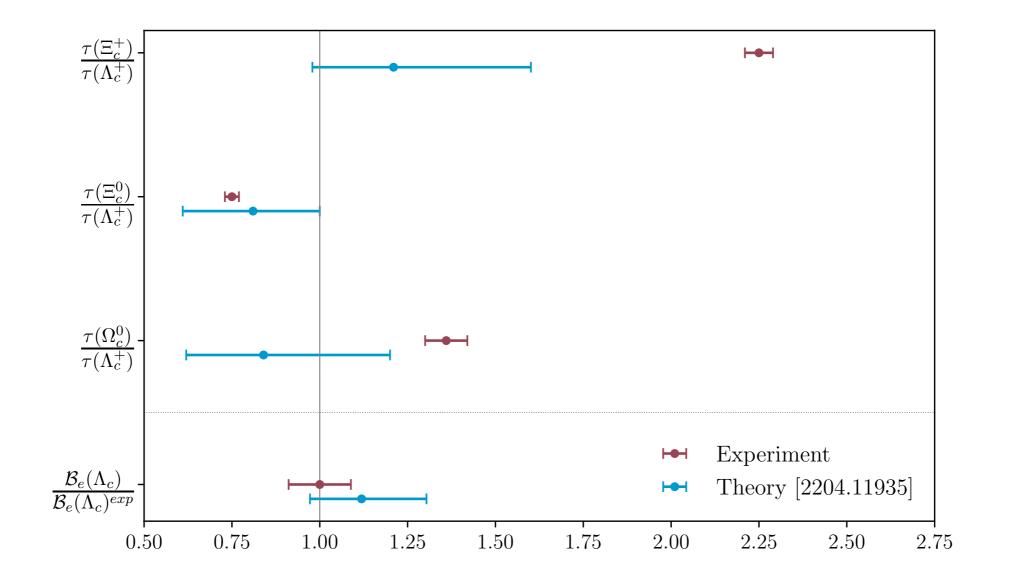
Some specifics for double-charm baryons

- A system with two c-quarks cc-pair viewed as diquark (\mathcal{D})
- Two contributions to a given ME, in the example of the mass expansion

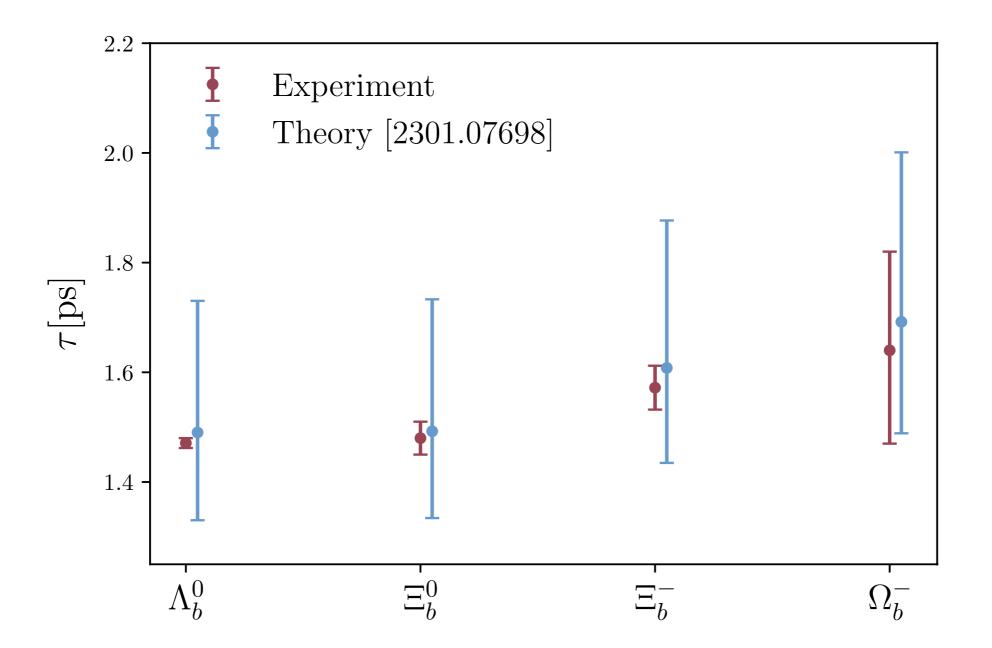

$$M_{\mathscr{B}_{cc}} = 2m_c + \bar{\Lambda} + \frac{\mu_{\pi}^2(\mathscr{B}_{cc})}{2m_c} - \frac{\mu_{G\mathscr{D}-q}^2(\mathscr{B}_{cc})}{2m_c} - \frac{\mu_{Gc-c}^2(\mathscr{B}_{cc})}{2m_c} + \dots$$

• The 'additional' *c*-*c* term accessed by NRQCD expansions, e.g. up to $\mathcal{O}(v^7)$

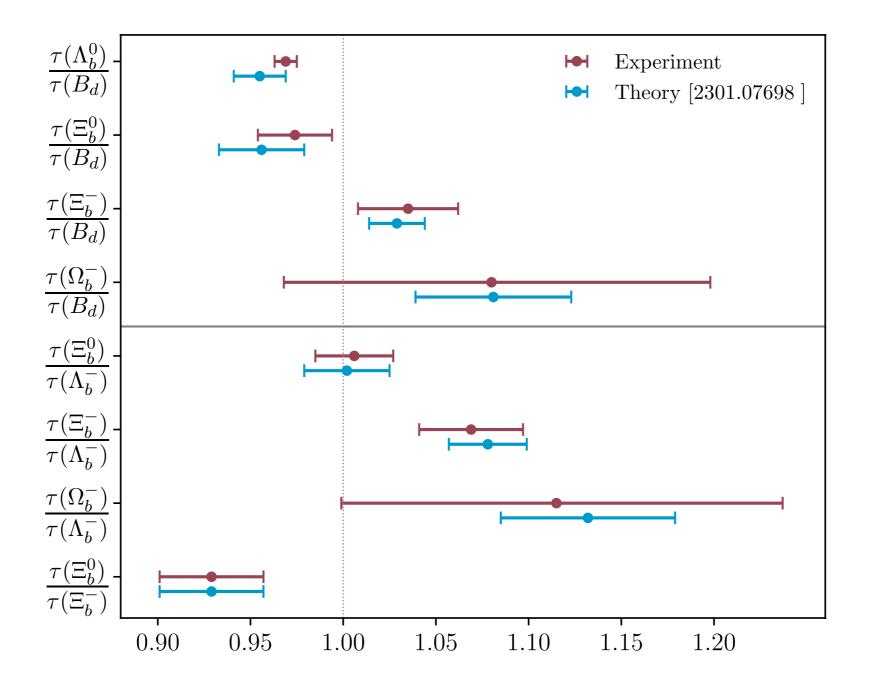
$$\overline{Q}Q = \psi_Q^{\dagger}\psi_Q - \frac{1}{2m_c^2}\psi_Q^{\dagger}(i\overrightarrow{D})^2\psi_Q - \frac{1}{2m_c^2}\psi_Q^{\dagger}(g_s\sigma \cdot B)\psi_Q$$
$$-\frac{1}{4m_c^3}\psi_Q^{\dagger}(g_s\overrightarrow{D} \cdot \overrightarrow{E})\psi_Q + \frac{3}{8}\psi_Q^{\dagger}(i\overrightarrow{D})^4\psi_Q + \dots$$


in terms of non relativistic 2-component Pauli spinor field ψ_O .

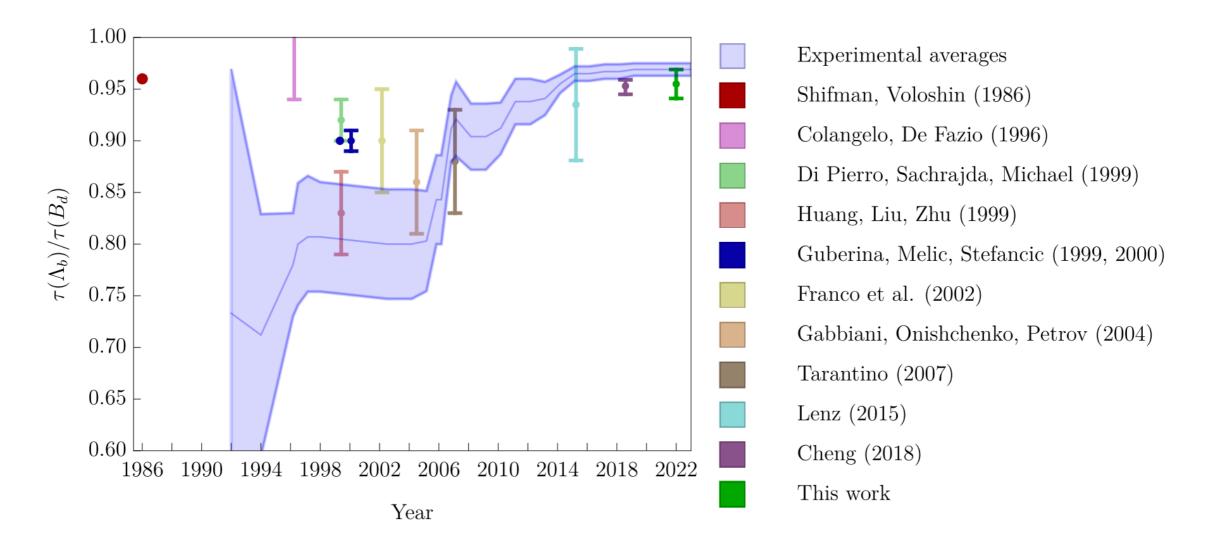
c-baryon lifetimes


 \bullet New Ω_c -lifetime result accommodated well. Sizeable theoretical uncertainties

c-baryons ratios

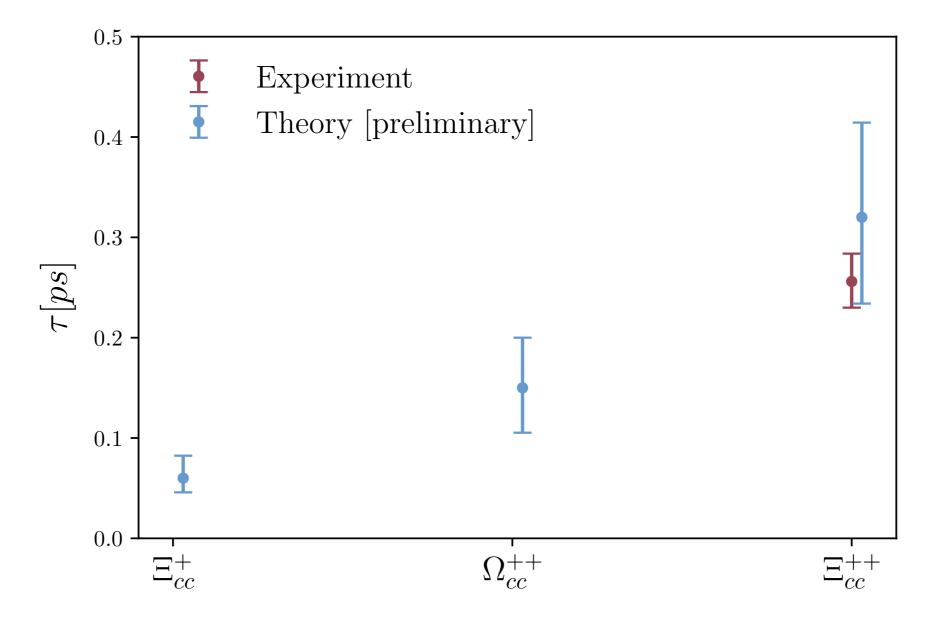

- Improved predictability of lifetime ratios due to cancellation of leading non-spectator terms
- Some tensions remain, particularly $\tau(\Xi_c^+)/\tau(\Lambda_c^+)$.

b-baryons lifetimes


• Agreement with experiments for individual lifetimes

b-baryons ratios

• Excellent agreement in all lifetime ratios


History

- Gradual historical convergence of both experimental and theoretical values
- Present day measurements compared our prediction:

$$\frac{\tau(\Lambda_b^0)}{\tau(B_d^0)}^{HQE} = 1 - (0.045 \pm 0.014), \qquad \frac{\tau(\Lambda_b^0)}{\tau(B_d^0)}^{Exp} = 1 - (0.031 \pm 0.006)$$

cc-baryons

- The measurement available for $\tau(\Xi_{cc}^{++})$ [LHCb, 1806.02744]
- Measuring Ξ_{cc}^+ and Ω_{cc}^+ with the expected LHCb Run-3 data was suggested as feasible

- Results for charm baryons broadly compatible with experiment, favouring recent LHCb result for the Ω_c -lifetime
- The question of the applicability of $1/m_c$ expansion due to slow $1/m_c$ -convergence remains open
- Question of optimal mass scheme for charm quark. E.g., the pole mass is problematic

$$m_c^{pole} = \overline{m}_c(\overline{m}_c)(1+0.16+0.15+0.21+...)$$

- For charm, we tested four mass-schemes: pole, \overline{MS} , kinetic, MSR. Effect: rearranging the α_s -expansions.
- At the *present* scale of numerical accuracy, the four schemes are not distinguishable still important technically.

- Theoretical values for lifetime ratios of b-baryons show an excellent consistency of HQE with the experimental data.
- Apart from evaluating further in $(\alpha_s, 1/m_b)$ -expansions, which would be welcome,
- it is perhaps timely to revisit lattice QCD or the sum rules evaluations of four-quark MEs.
- Apart from the exploratory study in [UKQCD (Di Pierro, Sachrajda, Michael), 9906031], no lattice determinations for the four-quark baryonic matrix elements are available. Perhaps feasible.
- An alternative approach using HQET sum rules for the four-quark baryonic matrix elements, exploratory study in [Colangelo, De Fazio, 9604425], could be revisited in the future.

Thank you!