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Motivation for three Higgs doublets
Three generations may suggest three doublets

Possibility of having a discrete symmetry and still having spontaneous CP violation

Interesting scenario for dark matter

Rich phenomenology

Motivation for imposing discrete symmetries
Symmetries reduce the number of free parameters leading to (testable) predictions

Symmetries help to control HFCNC
Example: NFC, no HFCNC due to Z_2 Symmetry (ies)
Example: MFV suppression of  HFCNC,  BGL models

Symmetries are needed to stabilise dark matter



DM in extended Scalar Sectors

Simplest extensions: (examples) 

i) One Higgs doublet and one Higgs singlet 

ii) Inert Doublet Model (IDM) (2 Higgs doublets)

Examples with three Higgs doublets: 

i) Inert-plus-two-doublet model (IDM2) 

ii) Two Inert Doublets plus One Higgs Doublet 

iii) S_3 Symmetric Three Higgs Doublet Model 

V. Silveira and A. Zee (1985)

J. McDonald, hep-ph/0702143

N. G. Deshpande and E. Ma (1978)

R. Barbieri, L. J. Hall and V. S. Rychkov (2006)

Grzadkowski, Ogreid, Osland, Pukhov, Purmohammadi, 

Pruna,       0904.2173;   1012.4680;   1302.3713;

Merchant and Sher ,   1911.06477

A. C. B. Machado and V. Pleitez, (2012), V. Keus, S. King, S. Moretti (2013), 

E. C. S. Fortes, J. Montaño, D. Sokolowska, A.Aranda, J. Hernández-Sánchez,  

P. Noriega-Papaqui, C. A. Vaquera-Araujo, A, Cordero-Cid, D. Rojas-Ciofalo



Possibility of having vacua with vanishing vevs in basis where symmetry is imposed

(different from choice of Higgs/scalar  basis) 

If a sym stabilises such a vacuum it may lead to interesting DM candidates

Symmetry must prevent couplings among DM candidates and fermions

The cases with two active Higgs doublets lead to similarities with the 2HDM

Multi-Higgs Models

Both in the Inert-plus-two-doublet model (IDM2) and in the S_3 Symmetric Model 

there is the possibility of having spontaneous CP violation



Some Specific Features of the Inert Doublet Model 

2HDM with a 

1 Introduction

The evidence for dark matter (DM) is well-established from several independent cosmological ob-
servations, including galactic rotation curves, cosmic microwave background fits of the WMAP
and PLANCK data, gravitational lensing, large scale structure of the Universe, as well as interact-
ing galaxy clusters such as the Bullet Cluster. Despite these large-scale evidences, the microscopic
nature of the DM particles remains unknown, since no experiment so far has been able to claim
their detection in the laboratory and probe their properties. Potentially, DM can be produced at
the LHC and probed in the DM direct detection (DD) underground experiments. The fundamen-
tal importance and vast experimental opportunities make the search for and investigation of DM
one of the key goals in astroparticle physics and high energy physics (HEP), worthy of the intense
efforts undertaken by the physics community.

At the other end of the length scale, the Standard Model (SM) of particle physics recently
demonstrated its vitality once again. The scalar boson with mass mH ⇡ 125 GeV found at
the LHC [1, 2] closely resembles, in all its manifestations, the SM Higgs boson. Since the SM
cannot be the ultimate theory, many constructions beyond the SM (BSM) have been put forth,
at different levels of sophistication. Yet, without direct experimental confirmation, none of them
can be named the true theory beyond the SM.

One way the particle theory community can respond to this situation is to propose simple,
fully calculable, renormalizable BSM models with viable DM candidates. We do not know yet
which of these models (if any) corresponds to reality, but all models of this kind offer an excellent
opportunity to gain insight into the intricate interplay among various astrophysical and collider
constraints. We call here these models Minimal Consistent Dark Matter (MCDM) models. MCDM
models which can be viewed as toy models, are self-consistent and can be easily be incorporated
into a bigger BSM model. Because of these attractive features, MCDM models can be considered
as the next step beyond DM Effective Field Theory (EFT) (see e.g. [3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15]) and simplified DM models (see e.g. [16, 17, 18, 19, 20, 21, 22, 23]).

In this paper, we explore, in the light of the recent collider, astroparticle and DD DM ex-
perimental data, the inert Two-Higgs Doublet Model (i2HDM), also known as the Inert doublet
model. This model is easily doable with analytic calculations, its parameter space is relatively
small and can be strongly constrained by the present and future data. The model leads to a
variety of collider signatures, and, in spite of many years of investigation, not all of them have yet
been fully and properly explored. It is the goal of the present paper to investigate in fine detail
the present constraints and the impact of the future LHC and DD DM data on the parameter
space of this model.

The i2HDM [24, 25, 26, 27] is a minimalistic extension of the SM with a second scalar doublet
�2 possessing the same quantum numbers as the SM Higgs doublet �1 but with no direct coupling
to fermions (the inert doublet). This construction is protected by the discrete Z2 symmetry under
which �2 is odd and all the other fields are even. The scalar Lagrangian is

L = |Dµ�1|
2 + |Dµ�2|

2
� V (�1, �2). (1)
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with the potential V containing all scalar interactions compatible with the Z2 symmetry:
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All free parameters here are real,1 which precludes the CP -violation in the scalar sector. There is
a large part of the parameter space, in which only the first, SM-like doublet, acquires the vacuum
expectation value (vev). In the notation h�
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The Z2 symmetry is still conserved by the vacuum state, which forbids direct coupling of any
single inert field to the SM fields and it stabilizes the lightest inert boson against decay. Pairwise
interactions of the inert scalars with the gauge-bosons and with the SM-like Higgs H are still
possible, which gives rise to various i2HDM signatures at colliders and in the DM detection
experiments.

The idea that the symmetry-protected second Higgs doublet naturally produces a scalar dark
matter candidate was first mentioned more that 30 years ago [24]. However, the real interest in
phenomenological consequences of the i2HDM woke up in mid-2000 and intensified in the last few
years. Its simplicity, predictive power, rich yet manageable parameter space, makes it an ideal
playground for checking its compatibility with the DM relic density, with the results of the direct
and indirect DM searches, and with collider searches of various BSM signals.

Assuming that the lightest inert scalar is the only DM candidate, one typically finds that the
low-mass region, below about 50 GeV, is excluded by the relic density constraints coupled with
the LHC constraints on the invisible Higgs decay [28, 29, 30]. The funnel region, with the DM
mass close to MH/2, the intermediate, 100–500 GeV, and the high mass regions are still compatible
with data and lead to interesting predictions at colliders. Additional theoretical constraints on the
parameter space and DM candidate properties can be deduced from assumptions of full stability
of the i2HDM up to the PLANCK scale [31, 32] or of multi-doublet Higgs inflation [33]. The
i2HDM can also produce signals for direct [34] and indirect DM search experiments via heavy
inert scalar annihilation, which can be detectable via �-rays [35, 36, 37] or via its neutrino [38, 39]
and cosmic-ray signals [40].

The i2HDM can also have interesting cosmological consequences. Being an example of 2HDM,
it possesses a rich vacuum structure, which evolves at high temperatures [41, 42, 43]. This opens up
the possibility within i2HDM that the early Universe, while cooling down, went through a sequence
of phase transitions including strong first-order phase transitions [44, 45, 46, 47, 48, 49, 50].
Such analyses are capable of restricting the parameter space; for example, the recent study [50]

1Even if we started with a complex �5, we could redefine the second doublet via a global phase rotation, which
would render �5 real without affecting any other part of the Lagrangian.
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This vacuum does not break the Z_2 symmetry. Furthermore, it forbids direct couplings 

of any single inert field to SM particles and stabilises the lightest inert boson against decay

Pairwise interactions of the inert scalars with the gauge bosons and with the SM like Higgs 

H are allowed. This has implications for collider signatures and detection experiments



Some Specific Features of the Inert-plus-two doublet model (IDM2) 

Weinberg Model with real couplings

Soft Symmetry breaking introduced in order to have spontaneous CP violation:

Choice of vacuum, inert doublet acquires zero vev:

With this vacuum spontaneous CP violation is not possible

Certain vacua allow for spontaneous CP violation 
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These mass values are seen to be contained as factors in the above determinants D3⇥3

and D2⇥2, with m2

a being a factor of D3⇥3 and m2

b a factor of D2⇥2. Referring back to the
CP properties of the 3⇥3 and the 2⇥2 blocks, we conclude that in the limit �1 ! 0, then
ha (mass ma) would be even under CP and hb (mass mb) would be odd. They become
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which is necessarily larger than unity. It follows from the discussion in the previous
subsection that such degenerate states would have di↵erent CP, as they must.

Finally, in the limit �1 ! 0 we find compact expressions for the non-pseudo-Goldstone
masses: From the 2⇥ 2 block
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The potential of the IDM2:

and experimental constraints which are applicable here, are (to leading order) identical to
those of the 2HDM (just because the inert doublet does not couple to fermions), there are
also important exceptions. These concern the oblique parameters T and S, the amount
of DM and the issue of positivity of the scalar potential (vacuum stability):

• The extra inert degrees of freedom transform as an SU(2) doublet, so they couple
to the vector bosons and therefore contribute to the oblique parameters, modifying
the standard 2HDM predictions.

• The neutral components of the inert doublet are candidates for DM, and since the
inert doublet couples to the 2HDM doublets, the amplitudes for DM annihilation are
in general influenced in a non-trivial way by the extension of the non-inert sector.

• Even under simplifying assumptions, the scalar potential for the 2HDM extended
by the inert doublet has a rich structure, so that the condition for positivity is much
more involved than a simple superposition of conditions needed for the 2HDM and
the IDM separately.

The paper is organized as follows. In Sec. 2 we introduce the model and define some
notation. In Sec. 3 we define some benchmarks for the inert sector, and in Sec. 4 we
present the strategy adopted to search for allowed regions in the parameter space of the
model. Secs. 5 and 6 are devoted to reviews of theoretical and experimental constraints.
In Sec. 7 we show some regions of parameters of the model that are compatible with all
the constraints, and in Sec. 8 we summarize.

Technical details on positivity, CP conservation and necessary basis transformations
are collected in appendices A, B and C.

2 Inert-plus-two-doublet model: IDM2

2.1 The potential

Introduction of two doublets, Φ1,2 leads in general to Flavor-Changing Neutral Currents
in Yukawa couplings. To avoid those one can impose an extra Z ′

2 symmetry such that
Φ1 → −Φ1 and uR → −uR (all other fields are neutral). The model then has Z2 × Z ′

2,
where the first factor is the inert-doublet Z2: η → −η (all other fields are neutral). The
potential reads
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2.3 Inert-sector mass eigenstates

Components of the inert doublet are defined as follows

η =

(

η+

(S + iA)/
√
2

)

. (2.11)

The masses of the inert scalars will be given by expressions analogous to those of [6, 9]:
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where we have introduced the abbreviations
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Adopting the simplifying assumptions (denoted “dark democracy”)

λa ≡ λ1133 = λ2233,

λb ≡ λ1331 = λ2332,

λc ≡ λ1313 = λ2323 (real), (2.14)

the masses can be written as:
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2,
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2(λb − λc)v
2. (2.15)

As a consequence of the assumptions (2.14), there are no trilinear couplings H±η∓S or
H±η∓A.

2.4 Stability of the potential

The condition for positivity of V is discussed in Appendix A for the general potential,
Eq. (2.1). In our numerical applications we will limit ourselves to the case of “dark
democracy” defined in (2.14). We find that for this special case, Eqs. (A.16) and (A.32)
must be satisfied for positivity. However, we restrict ourselves even further by requiring
V12, V3 and V123 separately to be positive. Then, in addition to the familiar constraint on
V12 [7, 10, 11] and V3, we obtain the following condition:

λa ≥ max(0,−2λb,−λb ± λc), (2.16)

implying mη < Mη± . This amounts to a strong constraint on the splitting of the inert-
sector spectrum, not present in the full treatment of positivity.

The input parameters in the inert sector are defined by specifying scalar masses
(MS,MA,Mη±) together with mη, so that the quartic couplings λa,λb and λc can be
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V (Φ1,Φ2, η) = V12(Φ1,Φ2) + V3(η) + V123(Φ1,Φ2, η) (2.1)

where
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(η†η)2, (2.3)

3

It was assumed that S is the lightest neutral scalar. S can be a good DM candidate



1 Introduction

A variety of models have been proposed in order to explain Dark Matter (DM), responsible
for around a quarter of the total mass-energy density of the Universe [1], in terms of
scalar particles. The simplest models of this kind invoke an SU(2) singlet [2, 3] or an
Inert Doublet Model (IDM) [4, 5]. Other models with additional SU(2) doublets have
been proposed and studied. Among the latter, there are some in which the DM stability
is provided by a remnant of the symmetry of the potential. Introducing additional SU(2)
doublets, see figure 1, in general leads to more flexibility in accommodating dark matter:

1. By having two non-inert doublets along with one inert doublet [6–10], which is the
case studied here;

2. By having one non-inert doublet along with two inert doublets [11–21].

R-II-1a

100 GeV
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50 GeV 500 GeV200 GeV

3HDM

SCALAR DM MASS RANGES
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3HDMCP

Z2

Z2
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Figure 1: Sketch of allowed DM mass ranges up to 1 TeV in various models. Blue:
IDM according to Refs. [22, 23], the pale region indicates a non-saturated relic density.
Red: IDM2 [9]. Ochre: three-Higgs-doublet model (3HDM) without [14, 16, 18] and with
CP violation [17]. Green: S3-symmetric 3HDM with a non-CP violating scalar sector
(R-II-1a) [10] and with a CP violating scalar sector (C-III-a).

Ideally, such models should also o↵er additional mechanisms for CP violation. An
early model of this kind was the “IDM2” [6]. It builds on three SU(2) doublets, one
of which is inert, whereas the two others basically constitute a CP-violating two-Higgs
doublet model (2HDM) [24, 25]. In the IDM2, the stability of the DM is provided by a
Z2 symmetry that is imposed ad hoc.

In a companion paper [10] we explored the possibility of having DM in models based
on a spontaneously broken S3 symmetry, and studied one of these models in detail. That
model, denoted R-II-1a [26], does accommodate dark matter, but it has a real vacuum,
and preserves CP. Here, we explore a rather similar model with real couplings, but with
a complex vacuum, referred to as C-III-a, which violates CP spontaneously.

1

[More].



[13] E. C. F. S. Fortes, A. C. B. Machado, J. Montaño and V. Pleitez, Scalar dark
matter candidates in a two inert Higgs doublet model, J. Phys. G42 (2015) 105003,
[1407.4749].

[14] V. Keus, S. F. King, S. Moretti and D. Sokolowska, Dark Matter with Two Inert
Doublets plus One Higgs Doublet, JHEP 11 (2014) 016, [1407.7859].

[15] A. Aranda, J. Hernández-Sánchez, R. Noriega-Papaqui and C. A. Vaquera-Araujo,
Yukawa textures or dark doublets from Two Higgs Doublet Models with Z3

symmetry, 1410.1194.

[16] V. Keus, S. F. King, S. Moretti and D. Sokolowska, Observable Heavy Higgs Dark
Matter, JHEP 11 (2015) 003, [1507.08433].

[17] A. Cordero-Cid, J. Hernández-Sánchez, V. Keus, S. F. King, S. Moretti, D. Rojas
et al., CP violating scalar Dark Matter, JHEP 12 (2016) 014, [1608.01673].

[18] A. Cordero, J. Hernandez-Sanchez, V. Keus, S. F. King, S. Moretti, D. Rojas et al.,
Dark Matter Signals at the LHC from a 3HDM, JHEP 05 (2018) 030, [1712.09598].

[19] A. Aranda, D. Hernández-Otero, J. Hernández-Sanchez, S. Moretti,
D. Rojas-Ciofalo and T. Shindou, The Z3 symmetric I(2+1)HDM, 1907.12470.

[20] A. Cordero-Cid, J. Hernández-Sánchez, V. Keus, S. Moretti, D. Rojas-Ciofalo and
D. Soko lowska, Collider signatures of dark CP -violation, Phys. Rev. D 101 (2020)
095023, [2002.04616].

[21] J. Hernandez-Sanchez, V. Keus, S. Moretti, D. Rojas-Ciofalo and D. Sokolowska,
Complementary Probes of Two-component Dark Matter, 2012.11621.

[22] A. Belyaev, G. Cacciapaglia, I. P. Ivanov, F. Rojas-Abatte and M. Thomas,
Anatomy of the Inert Two Higgs Doublet Model in the light of the LHC and
non-LHC Dark Matter Searches, Phys. Rev. D97 (2018) 035011, [1612.00511].

[23] J. Kalinowski, W. Kotlarski, T. Robens, D. Sokolowska and A. F. Zarnecki,
Benchmarking the Inert Doublet Model for e

+
e
� colliders, JHEP 12 (2018) 081,

[1809.07712].

[24] J. F. Gunion, H. E. Haber, G. L. Kane and S. Dawson, The Higgs Hunter’s Guide,
vol. 80. Frontiers in Physics, 2000.

[25] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher and J. P. Silva,
Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012)
1–102, [1106.0034].

[26] D. Emmanuel-Costa, O. M. Ogreid, P. Osland and M. N. Rebelo, Spontaneous
symmetry breaking in the S3-symmetric scalar sector, JHEP 02 (2016) 154,
[1601.04654].

[27] O. M. Ogreid, P. Osland and M. N. Rebelo, A Simple Method to detect spontaneous
CP Violation in multi-Higgs models, JHEP 08 (2017) 005, [1701.04768].

37

References in the figure caption of previous slide

The decay width of H1 into a pair of scalars 'i is given by

� (H1 ! 'i'j) =
2 � �ij

32⇡m
3
H1

��gH1'i'j

��2
rh

m
2
H1

�
�
m'i + m'j

�2i h
m

2
H1

�
�
m'i � m'j

�2i
,

(C.8)
with a symmetry factor (2 � �ij), where �ij is the Kronecker delta. After applying the
cuts it was found that m'2 > mH1 , and hence the invisible decay rate simplifies to

� (H1 ! '1'1) =
1

32⇡m
2
H1

|gH1'1'1 |
2
q

m
2
H1

� 4m2
'1

. (C.9)

References

[1] Planck collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological
parameters, Astron. Astrophys. 641 (2020) A6, [1807.06209].

[2] V. Silveira and A. Zee, Scalar Phantoms, Phys. Lett. 161B (1985) 136–140.

[3] J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D50 (1994)
3637–3649, [hep-ph/0702143].

[4] N. G. Deshpande and E. Ma, Pattern of Symmetry Breaking with Two Higgs
Doublets, Phys. Rev. D18 (1978) 2574.

[5] R. Barbieri, L. J. Hall and V. S. Rychkov, Improved naturalness with a heavy Higgs:
An Alternative road to LHC physics, Phys. Rev. D74 (2006) 015007,
[hep-ph/0603188].

[6] B. Grzadkowski, O. M. Ogreid and P. Osland, Natural Multi-Higgs Model with Dark
Matter and CP Violation, Phys. Rev. D80 (2009) 055013, [0904.2173].

[7] B. Grzadkowski, O. M. Ogreid, P. Osland, A. Pukhov and M. Purmohammadi,
Exploring the CP-Violating Inert-Doublet Model, JHEP 06 (2011) 003, [1012.4680].

[8] P. Osland, A. Pukhov, G. M. Pruna and M. Purmohammadi, Phenomenology of
charged scalars in the CP-Violating Inert-Doublet Model, JHEP 04 (2013) 040,
[1302.3713].

[9] M. Merchand and M. Sher, Constraints on the Parameter Space in an Inert Doublet
Model with two Active Doublets, JHEP 03 (2020) 108, [1911.06477].

[10] W. Khater, A. Kunčinas, O. M. Ogreid, P. Osland and M. N. Rebelo, Dark matter
in three-Higgs-doublet models with S3 symmetry, JHEP 01 (2022) 120,
[2108.07026].

[11] A. C. B. Machado and V. Pleitez, A model with two inert scalar doublets, Annals
Phys. 364 (2016) 53–67, [1205.0995].

[12] V. Keus, S. F. King and S. Moretti, Three-Higgs-doublet models: symmetries,
potentials and Higgs boson masses, JHEP 01 (2014) 052, [1310.8253].

36

[13] E. C. F. S. Fortes, A. C. B. Machado, J. Montaño and V. Pleitez, Scalar dark
matter candidates in a two inert Higgs doublet model, J. Phys. G42 (2015) 105003,
[1407.4749].

[14] V. Keus, S. F. King, S. Moretti and D. Sokolowska, Dark Matter with Two Inert
Doublets plus One Higgs Doublet, JHEP 11 (2014) 016, [1407.7859].

[15] A. Aranda, J. Hernández-Sánchez, R. Noriega-Papaqui and C. A. Vaquera-Araujo,
Yukawa textures or dark doublets from Two Higgs Doublet Models with Z3

symmetry, 1410.1194.

[16] V. Keus, S. F. King, S. Moretti and D. Sokolowska, Observable Heavy Higgs Dark
Matter, JHEP 11 (2015) 003, [1507.08433].

[17] A. Cordero-Cid, J. Hernández-Sánchez, V. Keus, S. F. King, S. Moretti, D. Rojas
et al., CP violating scalar Dark Matter, JHEP 12 (2016) 014, [1608.01673].

[18] A. Cordero, J. Hernandez-Sanchez, V. Keus, S. F. King, S. Moretti, D. Rojas et al.,
Dark Matter Signals at the LHC from a 3HDM, JHEP 05 (2018) 030, [1712.09598].

[19] A. Aranda, D. Hernández-Otero, J. Hernández-Sanchez, S. Moretti,
D. Rojas-Ciofalo and T. Shindou, The Z3 symmetric I(2+1)HDM, 1907.12470.

[20] A. Cordero-Cid, J. Hernández-Sánchez, V. Keus, S. Moretti, D. Rojas-Ciofalo and
D. Soko lowska, Collider signatures of dark CP -violation, Phys. Rev. D 101 (2020)
095023, [2002.04616].

[21] J. Hernandez-Sanchez, V. Keus, S. Moretti, D. Rojas-Ciofalo and D. Sokolowska,
Complementary Probes of Two-component Dark Matter, 2012.11621.

[22] A. Belyaev, G. Cacciapaglia, I. P. Ivanov, F. Rojas-Abatte and M. Thomas,
Anatomy of the Inert Two Higgs Doublet Model in the light of the LHC and
non-LHC Dark Matter Searches, Phys. Rev. D97 (2018) 035011, [1612.00511].

[23] J. Kalinowski, W. Kotlarski, T. Robens, D. Sokolowska and A. F. Zarnecki,
Benchmarking the Inert Doublet Model for e

+
e
� colliders, JHEP 12 (2018) 081,

[1809.07712].

[24] J. F. Gunion, H. E. Haber, G. L. Kane and S. Dawson, The Higgs Hunter’s Guide,
vol. 80. Frontiers in Physics, 2000.

[25] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher and J. P. Silva,
Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012)
1–102, [1106.0034].

[26] D. Emmanuel-Costa, O. M. Ogreid, P. Osland and M. N. Rebelo, Spontaneous
symmetry breaking in the S3-symmetric scalar sector, JHEP 02 (2016) 154,
[1601.04654].

[27] O. M. Ogreid, P. Osland and M. N. Rebelo, A Simple Method to detect spontaneous
CP Violation in multi-Higgs models, JHEP 08 (2017) 005, [1701.04768].

37

[13] E. C. F. S. Fortes, A. C. B. Machado, J. Montaño and V. Pleitez, Scalar dark
matter candidates in a two inert Higgs doublet model, J. Phys. G42 (2015) 105003,
[1407.4749].

[14] V. Keus, S. F. King, S. Moretti and D. Sokolowska, Dark Matter with Two Inert
Doublets plus One Higgs Doublet, JHEP 11 (2014) 016, [1407.7859].

[15] A. Aranda, J. Hernández-Sánchez, R. Noriega-Papaqui and C. A. Vaquera-Araujo,
Yukawa textures or dark doublets from Two Higgs Doublet Models with Z3

symmetry, 1410.1194.

[16] V. Keus, S. F. King, S. Moretti and D. Sokolowska, Observable Heavy Higgs Dark
Matter, JHEP 11 (2015) 003, [1507.08433].

[17] A. Cordero-Cid, J. Hernández-Sánchez, V. Keus, S. F. King, S. Moretti, D. Rojas
et al., CP violating scalar Dark Matter, JHEP 12 (2016) 014, [1608.01673].

[18] A. Cordero, J. Hernandez-Sanchez, V. Keus, S. F. King, S. Moretti, D. Rojas et al.,
Dark Matter Signals at the LHC from a 3HDM, JHEP 05 (2018) 030, [1712.09598].

[19] A. Aranda, D. Hernández-Otero, J. Hernández-Sanchez, S. Moretti,
D. Rojas-Ciofalo and T. Shindou, The Z3 symmetric I(2+1)HDM, 1907.12470.

[20] A. Cordero-Cid, J. Hernández-Sánchez, V. Keus, S. Moretti, D. Rojas-Ciofalo and
D. Soko lowska, Collider signatures of dark CP -violation, Phys. Rev. D 101 (2020)
095023, [2002.04616].

[21] J. Hernandez-Sanchez, V. Keus, S. Moretti, D. Rojas-Ciofalo and D. Sokolowska,
Complementary Probes of Two-component Dark Matter, 2012.11621.

[22] A. Belyaev, G. Cacciapaglia, I. P. Ivanov, F. Rojas-Abatte and M. Thomas,
Anatomy of the Inert Two Higgs Doublet Model in the light of the LHC and
non-LHC Dark Matter Searches, Phys. Rev. D97 (2018) 035011, [1612.00511].

[23] J. Kalinowski, W. Kotlarski, T. Robens, D. Sokolowska and A. F. Zarnecki,
Benchmarking the Inert Doublet Model for e

+
e
� colliders, JHEP 12 (2018) 081,

[1809.07712].

[24] J. F. Gunion, H. E. Haber, G. L. Kane and S. Dawson, The Higgs Hunter’s Guide,
vol. 80. Frontiers in Physics, 2000.

[25] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher and J. P. Silva,
Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012)
1–102, [1106.0034].

[26] D. Emmanuel-Costa, O. M. Ogreid, P. Osland and M. N. Rebelo, Spontaneous
symmetry breaking in the S3-symmetric scalar sector, JHEP 02 (2016) 154,
[1601.04654].

[27] O. M. Ogreid, P. Osland and M. N. Rebelo, A Simple Method to detect spontaneous
CP Violation in multi-Higgs models, JHEP 08 (2017) 005, [1701.04768].

37

[13] E. C. F. S. Fortes, A. C. B. Machado, J. Montaño and V. Pleitez, Scalar dark
matter candidates in a two inert Higgs doublet model, J. Phys. G42 (2015) 105003,
[1407.4749].

[14] V. Keus, S. F. King, S. Moretti and D. Sokolowska, Dark Matter with Two Inert
Doublets plus One Higgs Doublet, JHEP 11 (2014) 016, [1407.7859].

[15] A. Aranda, J. Hernández-Sánchez, R. Noriega-Papaqui and C. A. Vaquera-Araujo,
Yukawa textures or dark doublets from Two Higgs Doublet Models with Z3

symmetry, 1410.1194.

[16] V. Keus, S. F. King, S. Moretti and D. Sokolowska, Observable Heavy Higgs Dark
Matter, JHEP 11 (2015) 003, [1507.08433].

[17] A. Cordero-Cid, J. Hernández-Sánchez, V. Keus, S. F. King, S. Moretti, D. Rojas
et al., CP violating scalar Dark Matter, JHEP 12 (2016) 014, [1608.01673].

[18] A. Cordero, J. Hernandez-Sanchez, V. Keus, S. F. King, S. Moretti, D. Rojas et al.,
Dark Matter Signals at the LHC from a 3HDM, JHEP 05 (2018) 030, [1712.09598].

[19] A. Aranda, D. Hernández-Otero, J. Hernández-Sanchez, S. Moretti,
D. Rojas-Ciofalo and T. Shindou, The Z3 symmetric I(2+1)HDM, 1907.12470.

[20] A. Cordero-Cid, J. Hernández-Sánchez, V. Keus, S. Moretti, D. Rojas-Ciofalo and
D. Soko lowska, Collider signatures of dark CP -violation, Phys. Rev. D 101 (2020)
095023, [2002.04616].

[21] J. Hernandez-Sanchez, V. Keus, S. Moretti, D. Rojas-Ciofalo and D. Sokolowska,
Complementary Probes of Two-component Dark Matter, 2012.11621.

[22] A. Belyaev, G. Cacciapaglia, I. P. Ivanov, F. Rojas-Abatte and M. Thomas,
Anatomy of the Inert Two Higgs Doublet Model in the light of the LHC and
non-LHC Dark Matter Searches, Phys. Rev. D97 (2018) 035011, [1612.00511].

[23] J. Kalinowski, W. Kotlarski, T. Robens, D. Sokolowska and A. F. Zarnecki,
Benchmarking the Inert Doublet Model for e

+
e
� colliders, JHEP 12 (2018) 081,

[1809.07712].

[24] J. F. Gunion, H. E. Haber, G. L. Kane and S. Dawson, The Higgs Hunter’s Guide,
vol. 80. Frontiers in Physics, 2000.

[25] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher and J. P. Silva,
Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012)
1–102, [1106.0034].

[26] D. Emmanuel-Costa, O. M. Ogreid, P. Osland and M. N. Rebelo, Spontaneous
symmetry breaking in the S3-symmetric scalar sector, JHEP 02 (2016) 154,
[1601.04654].

[27] O. M. Ogreid, P. Osland and M. N. Rebelo, A Simple Method to detect spontaneous
CP Violation in multi-Higgs models, JHEP 08 (2017) 005, [1701.04768].

37

The decay width of H1 into a pair of scalars 'i is given by

� (H1 ! 'i'j) =
2 � �ij

32⇡m
3
H1

��gH1'i'j

��2
rh

m
2
H1

�
�
m'i + m'j

�2i h
m

2
H1

�
�
m'i � m'j

�2i
,

(C.8)
with a symmetry factor (2 � �ij), where �ij is the Kronecker delta. After applying the
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2.3 The potential in terms of the S3 singlet and doublet

In terms of the S3 singlet and doublet fields, the potential can be written as [2, 3, 4, 5, 6, 7]
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The two equations (2.21b) and (2.21c) are not automatically consistent.
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no symmetry under the interchange of 

however there is symmetry for  

equivalent doublet representation

Das and Dey

h1 and h2

h1 ! �h1

2 The scalar potential

S3 is the permutation group involving three objects, {�a,�b,�c}. The three dimensional representation of S3 is
not an irreducible one simply because we can easily construct a linear combination of the elements, �a+�b+�c,
which remains unaltered under the permutation of the indices. We choose to decompose the three dimensional
representation into a singlet and doublet as follows :

1 : �3 =
1p
3
(�a + �b + �c) , (1a)

2 :

✓
�1

�2

◆
=

 
1p
2
(�a � �b)

1p
6
(�a + �b � 2�c)

!
. (1b)

The elements of S3 for this particular doublet representation are given by :
✓

cos ✓ sin ✓
� sin ✓ cos ✓

◆
,

✓
cos ✓ sin ✓
sin ✓ � cos ✓

◆
, for

✓
✓ = 0,±2⇡

3

◆
. (2)

The most general renormalizable potential invariant under S3 can be written in terms of �3, �1 and �2 as
follows [27–31]:

V (�) = V2(�) + V4(�) , (3a)

where, V2(�) = µ2
1(�

†
1�1 + �†

2�2) + µ2
3�

†
3�3 , (3b)

V4(�) = �1(�
†
1�1 + �†

2�2)
2 + �2(�

†
1�2 � �†

2�1)
2 + �3

n
(�†

1�2 + �†
2�1)

2 + (�†
1�1 � �†

2�2)
2
o

+�4

n
(�†

3�1)(�
†
1�2 + �†

2�1) + (�†
3�2)(�

†
1�1 � �†

2�2) + h.c.
o

+�5(�
†
3�3)(�

†
1�1 + �†

2�2) + �6

n
(�†

3�1)(�
†
1�3) + (�†

3�2)(�
†
2�3)

o

+�7

n
(�†

3�1)(�
†
3�1) + (�†

3�2)(�
†
3�2) + h.c.

o
+ �8(�

†
3�3)

2 . (3c)

In general �4 and �7 can be complex, but we assume them to be real so that CP symmetry is not broken
explicitly. For the stability of the vacuum in the asymptotic limit we impose the requirement that there should
be no direction in the field space along which the potential becomes infinitely negative. The necessary and
su�cient conditions for this is well known in the context of two Higgs-doublet models (2HDMs) [32]. For the
potential of Eq. (3), a 2HDM equivalent situation arise if one of the doublets is made identically zero. Then
it is quite straightforward to find the following necessary conditions for the global stability in the asymptotic
limit :

�1 > 0 , (4a)

�8 > 0 , (4b)

�1 + �3 > 0 , (4c)

2�1 + (�3 � �2) > |�2 + �3| , (4d)

�5 + 2
p

�8(�1 + �3) > 0 , (4e)

�5 + �6 + 2
p

�8(�1 + �3) > 2|�7| , (4f)

�1 + �3 + �5 + �6 + 2�7 + �8 > 2|�4| . (4g)

To avoid confusion, we wish to mention that an equivalent doublet representation,
✓
�1

�2

◆
=

1p
2

✓
i 1
�i 1

◆✓
�1

�2

◆
, (5)

has also been used in the literature. In terms of this new doublet, the quartic part of the scalar potential is
written as [33–35]:

V4 =
�1

2

⇣
�†
1�1 + �†

2�2

⌘2
+

�2

2

⇣
�†
1�1 � �†

2�2

⌘2
+ �3(�

†
1�2)(�

†
2�1) +

�4

2
(�†

3�3)
2

2

✓
h1

h2

◆

now there is symmetry for 

In the special case 

�1 $ �2

�4 = 0 the potential has SO(2) symmetry: 

m2
1+ = �

⇢
2�3 sin

2 � +
1

2
(�6 + 2�7) cos

2 �

�
v2 , (13b)

with, tan� =

p
v21 + v22
v3

. (13c)

The second charged Higgs (H+
2 ) along with the massless Goldstone (!+), which will appear as the longitudinal

component of the W -boson, can be obtained by diagonalizing the remaining 2⇥ 2 block :
✓
H+

2

!+

◆
=

✓
cos� � sin�
sin� cos�

◆✓
w0+

2

w+
3

◆
with, w0+

2 = sin � w+
1 + cos � w+

2 . (14)

The mass of the second charged Higgs is given by :

m2
2+ = �1

2
(�6 + 2�7)v

2 . (15)

Similar considerations for the pseudoscalar part gives :

XM2
P
XT =

0

@
1
2m

2
A1 0 0
0 �v23�7 v3

p
v21 + v22�7

0 v3
p
v21 + v22�7 �(v21 + v22)�7

1

A , (16)

where, the pseudoscalar state (A1) with mass eigenvalue mA1 is defined as :

A1 = cos � z1 � sin � z2 , (17a)

m2
A1 = �2

�
(�2 + �3) sin

2 � + �7 cos
2 �

 
v2 , (17b)

where, tan� has already been defined in Eq. (13c). Similar to the charged part, here also the second pseudoscalar
(A2) along with the massless Goldstone (⇣) can be obtained as follows :

✓
A2

⇣

◆
=

✓
cos� � sin�
sin� cos�

◆✓
z02
z3

◆
with, z02 = sin � z1 + cos � z2 , (18a)

and, m2
A2 = �2�7v

2 . (18b)

Finally, for the CP-even part we have :

XM2
S
XT =

0

@
0 0 0
0 A0

S
�B0

S

0 �B0
S

C 0
S

1

A , (19a)

where, A0
S

= (�1 + �3)(v
2
1 + v22) , (19b)

B0
S

= �1

2
v3

q
v21 + v22(�5 + �6 + 2�7) , (19c)

C 0
S

= �8v
2
3 . (19d)

The massless state (h0), as also noted in [36], is given by :

h0 = cos � h1 � sin � h2 . (20)

But we wish to add here that the appearance of a massless scalar is not surprising. One can easily verify that
the potential of Eq. (3) has the following SO(2) symmetry for �4 = 0 :

✓
�0
1

�0
2

◆
=

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆✓
�1

�2

◆
(21)

Since SO(2) is a continuous symmetry isomorphic to U(1), a massless physical state is expected. Other two
physical scalars are obtained as follows :

✓
h
H

◆
=

✓
cos↵ � sin↵
sin↵ cos↵

◆✓
h0
2

h3

◆
with, h0

2 = sin � h1 + cos � h2 , (22a)

4

✓
h1

h2

◆✓
h0
1

h0
2

◆
= Danger: massless scalar!
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[38] J. C. Gómez-Izquierdo and M. Mondragón, B–L Model with S3 symmetry: Nearest Neighbor Interaction Textures and

Broken µ ↔ τ Symmetry, Eur. Phys. J. C 79 (2019) no.3, 285 [arXiv:1804.08746 [hep-ph]].
[39] N. Chakrabarty and I. Chakraborty, Flavour-alignment in an S3-symmetric Higgs sector and its RG-behaviour,

arXiv:1903.09388 [hep-ph].
[40] D. Das and I. Saha, Alignment limit in three Higgs-doublet models, Phys. Rev. D 100 (2019) no.3, 035021 [arXiv:1904.03970

[hep-ph]].
[41] A. C. B. Machado and V. Pleitez, A model with two inert scalar doublets, Annals Phys. 364 (2016) 53 [arXiv:1205.0995

[hep-ph]].
[42] E. C. F. S. Fortes, A. C. B. Machado, J. Montaño and V. Pleitez, Scalar dark matter candidates in a two inert Higgs

doublet model, J. Phys. G 42 (2015) no.10, 105003 [arXiv:1407.4749 [hep-ph]].
[43] C. Espinoza, E. A. Garcés, M. Mondragón and H. Reyes-González, The S3 Symmetric Model with a Dark Scalar, Phys.
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The scalar potential in terms of fields from irreducible representations

M2
13 = M2

12,

M2
23 =

1

4(v1 + 2v2)
[(4A� 2C � 2C̄)v1v2(v1 + v2)� 2Dv2(v

2
1 � v1v2 � 4v22)

+ (E2 + E3 � E1)(v
3
1 + v21v2 � 4v1v

2
2 � 2v32) + E4(�v31 + v21v2 + 4v1v

2
2 � 2v32)].

(2.19)

2.3 The potential in terms of the S3 singlet and doublet

In terms of the S3 singlet and doublet fields, the potential can be written as [2, 3, 4, 5, 6, 7]

V2 = µ2
0h

†
S
hS + µ2

1(h
†
1h1 + h†

2h2), (2.20a)

V4 = �8(h
†
S
hS)

2 + �5(h
†
S
hS)(h

†
1h1 + h†

2h2) + �1(h
†
1h1 + h†

2h2)
2

+ �2(h
†
1h2 � h†

2h1)
2 + �3[(h

†
1h1 � h†

2h2)
2 + (h†

1h2 + h†
2h1)

2]

+ �6[(h
†
S
h1)(h

†
1hS) + (h†

S
h2)(h

†
2hS)]

+ �7[(h
†
S
h1)(h

†
S
h1) + (h†

S
h2)(h

†
S
h2) + h.c.]

+ �4[(h
†
S
h1)(h

†
1h2 + h†

2h1) + (h†
S
h2)(h

†
1h1 � h†

2h2) + h.c.] (2.20b)

The vacuum conditions give µ2
0 and µ2

1 in terms of the quartic coe�cients:

µ2
0 =

1

2ṽS

⇥
�2�8ṽ

3
S
� (�5 + �6 + 2�7)(ṽ

2
1 + ṽ22)ṽS + �4(ṽ

2
2 � 3ṽ21)ṽ2

⇤
, (2.21a)

µ2
1 =

1

2

h
�(�5 + �6 + 2�7)ṽ

2
S
� 2(�1 + �3)(̃ṽ

2
1 + ṽ22)� 6�4ṽ2ṽS

i
, (2.21b)

µ2
1 =

1

2ṽ2

h
�(�5 + �6 + 2�7)ṽ2ṽ

2
S
� 2(�1 + �3)(̃ṽ

2
1 + ṽ22)ṽ2 + 3�4(ṽ

2
2 � ṽ21)ṽS

i
(2.21c)

The two equations (2.21b) and (2.21c) are not automatically consistent.
For the charged sector, the mass-squared matrix is given by

M2
11 =

1
2 [�5ṽ

2
S
+ 2�1(ṽ

2
1 + ṽ22) + 2�4ṽ2ṽS + 2�3(ṽ

2
1 � ṽ22) + 2µ2

1],

M2
22 =

1
2 [�5ṽ

2
S
+ 2�1(ṽ

2
1 + ṽ22)� 2�4ṽ2ṽS � 2�3(ṽ

2
1 � ṽ22) + 2µ2

1],

M2
SS

= 1
2 [2�8ṽ

2
S
+ �5(ṽ

2
1 + ṽ22) + 2µ2

0],

M2
12 = ṽ1(�4ṽS + 2�3ṽ2),

M2
1S = 1

2 ṽ1(2�4ṽ2 + �6ṽS + 2�7ṽS),

M2
2S = 1

2 [�4(ṽ
2
1 � ṽ22) + �6ṽ2ṽS + 2�7ṽ2ṽS]. (2.22)

For the CP-odd sector, the mass-squared matrix is given by

M2
11 =

1
2 [(�5 + �6 � 2�7)ṽ

2
S
+ 2�1(ṽ

2
1 + ṽ22)� 4�2ṽ

2
2 + 2�4ṽ2ṽS + 2�3(ṽ

2
1 � ṽ22) + 2µ2

1],

M2
22 =

1
2 [(�5 + �6 � 2�7)ṽ

2
S
+ 2�1(ṽ

2
1 + ṽ22)� 4�2ṽ

2
1 � 2�4ṽ2ṽS � 2�3(ṽ

2
1 � ṽ22) + 2µ2

1],

M2
SS

= 1
2 [2�8ṽ

2
S
+ (�5 + �6 � 2�7)(ṽ

2
1 + ṽ22) + 2µ2

0],

M2
12 = ṽ1[2(�2 + �3)ṽ2 + �4ṽS],

M2
1S = ṽ1(�4ṽ2 + 2�7ṽS),

M2
2S = 1

2 [�4(ṽ
2
1 � ṽ22) + 4�7ṽ2ṽS]. (2.23)
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2 The scalar potential

S3 is the permutation group involving three objects, {�a,�b,�c}. The three dimensional representation of S3 is
not an irreducible one simply because we can easily construct a linear combination of the elements, �a+�b+�c,
which remains unaltered under the permutation of the indices. We choose to decompose the three dimensional
representation into a singlet and doublet as follows :

1 : �3 =
1p
3
(�a + �b + �c) , (1a)

2 :

✓
�1

�2

◆
=

 
1p
2
(�a � �b)

1p
6
(�a + �b � 2�c)

!
. (1b)

The elements of S3 for this particular doublet representation are given by :
✓

cos ✓ sin ✓
� sin ✓ cos ✓

◆
,

✓
cos ✓ sin ✓
sin ✓ � cos ✓

◆
, for

✓
✓ = 0,±2⇡

3

◆
. (2)

The most general renormalizable potential invariant under S3 can be written in terms of �3, �1 and �2 as
follows [27–31]:

V (�) = V2(�) + V4(�) , (3a)

where, V2(�) = µ2
1(�

†
1�1 + �†

2�2) + µ2
3�

†
3�3 , (3b)

V4(�) = �1(�
†
1�1 + �†

2�2)
2 + �2(�

†
1�2 � �†

2�1)
2 + �3

n
(�†

1�2 + �†
2�1)

2 + (�†
1�1 � �†

2�2)
2
o

+�4

n
(�†

3�1)(�
†
1�2 + �†

2�1) + (�†
3�2)(�

†
1�1 � �†

2�2) + h.c.
o

+�5(�
†
3�3)(�

†
1�1 + �†

2�2) + �6

n
(�†

3�1)(�
†
1�3) + (�†

3�2)(�
†
2�3)

o

+�7

n
(�†

3�1)(�
†
3�1) + (�†

3�2)(�
†
3�2) + h.c.

o
+ �8(�

†
3�3)

2 . (3c)

In general �4 and �7 can be complex, but we assume them to be real so that CP symmetry is not broken
explicitly. For the stability of the vacuum in the asymptotic limit we impose the requirement that there should
be no direction in the field space along which the potential becomes infinitely negative. The necessary and
su�cient conditions for this is well known in the context of two Higgs-doublet models (2HDMs) [32]. For the
potential of Eq. (3), a 2HDM equivalent situation arise if one of the doublets is made identically zero. Then
it is quite straightforward to find the following necessary conditions for the global stability in the asymptotic
limit :

�1 > 0 , (4a)

�8 > 0 , (4b)

�1 + �3 > 0 , (4c)

2�1 + (�3 � �2) > |�2 + �3| , (4d)

�5 + 2
p

�8(�1 + �3) > 0 , (4e)

�5 + �6 + 2
p

�8(�1 + �3) > 2|�7| , (4f)

�1 + �3 + �5 + �6 + 2�7 + �8 > 2|�4| . (4g)

To avoid confusion, we wish to mention that an equivalent doublet representation,
✓
�1

�2

◆
=

1p
2

✓
i 1
�i 1

◆✓
�1

�2

◆
, (5)

has also been used in the literature. In terms of this new doublet, the quartic part of the scalar potential is
written as [33–35]:

V4 =
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2

⇣
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2
(�†
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2

2

✓
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now there is symmetry for 

In the special case 

�1 $ �2

�4 = 0 the potential has SO(2) symmetry: 

m2
1+ = �

⇢
2�3 sin

2 � +
1

2
(�6 + 2�7) cos

2 �

�
v2 , (13b)

with, tan� =

p
v21 + v22
v3

. (13c)

The second charged Higgs (H+
2 ) along with the massless Goldstone (!+), which will appear as the longitudinal

component of the W -boson, can be obtained by diagonalizing the remaining 2⇥ 2 block :
✓
H+

2

!+

◆
=

✓
cos� � sin�
sin� cos�

◆✓
w0+

2

w+
3

◆
with, w0+

2 = sin � w+
1 + cos � w+

2 . (14)

The mass of the second charged Higgs is given by :

m2
2+ = �1

2
(�6 + 2�7)v

2 . (15)

Similar considerations for the pseudoscalar part gives :

XM2
P
XT =

0

@
1
2m

2
A1 0 0
0 �v23�7 v3

p
v21 + v22�7

0 v3
p
v21 + v22�7 �(v21 + v22)�7

1

A , (16)

where, the pseudoscalar state (A1) with mass eigenvalue mA1 is defined as :

A1 = cos � z1 � sin � z2 , (17a)

m2
A1 = �2

�
(�2 + �3) sin

2 � + �7 cos
2 �

 
v2 , (17b)

where, tan� has already been defined in Eq. (13c). Similar to the charged part, here also the second pseudoscalar
(A2) along with the massless Goldstone (⇣) can be obtained as follows :

✓
A2

⇣

◆
=

✓
cos� � sin�
sin� cos�

◆✓
z02
z3

◆
with, z02 = sin � z1 + cos � z2 , (18a)

and, m2
A2 = �2�7v

2 . (18b)

Finally, for the CP-even part we have :

XM2
S
XT =

0

@
0 0 0
0 A0

S
�B0

S

0 �B0
S

C 0
S

1

A , (19a)

where, A0
S

= (�1 + �3)(v
2
1 + v22) , (19b)

B0
S

= �1

2
v3

q
v21 + v22(�5 + �6 + 2�7) , (19c)

C 0
S

= �8v
2
3 . (19d)

The massless state (h0), as also noted in [36], is given by :

h0 = cos � h1 � sin � h2 . (20)

But we wish to add here that the appearance of a massless scalar is not surprising. One can easily verify that
the potential of Eq. (3) has the following SO(2) symmetry for �4 = 0 :

✓
�0
1

�0
2

◆
=

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆✓
�1

�2

◆
(21)

Since SO(2) is a continuous symmetry isomorphic to U(1), a massless physical state is expected. Other two
physical scalars are obtained as follows :

✓
h
H

◆
=

✓
cos↵ � sin↵
sin↵ cos↵

◆✓
h0
2

h3

◆
with, h0

2 = sin � h1 + cos � h2 , (22a)
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✓
h1

h2

◆✓
h0
1

h0
2

◆
= Danger: massless scalar!

The scalar potential in terms of fields from irreducible representations

M2
13 = M2

12,

M2
23 =

1

4(v1 + 2v2)
[(4A� 2C � 2C̄)v1v2(v1 + v2)� 2Dv2(v

2
1 � v1v2 � 4v22)

+ (E2 + E3 � E1)(v
3
1 + v21v2 � 4v1v

2
2 � 2v32) + E4(�v31 + v21v2 + 4v1v

2
2 � 2v32)].

(2.19)

2.3 The potential in terms of the S3 singlet and doublet

In terms of the S3 singlet and doublet fields, the potential can be written as [2, 3, 4, 5, 6, 7]

V2 = µ2
0h

†
S
hS + µ2

1(h
†
1h1 + h†

2h2), (2.20a)

V4 = �8(h
†
S
hS)

2 + �5(h
†
S
hS)(h

†
1h1 + h†

2h2) + �1(h
†
1h1 + h†

2h2)
2

+ �2(h
†
1h2 � h†

2h1)
2 + �3[(h

†
1h1 � h†

2h2)
2 + (h†

1h2 + h†
2h1)

2]

+ �6[(h
†
S
h1)(h

†
1hS) + (h†

S
h2)(h

†
2hS)]

+ �7[(h
†
S
h1)(h

†
S
h1) + (h†

S
h2)(h

†
S
h2) + h.c.]

+ �4[(h
†
S
h1)(h

†
1h2 + h†

2h1) + (h†
S
h2)(h

†
1h1 � h†

2h2) + h.c.] (2.20b)

The vacuum conditions give µ2
0 and µ2

1 in terms of the quartic coe�cients:

µ2
0 =

1

2ṽS

⇥
�2�8ṽ

3
S
� (�5 + �6 + 2�7)(ṽ

2
1 + ṽ22)ṽS + �4(ṽ

2
2 � 3ṽ21)ṽ2

⇤
, (2.21a)

µ2
1 =

1

2

h
�(�5 + �6 + 2�7)ṽ

2
S
� 2(�1 + �3)(̃ṽ

2
1 + ṽ22)� 6�4ṽ2ṽS

i
, (2.21b)

µ2
1 =

1

2ṽ2

h
�(�5 + �6 + 2�7)ṽ2ṽ

2
S
� 2(�1 + �3)(̃ṽ

2
1 + ṽ22)ṽ2 + 3�4(ṽ

2
2 � ṽ21)ṽS

i
(2.21c)

The two equations (2.21b) and (2.21c) are not automatically consistent.
For the charged sector, the mass-squared matrix is given by

M2
11 =

1
2 [�5ṽ

2
S
+ 2�1(ṽ

2
1 + ṽ22) + 2�4ṽ2ṽS + 2�3(ṽ

2
1 � ṽ22) + 2µ2

1],

M2
22 =

1
2 [�5ṽ

2
S
+ 2�1(ṽ

2
1 + ṽ22)� 2�4ṽ2ṽS � 2�3(ṽ

2
1 � ṽ22) + 2µ2

1],

M2
SS

= 1
2 [2�8ṽ

2
S
+ �5(ṽ

2
1 + ṽ22) + 2µ2

0],

M2
12 = ṽ1(�4ṽS + 2�3ṽ2),

M2
1S = 1

2 ṽ1(2�4ṽ2 + �6ṽS + 2�7ṽS),

M2
2S = 1

2 [�4(ṽ
2
1 � ṽ22) + �6ṽ2ṽS + 2�7ṽ2ṽS]. (2.22)

For the CP-odd sector, the mass-squared matrix is given by

M2
11 =

1
2 [(�5 + �6 � 2�7)ṽ

2
S
+ 2�1(ṽ

2
1 + ṽ22)� 4�2ṽ

2
2 + 2�4ṽ2ṽS + 2�3(ṽ

2
1 � ṽ22) + 2µ2

1],

M2
22 =

1
2 [(�5 + �6 � 2�7)ṽ

2
S
+ 2�1(ṽ

2
1 + ṽ22)� 4�2ṽ

2
1 � 2�4ṽ2ṽS � 2�3(ṽ

2
1 � ṽ22) + 2µ2

1],

M2
SS

= 1
2 [2�8ṽ

2
S
+ (�5 + �6 � 2�7)(ṽ

2
1 + ṽ22) + 2µ2

0],

M2
12 = ṽ1[2(�2 + �3)ṽ2 + �4ṽS],

M2
1S = ṽ1(�4ṽ2 + 2�7ṽS),

M2
2S = 1

2 [�4(ṽ
2
1 � ṽ22) + 4�7ṽ2ṽS]. (2.23)
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no symmetry under the interchange of 

however there is symmetry for  

equivalent doublet representation

Das and Dey

h1 and h2

h1 ! �h1

2 The scalar potential

S3 is the permutation group involving three objects, {�a,�b,�c}. The three dimensional representation of S3 is
not an irreducible one simply because we can easily construct a linear combination of the elements, �a+�b+�c,
which remains unaltered under the permutation of the indices. We choose to decompose the three dimensional
representation into a singlet and doublet as follows :

1 : �3 =
1p
3
(�a + �b + �c) , (1a)

2 :

✓
�1

�2

◆
=

 
1p
2
(�a � �b)

1p
6
(�a + �b � 2�c)

!
. (1b)

The elements of S3 for this particular doublet representation are given by :
✓

cos ✓ sin ✓
� sin ✓ cos ✓

◆
,

✓
cos ✓ sin ✓
sin ✓ � cos ✓

◆
, for

✓
✓ = 0,±2⇡

3

◆
. (2)

The most general renormalizable potential invariant under S3 can be written in terms of �3, �1 and �2 as
follows [27–31]:

V (�) = V2(�) + V4(�) , (3a)

where, V2(�) = µ2
1(�

†
1�1 + �†

2�2) + µ2
3�

†
3�3 , (3b)

V4(�) = �1(�
†
1�1 + �†

2�2)
2 + �2(�

†
1�2 � �†

2�1)
2 + �3

n
(�†

1�2 + �†
2�1)

2 + (�†
1�1 � �†

2�2)
2
o

+�4

n
(�†

3�1)(�
†
1�2 + �†

2�1) + (�†
3�2)(�

†
1�1 � �†

2�2) + h.c.
o

+�5(�
†
3�3)(�

†
1�1 + �†

2�2) + �6

n
(�†

3�1)(�
†
1�3) + (�†

3�2)(�
†
2�3)

o

+�7

n
(�†

3�1)(�
†
3�1) + (�†

3�2)(�
†
3�2) + h.c.

o
+ �8(�

†
3�3)

2 . (3c)

In general �4 and �7 can be complex, but we assume them to be real so that CP symmetry is not broken
explicitly. For the stability of the vacuum in the asymptotic limit we impose the requirement that there should
be no direction in the field space along which the potential becomes infinitely negative. The necessary and
su�cient conditions for this is well known in the context of two Higgs-doublet models (2HDMs) [32]. For the
potential of Eq. (3), a 2HDM equivalent situation arise if one of the doublets is made identically zero. Then
it is quite straightforward to find the following necessary conditions for the global stability in the asymptotic
limit :

�1 > 0 , (4a)

�8 > 0 , (4b)

�1 + �3 > 0 , (4c)

2�1 + (�3 � �2) > |�2 + �3| , (4d)

�5 + 2
p

�8(�1 + �3) > 0 , (4e)

�5 + �6 + 2
p

�8(�1 + �3) > 2|�7| , (4f)

�1 + �3 + �5 + �6 + 2�7 + �8 > 2|�4| . (4g)

To avoid confusion, we wish to mention that an equivalent doublet representation,
✓
�1

�2

◆
=

1p
2

✓
i 1
�i 1

◆✓
�1

�2

◆
, (5)

has also been used in the literature. In terms of this new doublet, the quartic part of the scalar potential is
written as [33–35]:

V4 =
�1

2

⇣
�†
1�1 + �†

2�2

⌘2
+

�2

2

⇣
�†
1�1 � �†

2�2

⌘2
+ �3(�

†
1�2)(�

†
2�1) +

�4

2
(�†

3�3)
2

2

✓
h1

h2

◆

now there is symmetry for 

In the special case 

�1 $ �2

�4 = 0 the potential has SO(2) symmetry: 

m2
1+ = �

⇢
2�3 sin

2 � +
1

2
(�6 + 2�7) cos

2 �

�
v2 , (13b)

with, tan� =

p
v21 + v22
v3

. (13c)

The second charged Higgs (H+
2 ) along with the massless Goldstone (!+), which will appear as the longitudinal

component of the W -boson, can be obtained by diagonalizing the remaining 2⇥ 2 block :
✓
H+

2

!+

◆
=

✓
cos� � sin�
sin� cos�

◆✓
w0+

2

w+
3

◆
with, w0+

2 = sin � w+
1 + cos � w+

2 . (14)

The mass of the second charged Higgs is given by :

m2
2+ = �1

2
(�6 + 2�7)v

2 . (15)

Similar considerations for the pseudoscalar part gives :

XM2
P
XT =

0

@
1
2m

2
A1 0 0
0 �v23�7 v3

p
v21 + v22�7

0 v3
p
v21 + v22�7 �(v21 + v22)�7

1

A , (16)

where, the pseudoscalar state (A1) with mass eigenvalue mA1 is defined as :

A1 = cos � z1 � sin � z2 , (17a)

m2
A1 = �2

�
(�2 + �3) sin

2 � + �7 cos
2 �

 
v2 , (17b)

where, tan� has already been defined in Eq. (13c). Similar to the charged part, here also the second pseudoscalar
(A2) along with the massless Goldstone (⇣) can be obtained as follows :

✓
A2

⇣

◆
=

✓
cos� � sin�
sin� cos�

◆✓
z02
z3

◆
with, z02 = sin � z1 + cos � z2 , (18a)

and, m2
A2 = �2�7v

2 . (18b)

Finally, for the CP-even part we have :

XM2
S
XT =

0

@
0 0 0
0 A0

S
�B0

S

0 �B0
S

C 0
S

1

A , (19a)

where, A0
S

= (�1 + �3)(v
2
1 + v22) , (19b)

B0
S

= �1

2
v3

q
v21 + v22(�5 + �6 + 2�7) , (19c)

C 0
S

= �8v
2
3 . (19d)

The massless state (h0), as also noted in [36], is given by :

h0 = cos � h1 � sin � h2 . (20)

But we wish to add here that the appearance of a massless scalar is not surprising. One can easily verify that
the potential of Eq. (3) has the following SO(2) symmetry for �4 = 0 :

✓
�0
1

�0
2

◆
=

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆✓
�1

�2

◆
(21)

Since SO(2) is a continuous symmetry isomorphic to U(1), a massless physical state is expected. Other two
physical scalars are obtained as follows :

✓
h
H

◆
=

✓
cos↵ � sin↵
sin↵ cos↵

◆✓
h0
2

h3

◆
with, h0

2 = sin � h1 + cos � h2 , (22a)
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✓
h1

h2

◆✓
h0
1

h0
2

◆
= Danger: massless scalar!

Complex vacua, Spontaneous CP Violation 

Table 1: Spontaneous CP violation

Vacuum �4 SCPV Vacuum �4 SCPV Vacuum �4 SCPV
C-I-a X no C-III-f,g 0 no C-IV-c X yes
C-III-a X yes C-III-h X yes C-IV-d 0 no
C-III-b 0 no C-III-i X no C-IV-e 0 no
C-III-c 0 no C-IV-a 0 no C-IV-f X yes
C-III-d,e X no C-IV-b 0 no C-V 0 no

C-I-a

h2 $ �h2

�2 $ �3

h1 $ �h1

ej HjZZ, HjHjZ

qj HjH
+
H

�

(w1, w2, wS) = (v, 0, 0) (6)

Uijh0|�j|0i⇤ = h0|�i|0i, (7)

(ŵ1e
i�1 , ŵ2e

i�2 , wS) ! (aei�, ae�i�
, wS) (8)

h1 $ h2 (9)

(ŵ1e
i�1 , ŵ2e

i�2 , 0) ! (aei�1 , aei�2 , 0) (10)

(aei�1 , aei�2 , 0) ! (aei�, ae�i�
, 0) (11)

U =

0

@
0 1 0
1 0 0
0 0 1

1

A (12)

5

No spontaneous CP violation in any of the cases with 

Table 2: Real vacua, for the unbroken S3 case, with massless states and degeneracies
indicated. The first entry in the parenthesis refers to the charged sector, the second one
to the neutral sector.

Vacuum name �4 symmetry # massless states degeneracies

R00x R-I-1
p

none (1,2)
R0x0 R-II-2 0 SO(2) (none,1) none
Rx00 R-I-2a

p
none none

R0xy R-II-1a
p

none none
Rx0y 0 SO(2) (none,1) none
Rxy0 R-I-2b,2c

p
none none

Rxy0 R-II-3 0 SO(2) (none,1) none
Rxyz R-II-1b,1c

p
none none

Rxyz R-III 0 SO(2) (none,1) none

4 Goldstone bosons

Several of the possible vacuum solutions of the S3-symmetric potential have massless
scalars. These result from the spontaneous breakdown of accidental continuous symmetries
that arise when we impose the constraints required for the di↵erent these solutions. In ta-
bles 2 and 3 we list the number of massless scalars for each case, together with whether
or not �4 is required to be zero. For �4 = 0 the potential acquires an additional SO(2)
symmetry between the two members of the S3 doublet. When this symmetry is broken by
the vacuum, one massless scalar state appears. In some cases, �7 is also required to be
zero and the potential acquires an additional U(1) symmetry which we denote by U(1)

s
.

This corresponds to the freedom of rephasing hS independently from h1 and h2. Once
again, an additional massless scalar state appears when this symmetry is spontaneously
broken. In the C-III-c case, the condition �4 = 0 is accompanied by �2 + �3 = 0. This last
condition does not increase the symmetry. However, the fact that hS has zero vev, leads
to an additional massless state. Note that there is no vacuum which requires �2 + �3 = 0
or �7 = 0 without also having �4 = 0. In the C-V case, all of these are required to be
zero, and another U(1) symmetry arises, which we denoted by U(1)

d
, corresponding to the

independent rephasing of h1 and h2.

5 The C-III-c model without soft breaking terms

The C-III-c model has some peculiar properties. As mentioned above, it has two massless
states in the neutral sector (apart from the would-be Goldstone boson). Removing them
is the main purpose of introducing soft S3-breaking terms (in the next section). But a
more interesting property is the fact that the relative phase of the two vevs, �, is totally

6
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Constraining the potential by the vevs, real vacua

N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
2
2
3
P
_
0
1
1
6
 
v
1

The different solutions can be summarised as given in Table 1, where the descriptions
in terms of both the reducible- and irreducible-representation frameworks are given. For
the purpose of making this table as well as the corresponding one for complex vacua more
compact, we introduce the abbreviations

λa = λ5 + λ6 + 2λ7, (4.5a)

λb = λ5 + λ6 − 2λ7. (4.5b)

Table 1: Possible real vacua (partly after Derman and Tsao [21]). The classification of
vacua uses the notation R-X-y, where R means that the vacuum is real. The roman
numeral X is the number of constraints on the parameters of the potential that arise from
solving the stationary-point equations. The letter y is used for distinguishing different
vev’s that have the same X, and λa is defined in Eq. (4.5).

Vacuum ρ1, ρ2, ρ3 w1, w2, wS Comment

R-0 0, 0, 0 0, 0, 0 Not interesting

R-I-1 x, x, x 0, 0, wS µ2
0 = −λ8w2

S

R-I-2a x,−x, 0 w, 0, 0 µ2
1 = − (λ1 + λ3)w2

1

R-I-2b x, 0,−x w,
√
3w, 0 µ2

1 = −4
3 (λ1 + λ3)w2

2

R-I-2c 0, x,−x w,−
√
3w, 0 µ2

1 = −4
3 (λ1 + λ3)w2

2

R-II-1a x, x, y 0, w, wS µ2
0 =

1
2λ4

w3
2

wS
− 1

2λaw
2
2 − λ8w2

S,
µ2
1 = − (λ1 + λ3)w2

2 +
3
2λ4w2wS − 1

2λaw
2
S

R-II-1b x, y, x w,−w/
√
3, wS µ2

0 = −4λ4
w3

2

wS
− 2λaw2

2 − λ8w2
S,

µ2
1 = −4 (λ1 + λ3)w2

2 − 3λ4w2wS − 1
2λaw

2
S

R-II-1c y, x, x w,w/
√
3, wS µ2

0 = −4λ4
w3

2

wS
− 2λaw2

2 − λ8w2
S,

µ2
1 = −4 (λ1 + λ3)w2

2 − 3λ4w2wS − 1
2λaw

2
S

R-II-2 x, x,−2x 0, w, 0 µ2
1 = − (λ1 + λ3)w2

2, λ4 = 0
R-II-3 x, y,−x− y w1, w2, 0 µ2

1 = − (λ1 + λ3) (w2
1 + w2

2),λ4 = 0

R-III ρ1, ρ2, ρ3 w1, w2, wS µ2
0 = −1

2λa(w
2
1 + w2

2)− λ8w2
S,

µ2
1 = − (λ1 + λ3) (w2

1 + w2
2)− 1

2λaw
2
S,

λ4 = 0

One should note that

• Vacuum R-I-1 is a special case of Vacuum R-II-1. In this case, the vacuum value x
is determined by

λ− γ = x2[A+ C + C +D + 2E1 + E2 + E3 + E4]. (4.6)

• For Vacuum R-I-1, in the irreducible framework, we have

µ2
0 = −w2

Sλ8, (4.7)

which corresponds to Eq. (4.6), with w2
S = 3x2.
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The different solutions can be summarised as given in Table 1, where the descriptions
in terms of both the reducible- and irreducible-representation frameworks are given. For
the purpose of making this table as well as the corresponding one for complex vacua more
compact, we introduce the abbreviations

λa = λ5 + λ6 + 2λ7, (4.5a)

λb = λ5 + λ6 − 2λ7. (4.5b)

Table 1: Possible real vacua (partly after Derman and Tsao [21]). The classification of
vacua uses the notation R-X-y, where R means that the vacuum is real. The roman
numeral X is the number of constraints on the parameters of the potential that arise from
solving the stationary-point equations. The letter y is used for distinguishing different
vev’s that have the same X, and λa is defined in Eq. (4.5).

Vacuum ρ1, ρ2, ρ3 w1, w2, wS Comment

R-0 0, 0, 0 0, 0, 0 Not interesting

R-I-1 x, x, x 0, 0, wS µ2
0 = −λ8w2

S

R-I-2a x,−x, 0 w, 0, 0 µ2
1 = − (λ1 + λ3)w2

1

R-I-2b x, 0,−x w,
√
3w, 0 µ2

1 = −4
3 (λ1 + λ3)w2

2

R-I-2c 0, x,−x w,−
√
3w, 0 µ2

1 = −4
3 (λ1 + λ3)w2

2

R-II-1a x, x, y 0, w, wS µ2
0 =

1
2λ4

w3
2

wS
− 1

2λaw
2
2 − λ8w2

S,
µ2
1 = − (λ1 + λ3)w2

2 +
3
2λ4w2wS − 1

2λaw
2
S

R-II-1b x, y, x w,−w/
√
3, wS µ2

0 = −4λ4
w3

2

wS
− 2λaw2

2 − λ8w2
S,

µ2
1 = −4 (λ1 + λ3)w2

2 − 3λ4w2wS − 1
2λaw

2
S

R-II-1c y, x, x w,w/
√
3, wS µ2

0 = −4λ4
w3

2

wS
− 2λaw2

2 − λ8w2
S,

µ2
1 = −4 (λ1 + λ3)w2

2 − 3λ4w2wS − 1
2λaw

2
S

R-II-2 x, x,−2x 0, w, 0 µ2
1 = − (λ1 + λ3)w2

2, λ4 = 0
R-II-3 x, y,−x− y w1, w2, 0 µ2

1 = − (λ1 + λ3) (w2
1 + w2

2),λ4 = 0

R-III ρ1, ρ2, ρ3 w1, w2, wS µ2
0 = −1

2λa(w
2
1 + w2

2)− λ8w2
S,

µ2
1 = − (λ1 + λ3) (w2

1 + w2
2)− 1

2λaw
2
S,

λ4 = 0

One should note that

• Vacuum R-I-1 is a special case of Vacuum R-II-1. In this case, the vacuum value x
is determined by

λ− γ = x2[A+ C + C +D + 2E1 + E2 + E3 + E4]. (4.6)

• For Vacuum R-I-1, in the irreducible framework, we have

µ2
0 = −w2

Sλ8, (4.7)

which corresponds to Eq. (4.6), with w2
S = 3x2.
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Constraining the potential by the vevs, complex vacua
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Splitting this equation into real and imaginary parts, we find

(λ2 + λ3)(ŵ1 − ŵ2){1− cos[2(σ1 − σ2)]} = 0, and (5.4a)

(λ2 + λ3) sin[2(σ1 − σ2)] = 0. (5.4b)

The solutions are

λ2 + λ3 = 0, or (5.5a)

σ2 = σ1 ± nπ, n integer. (5.5b)

Table 2: Complex vacua. Notation: ε = 1 and −1 for C-III-d and C-III-e, respectively;
ξ =

√

−3 sin 2ρ1/ sin 2ρ2, ψ =
√

[3 + 3 cos(ρ2 − 2ρ1)]/(2 cos ρ2). With the constraints of
Table 4 the vacua labelled with an asterisk (∗) are in fact real.

IRF (Irreducible Rep.) RRF (Reducible Rep.)
w1, w2, wS ρ1, ρ2, ρ3

C-I-a ŵ1,±iŵ1, 0 x, xe±
2πi

3 , xe∓
2πi

3

C-III-a 0, ŵ2eiσ2 , ŵS y, y, xeiτ

C-III-b ±iŵ1, 0, ŵS x+ iy, x− iy, x
C-III-c ŵ1eiσ1 , ŵ2eiσ2 , 0 xeiρ − y

2 ,−xeiρ − y
2 , y

C-III-d,e ±iŵ1, εŵ2, ŵS xeiτ , xe−iτ , y
C-III-f ±iŵ1, iŵ2, ŵS reiρ ± ix, reiρ ∓ ix, 32re

−iρ − 1
2re

iρ

C-III-g ±iŵ1,−iŵ2, ŵS re−iρ ± ix, re−iρ ∓ ix, 32re
iρ − 1

2re
−iρ

C-III-h
√
3ŵ2eiσ2 ,±ŵ2eiσ2 , ŵS xeiτ , y, y

y, xeiτ , y

C-III-i
√

3(1+tan2 σ1)
1+9 tan2 σ1

ŵ2eiσ1 , x, yeiτ , ye−iτ

±ŵ2e−i arctan(3 tanσ1), ŵS yeiτ , x, ye−iτ

C-IV-a∗ ŵ1eiσ1 , 0, ŵS reiρ + x,−reiρ + x, x
C-IV-b ŵ1,±iŵ2, ŵS reiρ + x,−re−iρ + x,−reiρ + re−iρ + x

C-IV-c
√
1 + 2 cos2 σ2ŵ2, reiρ + r

√

3(1 + 2 cos2 ρ) + x,
ŵ2eiσ2 , ŵS reiρ − r

√

3(1 + 2 cos2 ρ) + x,−2reiρ + x
C-IV-d∗ ŵ1eiσ1 ,±ŵ2eiσ1 , ŵS r1eiρ + x, (r2 − r1)eiρ + x,−r2eiρ + x

C-IV-e
√

− sin 2σ2

sin 2σ1
ŵ2eiσ1 , reiρ2 + reiρ1ξ + x, reiρ2 − reiρ1ξ + x,

ŵ2eiσ2 , ŵS −2reiρ2 + x

C-IV-f
√

2 + cos(σ1−2σ2)
cosσ1

ŵ2eiσ1 , reiρ1 + reiρ2ψ + x,

ŵ2eiσ2 , ŵS reiρ1 − reiρ2ψ + x,−2reiρ1 + x

C-V∗ ŵ1eiσ1 , ŵ2eiσ2 , ŵS xeiτ1 , yeiτ2 , z

Likewise, the condition λ4 = 0 must be supplemented by

(λ2 + λ3)e
i(σ1+σ2)[ŵ2

1(1− e2i(σ1−σ2)) + ŵ2
2(e

−2i(σ1−σ2) − 1)]

+ λ7w
2
S(e

−i(σ1−σ2) − ei(σ1−σ2)) = 0. (5.6)
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Splitting this equation into real and imaginary parts, we find

(λ2 + λ3)(ŵ1 − ŵ2){1− cos[2(σ1 − σ2)]} = 0, and (5.4a)

(λ2 + λ3) sin[2(σ1 − σ2)] = 0. (5.4b)

The solutions are

λ2 + λ3 = 0, or (5.5a)

σ2 = σ1 ± nπ, n integer. (5.5b)

Table 2: Complex vacua. Notation: ε = 1 and −1 for C-III-d and C-III-e, respectively;
ξ =

√

−3 sin 2ρ1/ sin 2ρ2, ψ =
√

[3 + 3 cos(ρ2 − 2ρ1)]/(2 cos ρ2). With the constraints of
Table 4 the vacua labelled with an asterisk (∗) are in fact real.

IRF (Irreducible Rep.) RRF (Reducible Rep.)
w1, w2, wS ρ1, ρ2, ρ3

C-I-a ŵ1,±iŵ1, 0 x, xe±
2πi

3 , xe∓
2πi

3

C-III-a 0, ŵ2eiσ2 , ŵS y, y, xeiτ
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C-III-c ŵ1eiσ1 , ŵ2eiσ2 , 0 xeiρ − y
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2 , y

C-III-d,e ±iŵ1, εŵ2, ŵS xeiτ , xe−iτ , y
C-III-f ±iŵ1, iŵ2, ŵS reiρ ± ix, reiρ ∓ ix, 32re

−iρ − 1
2re

iρ

C-III-g ±iŵ1,−iŵ2, ŵS re−iρ ± ix, re−iρ ∓ ix, 32re
iρ − 1

2re
−iρ

C-III-h
√
3ŵ2eiσ2 ,±ŵ2eiσ2 , ŵS xeiτ , y, y

y, xeiτ , y

C-III-i
√

3(1+tan2 σ1)
1+9 tan2 σ1

ŵ2eiσ1 , x, yeiτ , ye−iτ

±ŵ2e−i arctan(3 tanσ1), ŵS yeiτ , x, ye−iτ

C-IV-a∗ ŵ1eiσ1 , 0, ŵS reiρ + x,−reiρ + x, x
C-IV-b ŵ1,±iŵ2, ŵS reiρ + x,−re−iρ + x,−reiρ + re−iρ + x

C-IV-c
√
1 + 2 cos2 σ2ŵ2, reiρ + r

√

3(1 + 2 cos2 ρ) + x,
ŵ2eiσ2 , ŵS reiρ − r

√

3(1 + 2 cos2 ρ) + x,−2reiρ + x
C-IV-d∗ ŵ1eiσ1 ,±ŵ2eiσ1 , ŵS r1eiρ + x, (r2 − r1)eiρ + x,−r2eiρ + x

C-IV-e
√

− sin 2σ2

sin 2σ1
ŵ2eiσ1 , reiρ2 + reiρ1ξ + x, reiρ2 − reiρ1ξ + x,

ŵ2eiσ2 , ŵS −2reiρ2 + x

C-IV-f
√

2 + cos(σ1−2σ2)
cosσ1

ŵ2eiσ1 , reiρ1 + reiρ2ψ + x,

ŵ2eiσ2 , ŵS reiρ1 − reiρ2ψ + x,−2reiρ1 + x

C-V∗ ŵ1eiσ1 , ŵ2eiσ2 , ŵS xeiτ1 , yeiτ2 , z

Likewise, the condition λ4 = 0 must be supplemented by

(λ2 + λ3)e
i(σ1+σ2)[ŵ2

1(1− e2i(σ1−σ2)) + ŵ2
2(e

−2i(σ1−σ2) − 1)]

+ λ7w
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S(e

−i(σ1−σ2) − ei(σ1−σ2)) = 0. (5.6)
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Table 3: Constraints on complex vacua. Notation: ε = 1 and −1 for C-III-d and C-III-e,
respectively. Where two possible signs (± or ∓) are given, they correspond to those of
Table 2. Here, λb is defined in Eq. (4.5).

Vacuum Constraints

C-I-a µ2
1 = −2 (λ1 − λ2) ŵ2

1

C-III-a µ2
0 = −1

2λbŵ
2
2 − λ8ŵ2

S,
µ2
1 = − (λ1 + λ3) ŵ2

2 − 1
2 (λb − 8 cos2 σ2λ7) ŵ2

S,
λ4 =

4 cosσ2ŵS

ŵ2
λ7

C-III-b µ2
0 = −1

2λbŵ
2
1 − λ8ŵ2

S,
µ2
1 = − (λ1 + λ3) ŵ2

1 − 1
2λbŵ

2
S,

λ4 = 0
C-III-c µ2

1 = −(λ1 + λ3)(ŵ2
1 + ŵ2

2),
λ2 + λ3 = 0,λ4 = 0

C-III-d,e µ2
0 = (λ2 + λ3)

(ŵ2
1
−ŵ2

2
)2

ŵ2
S

− ελ4
(ŵ2

1
−ŵ2

2
)(ŵ2

1
−3ŵ2

2
)

4ŵ2ŵS

−1
2 (λ5 + λ6) (ŵ2

1 + ŵ2
2)− λ8ŵ2

S,

µ2
1 = − (λ1 − λ2) (ŵ2

1 + ŵ2
2)− ελ4

ŵS(ŵ2
1
−ŵ2

2
)

4ŵ2
− 1

2 (λ5 + λ6) ŵ2
S,

λ7 =
ŵ2

1
−ŵ2

2

ŵ2
S

(λ2 + λ3)− ε (ŵ
2
1
−5ŵ2

2
)

4ŵ2ŵS
λ4

C-III-f,g µ2
0 = −1

2λb (ŵ
2
1 + ŵ2

2)− λ8ŵ2
S,

µ2
1 = − (λ1 + λ3) (ŵ2

1 + ŵ2
2)− 1

2λbŵ
2
S,λ4 = 0

C-III-h µ2
0 = −2λbŵ2

2 − λ8ŵ2
S,

µ2
1 = −4 (λ1 + λ3) ŵ2

2 − 1
2 (λb − 8 cos2 σ2λ7) ŵ2

S,
λ4 = ∓2 cosσ2ŵS

ŵ2
λ7

C-III-i µ2
0 =

16(1−3 tan2 σ1)2
(1+9 tan2 σ1)2

(λ2 + λ3)
ŵ4

2

ŵ2
S

± 6(1−tan2 σ1)(1−3 tan2 σ1)

(1+9 tan2 σ1)
3
2

λ4
ŵ3

2

ŵS

−2(1+3 tan2 σ1)
1+9 tan2 σ1

(λ5 + λ6)ŵ2
2 − λ8ŵ2

S,

µ2
1 = −4(1+3 tan2 σ1)

1+9 tan2 σ1
(λ1 − λ2)ŵ2

2 ∓
(1−3 tan2 σ1)
2
√

1+9 tan2 σ1

λ4ŵ2ŵS

−1
2(λ5 + λ6)ŵ2

S,

λ7 = −4(1−3 tan2 σ1)ŵ2
2

(1+9 tan2 σ1)ŵ2
S

(λ2 + λ3)∓
(5−3 tan2 σ1)ŵ2

2
√

1+9 tan2 σ1ŵS

λ4

h2 would allow to remove the phase of λ7, rendering all coefficients of the potential real.
Another way of achieving the same result would be by rephasing hS alone. Neither of
these transformations alters the specifications of the vacuum corresponding to this case.

Cases C-IV-a, C-IV-d and C-V are listed in Table 2 for completeness and to allow
for an enlightening discussion. Once one takes into consideration the constraints given in
Table 4 they become real.

Solution C-IV-d is more general than solution C-IV-a and reduces to C-IV-a once we
fix w2 = 0, so it suffices to discuss C-IV-d. Both of these require λ4 = 0 and λ7 = 0,
and as a result the potential acquires symmetry for the transformation of h1, h2 and hS

under a unitary transformation of the form U = diag(eiτ , eiτ , 1) which allows to remove
the phase σ1 from the vacuum, making it real.

At first glance case C-V looks like the most general case, however we are assuming
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Table 4: Constraints on complex vacua, continued. The vacua labelled with an asterisk
(∗) are in fact real.

Vacuum Constraints

C-IV-a∗ µ2
0 = −1

2 (λ5 + λ6) ŵ2
1 − λ8ŵ2

S,
µ2
1 = − (λ1 + λ3) ŵ2

1 − 1
2 (λ5 + λ6) ŵ2

S,
λ4 = 0,λ7 = 0

C-IV-b µ2
0 = (λ2 + λ3)

(ŵ2
1
−ŵ2

2)2
ŵ2

S

− 1
2 (λ5 + λ6) (ŵ2

1 + ŵ2
2)− λ8ŵ2

S,

µ2
1 = − (λ1 − λ2) (ŵ2

1 + ŵ2
2)− 1

2 (λ5 + λ6) ŵ2
S,

λ4 = 0,λ7 = −(ŵ2
1
−ŵ2

2)
ŵ2

S

(λ2 + λ3)

C-IV-c µ2
0 = 2 cos2 σ2 (1 + cos2 σ2) (λ2 + λ3)

ŵ4
2

ŵ2
S

− (1 + cos2 σ2) (λ5 + λ6) ŵ2
2 − λ8ŵ2

S,
µ2
1 = − [2 (1 + cos2 σ2)λ1 − (2 + 3 cos2 σ2)λ2 − cos2 σ2λ3] ŵ2

2

−1
2 (λ5 + λ6) ŵ2

S,

λ4 = −2 cosσ2ŵ2

ŵS
(λ2 + λ3) ,λ7 =

cos2 σ2ŵ2
2

ŵ2
S

(λ2 + λ3)

C-IV-d∗ µ2
0 = −1

2 (λ5 + λ6) (ŵ2
1 + ŵ2

2)− λ8ŵ2
S,

µ2
1 = − (λ1 + λ3) (ŵ2

1 + ŵ2
2)− 1

2 (λ5 + λ6) ŵ2
S,

λ4 = 0,λ7 = 0

C-IV-e µ2
0 =

sin2(2(σ1−σ2))
sin2(2σ1)

(λ2 + λ3)
ŵ4

2

ŵ2
S

−1
2

(

1− sin 2σ2

sin 2σ1

)

(λ5 + λ6) ŵ2
2 − λ8ŵ2

S,

µ2
1 = −

(

1− sin 2σ2

sin 2σ1

)

(λ1 − λ2) ŵ2
2 − 1

2 (λ5 + λ6) ŵ2
S,

λ4 = 0,λ7 = − sin(2(σ1−σ2))ŵ2
2

sin 2σ1ŵ2
S

(λ2 + λ3)

C-IV-f µ2
0 = − (cos(σ1−2σ2)+3 cosσ1) cos(σ2−σ1)

2 cos2 σ1
λ4

ŵ3
2

ŵS

− cos(σ1−2σ2)+3 cosσ1

2 cosσ1
(λ5 + λ6) ŵ2

2 − λ8ŵ2
S,

µ2
1 = − cos(σ1−2σ2)+3 cosσ1

cosσ1
(λ1 + λ3) ŵ2

2

−3 cos 2σ1+2 cos(2(σ1−σ2))+cos 2σ2+4
4 cos(σ1−σ2) cosσ1

λ4ŵ2ŵS − 1
2 (λ5 + λ6) ŵ2

S,

λ2 + λ3 = − cosσ1ŵS

2 cos(σ2−σ1)ŵ2
λ4,λ7 = − cos(σ2−σ1)ŵ2

2 cosσ1ŵS
λ4

C-V∗ µ2
0 = −1

2 (λ5 + λ6) (ŵ2
1 + ŵ2

2)− λ8ŵ2
S,

µ2
1 = − (λ1 + λ3) (ŵ2

1 + ŵ2
2)− 1

2 (λ5 + λ6) ŵ2
S,

λ2 + λ3 = 0,λ4 = 0,λ7 = 0

that it does not fall into any of the previous cases, so, as a result, full generality requires
λ2 + λ3 = 0, λ4 = 0 and λ7 = 0 and there is no term in the potential sensitive to
independent rephasing of each of the h fields. As a result any phase in the vevs can be
rotated away. Under these circumstances, it is equivalent to a real set of vacua.

There are, in particular, two possible complex vacua that have been discussed previ-
ously in the literature. One of them is:

ŵeiσ, ŵe−iσ, ŵS, (5.10)

by Pakvasa and Sugawara [18]. We shall refer to this as the PS vacuum, assuming ŵ "= 0

16

Constraints



 

have effectively an 8-dimensional parameter space. Where the 5 hyperplanes intersect, we
then have an 8− 5 = 3-dimensional parameter space, over which the vacuum is the same.

The requirement for the five equations to be independent is that the determinant of
the matrix A defined by:

A =













a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55













, (3.8)

should be different from zero. It can readily be verified that the coefficients of the three
parameters λ, A and (C + C) are not independent and therefore these equations cannot
be solved simultaneously for these three parameters. The terms with these coefficients
are not sensitive to the relative phases and therefore they do not appear in the equations
obtained from differentiating with respect to the phases. As a result, in order to check
this point it suffices to compute the 3× 3 determinant involving the coefficients obtained
from the first three minimisation conditions. This determinant is zero.

In the case of no spontaneous CP violation, the relative phases of the ρi are zero and the
corresponding minimisation condition, obtained from Eq. (C.3) and cyclic permutations,
reduce to 0 = 0 since each term in these equations is proportional to the sine of relative
phases. We are then left with only three independent equations and we can solve at most
for three parameters of the potential.

Returning to the complex case, we are now ready to classify the vacua, according to
how many independent equations we have. In order for the five equations to be indepen-
dent, it is sufficient that one of these 56 determinants be non-zero. Conversely, in order
for at most four of the equations to be independent, all 56 possible such 5×5 determinants
must vanish.

For arbitrary vevs,
v1, v2e

iτ2 , v3e
iτ3 , (3.9)

we find that 16 out of the 56 possible 5 × 5 determinants vanish identically, whereas
the remaining 40 are non-zero. The five equations (3.7) can for any of these choices
be solved in terms of the five parameters P1, . . . , P5, with the exception of 5-parameter
sets containing (C,C), (E2, E3), (λ, A, C) or (λ, γ, E1, E2). The complements of these
account for 14 out of the 16 vanishing ones. The remaining two are (γ, A, C, E1, E2) and
(γ, C,D,E2, E4). In these sets, C could be replaced by C, and E2 by E3.

The remaining 40 determinants factorise, and vanish when either

ρi = 0, i = 1, 2, 3 or (3.10)

ρi = ρj , j #= i. (3.11)

In these cases we can have at most 4 independent equations among the set (3.7), and
must investigate the corresponding 4× 4 sub-determinants.

In the irreducible-representation framework, since λ5 and λ6 only appear as a sum
in the minimisation conditions, we have effectively 9 parameters. Thus, we could have
(

9
5

)

= 126 different 5 × 5 determinants. However, only 19 of these are non-vanishing. In
this sense, this framework is more “compact”. Here, the following parameter sets can
not appear among the 5: (µ2

0,λ8), (µ
2
1,λ1), (λ5,λ6), (µ

2
0, µ

2
1,λ5), (µ

2
0,λ1,λ5), (µ

2
1,λ2,λ3),

8

R-I-1,              R-II-1a,              C-III-a

Symmetry that stabilises DM is a remnant which survives SSB

In all these cases w_s is different from zero, fermions only couple to 

one Higgs doublet as a result of the symmetry thus avoiding FCNCThree Higgs doublet models with S3 Symmetry

(extended to flavour)

many works aiming at explaining neutrino masses and  
leptonic mixing

a lot of work already done analysing the Higgs potential

inert dark matter candidates from S3 3HDM considered 

 Interesting open questions still remain!

Despite

Ma, Koide, Kubo, Mondragon, Rodriguez-Jauregui, Chen, Wolfenstein, Mohapatra, Nasri,
Yu, Harrison, Scott, Frigerio, Grimus, Lavoura, Branco, Silva-Marcos…  

Derman, Tsao, Pakvasa, Sugawra, Wyler, Branco, Gerard, Grimus, Das, Dey, Bhattacharyya, Leser, 
Pas, Ivanov, Nishi…  

Fortes, Machado, Montano, Pleitez…  

Harari, Haut, Weyers, Meloni, Teshima, Melic, Canales, S Salazar, Velasco-Sevilla ,…  

several works addressing masses and mixing in the quark sector 

In our cases, R-II-1a and C-III-a  only one of the three Higgs doublets is inert

R-I-1 was studied imposing 

Our Framework: 4 The R-II-1a model

4.1 Generalities

The R-II-1a vacuum is defined by [6]

{0, w2, wS}, (4.1)

and the minimisation conditions are:

µ
2

0
=

1

2
�4

w
3

2

wS

� 1

2
�aw

2

2
� �8w

2

S
, (4.2a)

µ
2

1
= � (�1 + �3) w

2

2
+

3

2
�4w2wS � 1

2
�aw

2

S
, (4.2b)

with
�a = �5 + �6 + 2�7. (4.3)

The Z2 symmetry is preserved for:

h1 ! �h1, {h2, hS} ! ±{h2, hS}. (4.4)

Hence, the inert doublet is associated with h1, as hh1i = 0.
A trivial Yukawa sector is assumed, LY ⇠ 1f ⌦ 1h, and thus the S3 singlet is solely

responsible for masses of fermions, making wS a reference point. Therefore, we define the
Higgs-basis rotation angle as:

tan � =
w2

wS

. (4.5)

After a suitable rephasing of the scalar doublets we chose wS > 0. With w2 possibly
negative, the Higgs basis rotation angle will be in the range � 2 [�⇡

2
,

⇡

2
]. Therefore, the

vevs can be parameterised as:

w2 = v sin �, wS = v cos �, w
2

2
+ w

2

S
= v

2
. (4.6)

The Higgs basis rotation is given by:

R� =
1

v

0

@
v 0 0
0 w2 wS

0 �wS w2

1

A =

0

@
1 0 0
0 cos

�
⇡

2
� �

�
sin

�
⇡

2
� �

�

0 � sin
�
⇡

2
� �

�
cos

�
⇡

2
� �

�

1

A ,

=

0

@
1 0 0
0 sin � cos �

0 � cos � sin �

1

A ,

(4.7)

so that

R�

0

@
0
w2

wS

1

A =

0

@
0
v

0

1

A . (4.8)

11

Vacuum:

• R-I-2a: (w, 0, 0)
The Yukawa sector is unrealistic.

Scalar sector: The Z2 symmetry is preserved for (h2, hS) ! �(h2, hS), or equiva-
lently this translates into h1 ! �h1, and thus we have two stabilised inert doublets.

Yukawa sector: LY ⇠ 2f ⌦ 2h results in det(Hf ) = 0. This indicates that one of the
fermion mass eigenvalues vanishes, i.e., there will be a massless fermion.

• R-I-2b,2c: (w, ±
p
3w, 0)

The S3 symmetry of the scalar potential needs to be softly broken. The Yukawa
sector is unrealistic.

Scalar sector: There is mixing present in the mass-squared matrix as �4 6= 0 and
thus DM is not stabilised. If we artificially put �4 = 0, one of the neutral states
would become massless. The DM is left stabilised only if the soft breaking term µ

2

2

together with ⌫
2

12
are introduced.

Yukawa sector: LY ⇠ 2f ⌦ 2h results in det(Hf ) = 0.

• R-II-1a: (0, w2, wS)
This case results in a viable DM candidate provided that the Yukawa sector is trivial.

Scalar sector: The DM candidate resides in h1 and thus is automatically stabilised.

Yukawa sector: LY ⇠ (2 � 1)f ⌦ (2 � 1)h can give realistic fermion masses. The
CKM matrix splits into a block-diagonal form and thus is unrealistic. However, there
is another possibility to construct the Yukawa Lagrangian of the form LY ⇠ 1f ⌦ 1h.

• R-II-2: (0, w, 0)
The S3 symmetry of the scalar potential needs to be softly broken. The Yukawa
sector is unrealistic.

Scalar sector: Due to �4 = 0, Z2 is preserved for both h1 and hS. The �4 = 0
constraint results in an additional Goldstone state. The only soft breaking term
which does not survive minimisation is ⌫

2

12
. Also, ⌫

2

02
cannot be the only soft breaking

term as then the massless state would survive. Then, the µ
2

2
and ⌫

2

01
couplings are

free parameter as those do not depend on the minimisation conditions. The coupling
⌫
2

02
would require �4 6= 0 and therefore DM is only stabilised in h1.

Yukawa sector: LY ⇠ 2f ⌦ 2h can give realistic masses. However, the CKM matrix
is split into a block-diagonal form.

• R-II-3: (w1, w2, 0)
The S3 symmetry of the scalar potential needs to be softly broken. The Yukawa
sector is unrealistic.

Scalar sector: Due to �4 = 0, Z2 is preserved for hS. An additional Goldstone boson
is present. The possible softly broken couplings are µ

2

2
and ⌫

2

12
. If µ

2

2
is the only

term present, for consistency ⌫
2

12
= 0, this would require to impose either w1 = 0 or

w2 = 0. When ⌫
2

12
is considered, it results in w1 = w2. It is also possible to have

both terms present simultaneously.

Yukawa sector: LY ⇠ 2f ⌦ 2h can give realistic fermion mass eigenvalues. However,
the CKM matrix is unrealistic and there are no free parameters to control FCNC.
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Complex generalisation C-III-a: 

The Yukawa sector results in six degrees of freedom: three from the u-type couplings
and three from the d-type couplings. In case of the model with both couplings,
r-II-3-µ2

2
-⌫2

12
, there is an additional degree of freedom in terms of the ratio between

the vevs w1 and w2.

• R-III-s: (w1, 0, wS)
This case might result in a viable DM candidate provided that the S3 symmetry of
the scalar potential is softly broken.

Scalar sector: Due to �4 = 0, Z2 is preserved for h2. An additional Goldstone
boson is present. Possible soft symmetry breaking terms are µ

2

2
and ⌫

2

01
. Both of

these couplings are unconstrained by the potential. In Ref. [6] this vacuum with w1

complex was denoted as C-IV-a and it was pointed out that the constraints made
it real, therefore there is no need for �7 to be zero.

Yukawa sector: LY ⇠ (2 � 1)f ⌦ (2 � 1)h can give realistic fermionic masses and the
CKM matrix. However, there are FCNC present in this case. In total, there are ten
Yukawa couplings and a ratio between vacuum values. Due to such high number of
free parameters it might be possible to control the overall e↵ect of FCNC. There is
also a possibility to construct the Yukawa Lagrangian of the form LY ⇠ 1f ⌦ 1h.

• C-I-a: (ŵ1, ±iŵ1, 0)
Both the scalar and Yukawa sectors are unrealistic.

Scalar sector: In order to stabilise DM in hS, we are forced to impose �4 = 0. In
general, this model results in two neutral mass-degenerate pairs. No soft symmetry
breaking terms survive and thus there are no c-I-a models.

Yukawa sector: LY ⇠ 2f ⌦ 2h can give realistic fermion masses. However, the CKM
matrix is split into a block-diagonal form.

• C-III-a: (0, ŵ2ei�2, ŵS)
This case might result in a viable DM candidate provided that the Yukawa sector
is trivial.

Scalar sector: The DM candidate resides in h1 and thus is automatically stabilised.

Yukawa sector: LY ⇠ (2 � 1)f ⌦ (2 � 1)h can give realistic fermion masses. How-
ever, the CKM matrix is split into a block-diagonal form. Another possibility is to
construct the Yukawa Lagrangian of the form LY ⇠ 1f ⌦ 1h.

• C-III-b: (±iŵ1, 0, ŵS)
This case might result in a viable DM candidate provided that the S3 symmetry of
the potential is softly broken.

Scalar sector: Due to �4 = 0, DM is stabilised in h2. An additional Goldstone boson
is present. The only possible soft symmetry breaking term is µ

2

2
.

Yukawa sector: LY ⇠ (2 � 1)f ⌦ (2 � 1)h results in realistic fermion masses and
CKM matrix. This model has eleven free parameters. FCNC are present. Another
possibility is to construct the Yukawa Lagrangian of the form LY ⇠ 1f ⌦ 1h.

• C-III-c: (ŵ1ei�1, ŵ2ei�2, 0)
The S3 symmetry of the scalar potential needs to be softly broken. The Yukawa
sector is most likely unrealistic.
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4 The R-II-1a model

4.1 Generalities

The R-II-1a vacuum is defined by [6]

{0, w2, wS}, (4.1)

and the minimisation conditions are:
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with
�a = �5 + �6 + 2�7. (4.3)

The Z2 symmetry is preserved for:

h1 ! �h1, {h2, hS} ! ±{h2, hS}. (4.4)

Hence, the inert doublet is associated with h1, as hh1i = 0.
A trivial Yukawa sector is assumed, LY ⇠ 1f ⌦ 1h, and thus the S3 singlet is solely

responsible for masses of fermions, making wS a reference point. Therefore, we define the
Higgs-basis rotation angle as:

tan � =
w2

wS

. (4.5)

After a suitable rephasing of the scalar doublets we chose wS > 0. With w2 possibly
negative, the Higgs basis rotation angle will be in the range � 2 [�⇡

2
,

⇡

2
]. Therefore, the

vevs can be parameterised as:

w2 = v sin �, wS = v cos �, w
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. (4.6)

The Higgs basis rotation is given by:
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We choose the fermions to transform trivially under S3
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Vacuum:

• R-I-2a: (w, 0, 0)
The Yukawa sector is unrealistic.

Scalar sector: The Z2 symmetry is preserved for (h2, hS) ! �(h2, hS), or equiva-
lently this translates into h1 ! �h1, and thus we have two stabilised inert doublets.

Yukawa sector: LY ⇠ 2f ⌦ 2h results in det(Hf ) = 0. This indicates that one of the
fermion mass eigenvalues vanishes, i.e., there will be a massless fermion.

• R-I-2b,2c: (w, ±
p
3w, 0)

The S3 symmetry of the scalar potential needs to be softly broken. The Yukawa
sector is unrealistic.

Scalar sector: There is mixing present in the mass-squared matrix as �4 6= 0 and
thus DM is not stabilised. If we artificially put �4 = 0, one of the neutral states
would become massless. The DM is left stabilised only if the soft breaking term µ

2

2

together with ⌫
2

12
are introduced.

Yukawa sector: LY ⇠ 2f ⌦ 2h results in det(Hf ) = 0.

• R-II-1a: (0, w2, wS)
This case results in a viable DM candidate provided that the Yukawa sector is trivial.

Scalar sector: The DM candidate resides in h1 and thus is automatically stabilised.

Yukawa sector: LY ⇠ (2 � 1)f ⌦ (2 � 1)h can give realistic fermion masses. The
CKM matrix splits into a block-diagonal form and thus is unrealistic. However, there
is another possibility to construct the Yukawa Lagrangian of the form LY ⇠ 1f ⌦ 1h.

• R-II-2: (0, w, 0)
The S3 symmetry of the scalar potential needs to be softly broken. The Yukawa
sector is unrealistic.

Scalar sector: Due to �4 = 0, Z2 is preserved for both h1 and hS. The �4 = 0
constraint results in an additional Goldstone state. The only soft breaking term
which does not survive minimisation is ⌫

2

12
. Also, ⌫

2

02
cannot be the only soft breaking

term as then the massless state would survive. Then, the µ
2

2
and ⌫

2

01
couplings are

free parameter as those do not depend on the minimisation conditions. The coupling
⌫
2

02
would require �4 6= 0 and therefore DM is only stabilised in h1.

Yukawa sector: LY ⇠ 2f ⌦ 2h can give realistic masses. However, the CKM matrix
is split into a block-diagonal form.

• R-II-3: (w1, w2, 0)
The S3 symmetry of the scalar potential needs to be softly broken. The Yukawa
sector is unrealistic.

Scalar sector: Due to �4 = 0, Z2 is preserved for hS. An additional Goldstone boson
is present. The possible softly broken couplings are µ

2

2
and ⌫

2

12
. If µ

2

2
is the only

term present, for consistency ⌫
2

12
= 0, this would require to impose either w1 = 0 or

w2 = 0. When ⌫
2

12
is considered, it results in w1 = w2. It is also possible to have

both terms present simultaneously.

Yukawa sector: LY ⇠ 2f ⌦ 2h can give realistic fermion mass eigenvalues. However,
the CKM matrix is unrealistic and there are no free parameters to control FCNC.
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Complex generalisation C-III-a: 

The Yukawa sector results in six degrees of freedom: three from the u-type couplings
and three from the d-type couplings. In case of the model with both couplings,
r-II-3-µ2

2
-⌫2

12
, there is an additional degree of freedom in terms of the ratio between

the vevs w1 and w2.

• R-III-s: (w1, 0, wS)
This case might result in a viable DM candidate provided that the S3 symmetry of
the scalar potential is softly broken.

Scalar sector: Due to �4 = 0, Z2 is preserved for h2. An additional Goldstone
boson is present. Possible soft symmetry breaking terms are µ

2

2
and ⌫

2

01
. Both of

these couplings are unconstrained by the potential. In Ref. [6] this vacuum with w1

complex was denoted as C-IV-a and it was pointed out that the constraints made
it real, therefore there is no need for �7 to be zero.

Yukawa sector: LY ⇠ (2 � 1)f ⌦ (2 � 1)h can give realistic fermionic masses and the
CKM matrix. However, there are FCNC present in this case. In total, there are ten
Yukawa couplings and a ratio between vacuum values. Due to such high number of
free parameters it might be possible to control the overall e↵ect of FCNC. There is
also a possibility to construct the Yukawa Lagrangian of the form LY ⇠ 1f ⌦ 1h.

• C-I-a: (ŵ1, ±iŵ1, 0)
Both the scalar and Yukawa sectors are unrealistic.

Scalar sector: In order to stabilise DM in hS, we are forced to impose �4 = 0. In
general, this model results in two neutral mass-degenerate pairs. No soft symmetry
breaking terms survive and thus there are no c-I-a models.

Yukawa sector: LY ⇠ 2f ⌦ 2h can give realistic fermion masses. However, the CKM
matrix is split into a block-diagonal form.

• C-III-a: (0, ŵ2ei�2, ŵS)
This case might result in a viable DM candidate provided that the Yukawa sector
is trivial.

Scalar sector: The DM candidate resides in h1 and thus is automatically stabilised.

Yukawa sector: LY ⇠ (2 � 1)f ⌦ (2 � 1)h can give realistic fermion masses. How-
ever, the CKM matrix is split into a block-diagonal form. Another possibility is to
construct the Yukawa Lagrangian of the form LY ⇠ 1f ⌦ 1h.

• C-III-b: (±iŵ1, 0, ŵS)
This case might result in a viable DM candidate provided that the S3 symmetry of
the potential is softly broken.

Scalar sector: Due to �4 = 0, DM is stabilised in h2. An additional Goldstone boson
is present. The only possible soft symmetry breaking term is µ

2

2
.

Yukawa sector: LY ⇠ (2 � 1)f ⌦ (2 � 1)h results in realistic fermion masses and
CKM matrix. This model has eleven free parameters. FCNC are present. Another
possibility is to construct the Yukawa Lagrangian of the form LY ⇠ 1f ⌦ 1h.

• C-III-c: (ŵ1ei�1, ŵ2ei�2, 0)
The S3 symmetry of the scalar potential needs to be softly broken. The Yukawa
sector is most likely unrealistic.
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4 The R-II-1a model

4.1 Generalities

The R-II-1a vacuum is defined by [6]
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with
�a = �5 + �6 + 2�7. (4.3)

The Z2 symmetry is preserved for:

h1 ! �h1, {h2, hS} ! ±{h2, hS}. (4.4)

Hence, the inert doublet is associated with h1, as hh1i = 0.
A trivial Yukawa sector is assumed, LY ⇠ 1f ⌦ 1h, and thus the S3 singlet is solely

responsible for masses of fermions, making wS a reference point. Therefore, we define the
Higgs-basis rotation angle as:

tan � =
w2

wS

. (4.5)

After a suitable rephasing of the scalar doublets we chose wS > 0. With w2 possibly
negative, the Higgs basis rotation angle will be in the range � 2 [�⇡

2
,

⇡

2
]. Therefore, the

vevs can be parameterised as:

w2 = v sin �, wS = v cos �, w
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. (4.6)
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We choose the fermions to transform trivially under S3

In table 1, whenever hh0

S
i 6= 0 we indicate that the fermions may transform trivially under

S3. This is the simplest choice. In all other cases we need them to transform non-trivially
in order to acquire masses. Whenever �4 = 0, the scalar potential acquires an additional
O(2) symmetry between h1 and h2, which could be spontaneously broken. This breaking
leads to one massless neutral scalar, see Ref. [88] for a classification of massless states.
Another interesting feature is that the scalar potential with the �4 = 0 constraint will
have two additional Z2 symmetries beyond h1 ! �h1, involving h2 and hS.

Table 1: S3 vacua that might accommodate DM due to a vanishing vev [6]. The “hat”,
ŵi, denotes an absolute value.

Vacuum vevs �4 symmetry # massless states fermions under S3

R-I-1 (0, 0, wS)
p

S3, h1 ! �h1 none trivial

R-I-2a (w, 0, 0)
p

S2 none non-trivial

R-I-2b,2c (w,±
p
3w, 0)

p
S2 none non-trivial

R-II-1a (0, w2, wS)
p

S2, h1 ! �h1 none trivial

R-II-2 (0, w, 0) 0 h1 ! �h1, hS ! �hS 1 non-trivial

R-II-3 (w1, w2, 0) 0 hS ! �hS 1 non-trivial

R-III-s (w1, 0, wS) 0 h2 ! �h2 1 trivial

C-I-a (ŵ1,±iŵ1, 0)
p

cyclic Z3 none non-trivial

C-III-a (0, ŵ2ei�2 , ŵS)
p

S2, h1 ! �h1 none trivial

C-III-b (±iŵ1, 0, ŵS) 0 h2 ! �h2 1 trivial

C-III-c (ŵ1ei�1 , ŵ2ei�2 , 0) 0 hS ! �hS 2 non-trivial

C-IV-a (ŵ1ei�1 , 0, ŵS) 0 h2 ! �h2 2 trivial

Below, we indicate some pro’s and con’s of di↵erent vacua of S3-3HDM, following the
nomenclature of Ref. [6]. We are only relying on the symmetry inherent in the potential,
being a subgroup of S3. An ad-hoc Z2 would render more possibilities realistic.

• R-I-1: (0, 0, wS)
This case might result in a viable DM candidate. A related case was studied in
Refs. [83,85]. In order to stabilise h2 they forced �4 = 0 and found that this model
may result in a viable DM candidate.

Scalar sector: The DM candidate resides in h1 and thus is automatically stabilised.
There are three pairs of mass-degenerate states: a charged pair and two neutral
pairs. In principle, one could lift this degeneracy by softly breaking the S3 symmetry
of the scalar potential. The only possible soft breaking term is µ

2

2
. If this term is

present, there are no mass degeneracies. In addition, it is possible to stabilise
the h2 doublet by forcing �4 = 0. There is no spontaneous symmetry breaking
associated with the inert doublets and therefore no Goldstone states would arise
due to spontaneously broken O(2).

Yukawa sector: LY ⇠ 1f ⌦ 1h can give realistic fermion masses. Due to freedom of
parameters, this can give a realistic CKM matrix and no flavour-changing neutral
currents (FCNC).
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Potentially interesting cases for DM

Vacua with

(µ2
1,λ5,λ8), (λ1,λ2,λ3), (λ1,λ5,λ8), (µ

2
0,λ2,λ3,λ5), (λ2,λ3,λ5,λ8), and (λ3,λ4,λ5,λ8), as

well as sets where in the above list λ5 is replaced by λ6. Among these, the sets (λ5,λ6), and
(λ1,λ2,λ3) correspond to (C,C) and (E2, E3) in the reducible-representation framework.

We shall distinguish the real and complex cases.

4 Real vacua

For a real vacuum, the five equations (3.7) discussed above reduce to a set of three. Again,
they are not necessarily all independent. If we, for example, try to solve for λ, γ and A,
the 3× 3 determinant corresponding to (3.8) is particularly simple:

detA3×3 = −(ρ1 + ρ2 + ρ3)(ρ2 − ρ1)(ρ3 − ρ2)(ρ1 − ρ3). (4.1)

Thus, when this quantity is non-zero, we can solve for λ, γ and A. Conversely, when
detA3×3 = 0 (meaning the sum of the vevs is zero, or two are equal), then we have at
most two independent equations, and can for example only solve for λ and γ.

In the irreducible-representation framework, the three vacuum conditions (3.3)–(3.5)
can be solved to give µ2

0 and µ2
1 in terms of the quartic coefficients:1

µ2
0 =

1

2wS

[

λ4(w
2
2 − 3w2

1)w2 − (λ5 + λ6 + 2λ7)(w
2
1 + w2

2)wS − 2λ8w
3
S

]

, (4.2a)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2) + 6λ4w2wS + (λ5 + λ6 + 2λ7)w
2
S

]

, (4.2b)

µ2
1 = −

1

2

[

2(λ1 + λ3)(w
2
1 + w2

2)− 3λ4(w
2
2 − w2

1)
wS

w2
+ (λ5 + λ6 + 2λ7)w

2
S

]

. (4.2c)

The two equations (4.2b) and (4.2c) are not valid when w1 = 0 and w2 = 0, since they were
derived from (3.4) and (3.5) dividing by w1 = 0 and w2 = 0, respectively. Furthermore,
they are not automatically consistent. Consistency requires

w1 = 0, or else (4.3a)

λ4(3w
2
2 − w2

1)wS = 0. (4.3b)

For w1 = 0 the derivative of the potential with respect to w1 is identically zero and
therefore there is no clash in the determination of µ2

1 from the derivative with respect to
w2. From equation (4.3b) we see that these two derivatives are consistent if either λ4 = 0
or w1 = ±

√
3w2 or else wS = 0. The case wS = 0 is special since if we now take into

account the derivative of the potential with respect to wS, which is given by Eq. (3.3), we
are left in the real case with

λ4w2(3w
2
1 − w2

2) = 0, (4.4)

which is the only term in Eq. (3.3) where wS does not appear as a factor. As a result,
solutions with wS = 0 require in addition that λ4 = 0 or w2 = ±

√
3w1, or else w2 = 0.

See cases R-I-2 in Table 1. These do not require λ4 = 0, while case R-II-3 has wS = 0
and requires λ4 = 0.

1There are misprints in the corresponding expressions given in Ref. [24], their Eq. (9): (i) a factor of
1/2 is missing on the right-hand side of all three expressions, and (ii) in µ2

0 (µ2
3 in their notation) the

coefficient of λ4 should be (v2/2v3)(v22 − 3v21). These misprints were corrected in the Erratum provided
by the authors and included in Ref. [24].
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member (assumed neutral) could be DM. They are listed in table 1 below. Some of these
are stabilised by a surviving symmetry of the potential, whereas others would require
an imposed Z2 symmetry. The general S3-symmetric scalar potential is invariant under
Z2 : h1 ! �h1. We do not consider other mechanisms which would stabilise the DM
candidate.

Some of these vacua are associated with massless states, hence we shall allow for soft
breaking of the S3 symmetry in the potential [88], noting that soft breaking is not possible
in the Yukawa sector. When introducing soft breaking terms, the constraints will change.
However, we will retain the nomenclature of the unbroken case from which they originate,
thus when adding soft-breaking terms to R-I-1, we denote it r-I-1.

3.1 The scalar potential

In terms of the S3 singlet (1 : hS) and doublet (2 : (h1 h2)
T) fields, the S3-symmetric

potential can be written as [89–91]:

V2 = µ
2

0
h
†
S
hS + µ

2

1
(h†

1
h1 + h

†
2
h2), (3.1a)

V4 = �1(h
†
1
h1 + h

†
2
h2)

2 + �2(h
†
1
h2 � h

†
2
h1)

2 + �3[(h
†
1
h1 � h

†
2
h2)

2 + (h†
1
h2 + h

†
2
h1)

2]

+ �4[(h
†
S
h1)(h

†
1
h2 + h

†
2
h1) + (h†

S
h2)(h

†
1
h1 � h

†
2
h2) + h.c.] + �5(h

†
S
hS)(h†

1
h1 + h

†
2
h2)

+ �6[(h
†
S
h1)(h

†
1
hS) + (h†

S
h2)(h

†
2
hS)] + �7[(h

†
S
h1)(h

†
S
h1) + (h†

S
h2)(h

†
S
h2) + h.c.]

+ �8(h
†
S
hS)2. (3.1b)

The potential can be softly broken by the following terms [88]:

V
0
2

= µ
2

2

⇣
h
†
1
h1 � h

†
2
h2

⌘
+

1

2
⌫
2

12

⇣
h
†
1
h2 + h.c.

⌘

+
1

2
⌫
2

01

⇣
h
†
S
h1 + h.c.

⌘
+

1

2
⌫
2

02

⇣
h
†
S
h2 + h.c.

⌘
.

(3.2)

In the irreducible representation, the S3 doublet and singlet fields will be decomposed
as

hi =

✓
h
+

i

(wi + ⌘i + i�i)/
p

2

◆
, i = 1, 2, hS =

✓
h
+

S

(wS + ⌘S + i�S)/
p

2

◆
, (3.3)

where the wi and wS parameters can be complex.
We recall that in order for a doublet to accommodate a DM candidate it must have a

vanishing vev, since otherwise it would decay via its gauge couplings, e.g., the SW
+
W

�

and SZZ couplings.

3.2 The Yukawa interaction

Whenever the singlet vev, wS, is di↵erent from zero we can construct a trivial Yukawa
sector, LY ⇠ 1f ⌦ 1h. In this case, the fermion mass matrices are:

Mu =
1p
2
diag (yu

1
, y

u

2
, y

u

3
) w

⇤
S
, (3.4a)

Md =
1p
2
diag

�
y
d

1
, y

d

2
, y

d

3

�
wS, (3.4b)
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• R-I-2a: (w, 0, 0)
The Yukawa sector is unrealistic.

Scalar sector: The Z2 symmetry is preserved for (h2, hS) ! �(h2, hS), or equiva-
lently this translates into h1 ! �h1, and thus we have two stabilised inert doublets.

Yukawa sector: LY ⇠ 2f ⌦ 2h results in det(Hf ) = 0. This indicates that one of the
fermion mass eigenvalues vanishes, i.e., there will be a massless fermion.

• R-I-2b,2c: (w, ±
p
3w, 0)

The S3 symmetry of the scalar potential needs to be softly broken. The Yukawa
sector is unrealistic.

Scalar sector: There is mixing present in the mass-squared matrix as �4 6= 0 and
thus DM is not stabilised. If we artificially put �4 = 0, one of the neutral states
would become massless. The DM is left stabilised only if the soft breaking term µ

2

2

together with ⌫
2

12
are introduced.

Yukawa sector: LY ⇠ 2f ⌦ 2h results in det(Hf ) = 0.

• R-II-1a: (0, w2, wS)
This case results in a viable DM candidate provided that the Yukawa sector is trivial.

Scalar sector: The DM candidate resides in h1 and thus is automatically stabilised.

Yukawa sector: LY ⇠ (2 � 1)f ⌦ (2 � 1)h can give realistic fermion masses. The
CKM matrix splits into a block-diagonal form and thus is unrealistic. However, there
is another possibility to construct the Yukawa Lagrangian of the form LY ⇠ 1f ⌦ 1h.

• R-II-2: (0, w, 0)
The S3 symmetry of the scalar potential needs to be softly broken. The Yukawa
sector is unrealistic.

Scalar sector: Due to �4 = 0, Z2 is preserved for both h1 and hS. The �4 = 0
constraint results in an additional Goldstone state. The only soft breaking term
which does not survive minimisation is ⌫

2

12
. Also, ⌫

2

02
cannot be the only soft breaking

term as then the massless state would survive. Then, the µ
2

2
and ⌫

2

01
couplings are

free parameter as those do not depend on the minimisation conditions. The coupling
⌫
2

02
would require �4 6= 0 and therefore DM is only stabilised in h1.

Yukawa sector: LY ⇠ 2f ⌦ 2h can give realistic masses. However, the CKM matrix
is split into a block-diagonal form.

• R-II-3: (w1, w2, 0)
The S3 symmetry of the scalar potential needs to be softly broken. The Yukawa
sector is unrealistic.

Scalar sector: Due to �4 = 0, Z2 is preserved for hS. An additional Goldstone boson
is present. The possible softly broken couplings are µ

2

2
and ⌫

2

12
. If µ

2

2
is the only

term present, for consistency ⌫
2

12
= 0, this would require to impose either w1 = 0 or

w2 = 0. When ⌫
2

12
is considered, it results in w1 = w2. It is also possible to have

both terms present simultaneously.

Yukawa sector: LY ⇠ 2f ⌦ 2h can give realistic fermion mass eigenvalues. However,
the CKM matrix is unrealistic and there are no free parameters to control FCNC.
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conditions require _4 = 0 the whole potential becomes O(2) invariant. This symmetry can be
spontaneously broken by the vacuum giving rise to additional unwanted Goldstone bosons [13].

3. Scalar dark matter candidates

All possible implementations which could accommodate a DM candidate within the (3-
symmetric 3HDM were identified in Ref. [4] based on the classification of vacua of Ref. [12].
In total, there are three solutions with an exact (3 symmetry and eight which require soft symmetry
breaking of (3 (in order to eliminate massless states) which could accommodate a DM candidate.

There are several possibilities to assign (3 charges to fermions. The trivial approach consists
of assuming that all fermions are singlets under (3. In this case fermions can only couple to ⌘( , and
realistic masses and mixing can be generated. The other possibility is to assume that some of the
fermions are grouped into (3 doublets. In this case there are seven options to assign fermions to a
singlet or a pseudo-singlet representation. Not all of the cases lead to realistic masses and mixing.

The two cases we analysed have vacua given by (0,F2,F() in R-II-1a [4] or (0, F̂248f , F̂()

in C-III-a [5]. The f phase is responsible for spontaneous CP violation [12]. One might expect
to recover the R-II-1a model from C-III-a in the limit of f ! 0. This is not the case [5]. The
explanation is straightforward if one considers the minimisation conditions. In the C-III-a model
an additional constraint arises relating two couplings, _4 and _7. As a result, these two models
correspond to di�erent regions of the parameter space, and di�erent DM mass ranges survive.

4. Analysis of the models

Both implementations are described in terms of eight input parameters. The C-III-a case is
more involved than R-II-1a due to the fact that there is CP violation. In order to identify the viable
DM mass region several constraints are imposed:

• Cut 1: perturbativity, stability, unitarity checks, LEP constraints;

• Cut 2: SM-like gauge and Yukawa sector, ( and ) variables, ⌫ ! - (B)W decays;

• Cut 3: SM-like Higgs particle decays, DM relic density, direct searches;

with each subsequent constraint being superimposed over the previous one. The applied numerical
bounds are taken from the PDG [1]. We allow for a 3-f tolerance in relevant checks. In order to
evaluate the Cut 3 constraints we used micrOMEGAs [14].

The surviving parameter space of the two models projected onto the allowed mass region for
the DM candidate can be seen in figure 1. The mass regions for DM in R-II-1a and C-III-a di�er
from the IDM and other 3HDMs. There is no high mass region for these two cases. In this region
the relic density could be maintained by suppressing annihilation via intermediate neutral scalar
bosons and into a pair of neutral scalar bosons while also requiring near mass degeneracy among
the scalars of the inert sector. In neither of the cases it is possible to maintain weak portal couplings,
e.g., in the SM limit the portal coupling of the R-II-1a model scales like ⇠ <2

DM/E2. In the C-III-a
case the situation is even more complicated since it is not possible to have a near mass degeneracy
between the neutral inert states. A gap of around 70 GeV develops for masses above 300 GeV.
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1 Introduction

A variety of models have been proposed in order to explain Dark Matter (DM), responsible
for around a quarter of the total mass-energy density of the Universe [1], in terms of
scalar particles. The simplest models of this kind invoke an SU(2) singlet [2, 3] or an
Inert Doublet Model (IDM) [4, 5]. Other models with additional SU(2) doublets have
been proposed and studied. Among the latter, there are some in which the DM stability
is provided by a remnant of the symmetry of the potential. Introducing additional SU(2)
doublets, see figure 1, in general leads to more flexibility in accommodating dark matter:

1. By having two non-inert doublets along with one inert doublet [6–10], which is the
case studied here;

2. By having one non-inert doublet along with two inert doublets [11–21].

R-II-1a

100 GeV

IDM

50 GeV 500 GeV200 GeV

3HDM

SCALAR DM MASS RANGES

IDM2

1000 GeV

3HDMCP

Z2

Z2

Z2

�

⌘

1

C-III-a

10 GeV 20 GeV5 GeV

Figure 1: Sketch of allowed DM mass ranges up to 1 TeV in various models. Blue:
IDM according to Refs. [22, 23], the pale region indicates a non-saturated relic density.
Red: IDM2 [9]. Ochre: three-Higgs-doublet model (3HDM) without [14, 16, 18] and with
CP violation [17]. Green: S3-symmetric 3HDM with a non-CP violating scalar sector
(R-II-1a) [10] and with a CP violating scalar sector (C-III-a).

Ideally, such models should also o↵er additional mechanisms for CP violation. An
early model of this kind was the “IDM2” [6]. It builds on three SU(2) doublets, one
of which is inert, whereas the two others basically constitute a CP-violating two-Higgs
doublet model (2HDM) [24, 25]. In the IDM2, the stability of the DM is provided by a
Z2 symmetry that is imposed ad hoc.

In a companion paper [10] we explored the possibility of having DM in models based
on a spontaneously broken S3 symmetry, and studied one of these models in detail. That
model, denoted R-II-1a [26], does accommodate dark matter, but it has a real vacuum,
and preserves CP. Here, we explore a rather similar model with real couplings, but with
a complex vacuum, referred to as C-III-a, which violates CP spontaneously.

1

R-II-1a allows DM masses in range 52.5 to 89 GeV
CP is conserved
No high-mass region. Reason:
Portal coupling grows with DM mass 

C-III-a allows DM mass in range 6.5 to 44.5 GeV 
CP is violated

No high-mass region, same as above
It is possible to suppress DM-DM-active scalar couplings at low mass 

Triliniar and quartic portal couplings:Trilinear and quartic portal couplings

In the IDM this is a tuneable coupling 
Here, not an independent parameter

The couplings grow with DM mass
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Conclusions

Symmetries play a crucial rôle in multi-Higgs models

Multi-Higgs models provide interesting scenarios for Dark Matter 

Multi-Higgs Models have a rich phenomenology

Discoveries at the LHC are eagerly awaited

There is presently a lot of interest for this kind of models


