Examples of 3HDM with DM Candidates

M. N. Rebelo CFTP/IST, U. Lisboa

Portorož 2023: Particle Physics from Early Universe to Future Colliders

Portoroz, Slovenia, 12 April 2023

Work done in collaboration with W. Khater, A. Kunceinas, O. M Ogreid, P. Osland arXiv: 2108.07026, JHEP 01 (2022) 120
arXiv: 2204.05684, Phys.Rev.D 106 (2022) 7, 075002
arXiv: 2301.12194, Contribution to: Discrete 2022

Work Partially supported by:

FCT Fundação para a Ciência e a Tecnologia

ministério da educação E CiÊNCIA

European Union

Fundação para a Ciência e a Tecnologia ministírio da educação e ciência

Motivation for three Higgs doublets

Three generations may suggest three doublets
Possibility of having a discrete symmetry and still having spontaneous CP violation Interesting scenario for dark matter

Rich phenomenology

Motivation for imposing discrete symmetries

Symmetries reduce the number of free parameters leading to (testable) predictions Symmetries help to control HFCNC
Example: NFC, no HFCNC due to Z_2 Symmetry (ies)
Example: MFV suppression of HFCNC, BGL models

Symmetries are needed to stabilise dark matter

DM in extended Scalar Sectors

Simplest extensions: (examples)

i) One Higgs doublet and one Higgs singlet
V. Silveira and A. Zee (1985)
J. McDonald, hep-ph/0702143
ii) Inert Doublet Model (IDM) (2 Higgs doublets) $\begin{aligned} & \text { N. G. Deshpande and E. Ma (1978) } \\ & \text { R. Barbieri, L. J. Hall and V. S. Rychkov (2006) }\end{aligned}$

Examples with three Higgs doublets:
i) Inert-plus-two-doublet model (IDM2)

Grzadkowski, Ogreid, Osland, Pukhov, Purmohammadi, Pruna, 0904.2173; 1012.4680; 1302.3713;
Merchant and Sher, 1911.06477
ii) Two Inert Doublets plus One Higgs Doublet
A. C. B. Machado and V. Pleitez, (2012), V. Keus, S. King, S. Moretti (2013),
E. C. S. Fortes, J. Montaño, D. Sokolowska, A.Aranda, J. Hernández-Sánchez,
P. Noriega-Papaqui, C. A. Vaquera-Araujo, A, Cordero-Cid, D. Rojas-Ciofalo
iii) S_3 Symmetric Three Higgs Doublet Model

Multi-Higgs Models

Possibility of having vacua with vanishing vevs in basis where symmetry is imposed (different from choice of Higgs/scalar basis)

If a sym stabilises such a vacuum it may lead to interesting DM candidates

Symmetry must prevent couplings among DM candidates and fermions

The cases with two active Higgs doublets lead to similarities with the 2HDM

Both in the Inert-plus-two-doublet model (IDM2) and in the S_3 Symmetric Model there is the possibility of having spontaneous CP violation

Some Specific Features of the Inert Doublet Model

2HDM with a $\quad Z_{2}$ symmetry under which ϕ_{2} is odd and all the other fields are even.

$$
\begin{aligned}
V & =-m_{1}^{2}\left(\phi_{1}^{\dagger} \phi_{1}\right)-m_{2}^{2}\left(\phi_{2}^{\dagger} \phi_{2}\right)+\lambda_{1}\left(\phi_{1}^{\dagger} \phi_{1}\right)^{2}+\lambda_{2}\left(\phi_{2}^{\dagger} \phi_{2}\right)^{2} \\
& +\lambda_{3}\left(\phi_{1}^{\dagger} \phi_{1}\right)\left(\phi_{2}^{\dagger} \phi_{2}\right)+\lambda_{4}\left(\phi_{2}^{\dagger} \phi_{1}\right)\left(\phi_{1}^{\dagger} \phi_{2}\right)+\frac{\lambda_{5}}{2}\left[\left(\phi_{1}^{\dagger} \phi_{2}\right)^{2}+\left(\phi_{2}^{\dagger} \phi_{1}\right)^{2}\right]
\end{aligned}
$$

CP is conserved by the potential. Large region of parameter space where:

$$
\phi_{1}=\frac{1}{\sqrt{2}}\binom{0}{v+H} \quad \phi_{2}=\frac{1}{\sqrt{2}}\binom{\sqrt{2} h^{+}}{h_{1}+i h_{2}}
$$

This vacuum does not break the Z_2 symmetry. Furthermore, it forbids direct couplings of any single inert field to SM particles and stabilises the lightest inert boson against decay

Pairwise interactions of the inert scalars with the gauge bosons and with the SM like Higgs H are allowed. This has implications for collider signatures and detection experiments

Some Specific Features of the Inert-plus-two doublet model (IDM2)

Weinberg Model with real couplings
Certain vacua allow for spontaneous CP violation G. C. Branco Phys. Rev. D 22 (1980) 2901
The potential of the IDM2: B. Grzadkowski, O. M. Ogreid and P. Osland. Phys. Rev. D80 (2009) 055013
two doublets, $\Phi_{1,2}$ plus, the inert-doublet $\eta \quad Z_{2} \times Z_{2}^{\prime}$ symmetry: $\eta \rightarrow-\eta \quad \Phi_{1} \rightarrow-\Phi_{1}$
Choice of vacuum, inert doublet acquires zero vev: $\quad \eta=\binom{\eta^{+}}{(S+i A) / \sqrt{2}}$
With this vacuum spontaneous CP violation is not possible
Soft Symmetry breaking introduced in order to have spontaneous CP violation:

$$
\left[m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2}+\text { h.c. }\right]
$$

It was assumed that S is the lightest neutral scalar. S can be a good DM candidate

SCALAR DM MASS RANGES

Figure 1: Sketch of allowed DM mass ranges up to 1 TeV in various models. Blue: IDM according to Refs. [22,23], the pale region indicates a non-saturated relic density. Red: IDM2 [9]. Ochre: three-Higgs-doublet model (3HDM) without [14, 16, 18] and with CP violation [17]. Green: S_{3}-symmetric $3 H D M$ with a non-CP violating scalar sector (R-II-1a) [10] and with a CP violating scalar sector (C-III-a)[More].

References in the figure caption of previous slide

[22] A. Belyaev, G. Cacciapaglia, I. P. Ivanov, F. Rojas-Abatte and M. Thomas, Anatomy of the Inert Two Higgs Doublet Model in the light of the LHC and non-LHC Dark Matter Searches, Phys. Rev. D97 (2018) 035011, [1612.00511].
[23] J. Kalinowski, W. Kotlarski, T. Robens, D. Sokolowska and A. F. Zarnecki, Benchmarking the Inert Doublet Model for $e^{+} e^{-}$colliders, JHEP 12 (2018) 081, [1809.07712].
[9] M. Merchand and M. Sher, Constraints on the Parameter Space in an Inert Doublet Model with two Active Doublets, JHEP 03 (2020) 108, [1911.06477].
[14] V. Keus, S. F. King, S. Moretti and D. Sokolowska, Dark Matter with Two Inert Doublets plus One Higgs Doublet, JHEP 11 (2014) 016, [1407.7859].
[16] V. Keus, S. F. King, S. Moretti and D. Sokolowska, Observable Heavy Higgs Dark Matter, JHEP 11 (2015) 003, [1507.08433].
[18] A. Cordero, J. Hernandez-Sanchez, V. Keus, S. F. King, S. Moretti, D. Rojas et al., Dark Matter Signals at the LHC from a 3HDM, JHEP 05 (2018) 030, [1712.09598].
[17] A. Cordero-Cid, J. Hernández-Sánchez, V. Keus, S. F. King, S. Moretti, D. Rojas et al., CP violating scalar Dark Matter, JHEP 12 (2016) 014, [1608.01673].
[10] W. Khater, A. Kunčinas, O. M. Ogreid, P. Osland and M. N. Rebelo, Dark matter in three-Higgs-doublet models with S_{3} symmetry, JHEP 01 (2022) 120, [2108.07026].
[More] A. Kunčinas, O. M. Ogreid, P. Osland and M. N. Rebelo, Dark matter in a CP-violating three-Higgs-doublet model with S_{3} symmetry, Phys. Rev. D106 (2022) 075002, [2204.05684].

Dark matter in theee-Higgs-doublet models with S_{3} Symmetry

S_{3} is the permutation group involving three objects, $\phi_{1}, \phi_{2}, \phi_{3}$
Derman 1978, Derman and Tsao 1979
Two irreducible representations doublet and singlet:

$$
\binom{h_{1}}{h_{2}}, \quad h_{S} \quad\left(\begin{array}{c}
h_{1} \\
h_{2} \\
h_{S}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right)\left(\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right)
$$

Notice similarity with tribimaximal mixing:

$$
(F=)\left(\begin{array}{ccc}
-\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}
\end{array}\right)
$$

The scalar potential in terms of fields from irreducible representations

$$
\begin{aligned}
V_{2} & =\mu_{0}^{2} h_{S}^{\dagger} h_{S}+\mu_{1}^{2}\left(h_{1}^{\dagger} h_{1}+h_{2}^{\dagger} h_{2}\right) \\
V_{4} & =\lambda_{8}\left(h_{S}^{\dagger} h_{S}\right)^{2}+\lambda_{5}\left(h_{S}^{\dagger} h_{S}\right)\left(h_{1}^{\dagger} h_{1}+h_{2}^{\dagger} h_{2}\right)+\lambda_{1}\left(h_{1}^{\dagger} h_{1}+h_{2}^{\dagger} h_{2}\right)^{2} \\
& +\lambda_{2}\left(h_{1}^{\dagger} h_{2}-h_{2}^{\dagger} h_{1}\right)^{2}+\lambda_{3}\left[\left(h_{1}^{\dagger} h_{1}-h_{2}^{\dagger} h_{2}\right)^{2}+\left(h_{1}^{\dagger} h_{2}+h_{2}^{\dagger} h_{1}\right)^{2}\right] \\
& +\lambda_{6}\left[\left(h_{S}^{\dagger} h_{1}\right)\left(h_{1}^{\dagger} h_{S}\right)+\left(h_{S}^{\dagger} h_{2}\right)\left(h_{2}^{\dagger} h_{S}\right)\right] \\
& +\lambda_{7}\left[\left(h_{S}^{\dagger} h_{1}\right)\left(h_{S}^{\dagger} h_{1}\right)+\left(h_{S}^{\dagger} h_{2}\right)\left(h_{S}^{\dagger} h_{2}\right)+\text { h.c. }\right] \\
& +\lambda_{4}\left[\left(h_{S}^{\dagger} h_{1}\right)\left(h_{1}^{\dagger} h_{2}+h_{2}^{\dagger} h_{1}\right)+\left(h_{S}^{\dagger} h_{2}\right)\left(h_{1}^{\dagger} h_{1}-h_{2}^{\dagger} h_{2}\right)+\text { h.c. }\right]
\end{aligned}
$$

D. Das and U. K. Dey, 2014
no symmetry under the interchange of h_{1} and h_{2}
however there is symmetry for $\quad h_{1} \rightarrow-h_{1}$
In the special case $\quad \lambda_{4}=0 \quad$ the potential has SO(2) symmetry:

$$
\binom{h_{1}^{\prime}}{h_{2}^{\prime}}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{h_{1}}{h_{2}} \quad \text { Danger: massless scalar! }
$$

no spontaneous CP violation whenever $\quad \lambda_{4}=0$

Constraining the potential by the vevs, real vacua

Vacuum	$\rho_{1}, \rho_{2}, \rho_{3}$	w_{1}, w_{2}, w_{S}	Comment
R-0	$0,0,0$	$0,0,0$	Not interesting
R-I-1	x, x, x	$0,0, w_{S}$	$\mu_{0}^{2}=-\lambda_{8} w_{S}^{2}$
R-I-2a	$x,-x, 0$	$w, 0,0$	$\mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right) w_{1}^{2}$
R-I-2b	$x, 0,-x$	$w, \sqrt{3} w, 0$	$\mu_{1}^{2}=-\frac{4}{3}\left(\lambda_{1}+\lambda_{3}\right) w_{2}^{2}$
R-I-2c	$0, x,-x$	$w,-\sqrt{3} w, 0$	$\mu_{1}^{2}=-\frac{4}{3}\left(\lambda_{1}+\lambda_{3}\right) w_{2}^{2}$
R-II-1a	x, x, y	$0, w, w_{S}$	$\mu_{0}^{2}=\frac{1}{2} \lambda_{4} \frac{w_{2}^{3}}{w_{S}}-\frac{1}{2} \lambda_{a} w_{2}^{2}-\lambda_{8} w_{S}^{2}$,
		$\mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right) w_{2}^{2}+\frac{3}{2} \lambda_{4} w_{2} w_{S}-\frac{1}{2} \lambda_{a} w_{S}^{2}$	
R-II-1b	x, y, x	$w,-w / \sqrt{3}, w_{S}$	$\mu_{0}^{2}=-4 \lambda_{4} \frac{w_{2}^{3}}{w_{S}}-2 \lambda_{a} w_{2}^{2}-\lambda_{8} w_{S}^{2}$,
$\mu_{1}^{2}=-4\left(\lambda_{1}+\lambda_{3}\right) w_{2}^{2}-3 \lambda_{4} w_{2} w_{S}-\frac{1}{2} \lambda_{a} w_{S}^{2}$			
R-II-1c	y, x, x	$w, w / \sqrt{3}, w_{S}$	$\mu_{0}^{2}=-4 \lambda_{4} \frac{w_{2}^{3}}{w_{S}-2 \lambda_{a} w_{2}^{2}-\lambda_{8} w_{S}^{2}}$,
			$\mu_{1}^{2}=-4\left(\lambda_{1}+\lambda_{3}\right) w_{2}^{2}-3 \lambda_{4} w_{2} w_{S}-\frac{1}{2} \lambda_{a} w_{S}^{2}$
R-II-2	$x, x,-2 x$	$0, w, 0$	$\mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right) w_{2}^{2}, \lambda_{4}=0$
R-II-3	$x, y,-x-y$	$w_{1}, w_{2}, 0$	$\mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right)\left(w_{1}^{2}+w_{2}^{2}\right), \lambda_{4}=0$
R-III	$\rho_{1}, \rho_{2}, \rho_{3}$	w_{1}, w_{2}, w_{S}	$\mu_{0}^{2}=-\frac{1}{2} \lambda_{a}\left(w_{1}^{2}+w_{2}^{2}\right)-\lambda_{8} w_{S}^{2}$,
$\mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right)\left(w_{1}^{2}+w_{2}^{2}\right)-\frac{1}{2} \lambda_{a} w_{S}^{2}$,			
$\lambda_{4}=0$			

$$
\begin{aligned}
& \lambda_{a}=\lambda_{5}+\lambda_{6}+2 \lambda_{7}, \\
& \lambda_{b}=\lambda_{5}+\lambda_{6}-2 \lambda_{7} .
\end{aligned}
$$

Constraining the potential by the vevs, complex vacua

Table 2: Complex vacua. Notation: $\epsilon=1$ and -1 for C-III-d and C-III-e, respectively; $\xi=\sqrt{-3 \sin 2 \rho_{1} / \sin 2 \rho_{2}}, \psi=\sqrt{\left[3+3 \cos \left(\rho_{2}-2 \rho_{1}\right)\right] /\left(2 \cos \rho_{2}\right)}$. With the constraints of Table 4 the vacua labelled with an asterisk $\left(^{*}\right)$ are in fact real.

	IRF (Irreducible Rep.)	RRF (Reducible Rep.)
	w_{1}, w_{2}, w_{S}	$\rho_{1}, \rho_{2}, \rho_{3}$
C-I-a	$\hat{w}_{1}, \pm i \hat{w}_{1}, 0$	$x, x e^{ \pm \frac{2 \pi i}{3}}, x e^{\mp \frac{2 \pi i}{3}}$
C-III-a	$0, \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S}$	$y, y, x e^{i \tau}$
C-III-b	$\pm i \hat{w}_{1}, 0, \hat{w}_{S}$	$x+i y, x-i y, x$
C-III-c	$\hat{w}_{1} e^{i \sigma_{1}}, \hat{w}_{2} e^{i \sigma_{2}}, 0$	$x e^{i \rho}-\frac{y}{2},-x e^{i \rho}-\frac{y}{2}, y$
C-III-d, e	$\pm i \hat{w}_{1}, \epsilon \hat{w}_{2}, \hat{w}_{S}$	$x e^{i \tau}, x e^{-i \tau}, y$
C-III-f	$\pm i \hat{w}_{1}, i \hat{w}_{2}, \hat{w}_{S}$	$r e^{i \rho} \pm i x, r e^{i \rho} \mp i x, \frac{3}{2} r e^{-i \rho}-\frac{1}{2} r e^{i \rho}$
C-III-g	$\pm i \hat{w}_{1},-i \hat{w}_{2}, \hat{w}_{S}$	$r e^{-i \rho} \pm i x, r e^{-i \rho} \mp i x, \frac{3}{2} r e^{i \rho}-\frac{1}{2} r e^{-i \rho}$
C-III-h	$\sqrt{3} \hat{w}_{2} e^{i \sigma_{2}}, \pm \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S}$	$\begin{aligned} & x e^{i \tau}, y, y \\ & y, x e^{i \tau}, y \end{aligned}$
C-III-i	$\begin{gathered} \quad \sqrt{\frac{3\left(1+\tan ^{2} \sigma_{1}\right)}{1+9 \tan ^{2} \sigma_{1}}} \hat{w}_{2} e^{i \sigma_{1}} \\ \pm \hat{w}_{2} e^{-i \arctan \left(3 \tan \sigma_{1}\right)}, \hat{w}_{S} \end{gathered}$	$\begin{aligned} & x, y e^{i \tau}, y e^{-i \tau} \\ & y e^{i \tau}, x, y e^{-i \tau} \end{aligned}$
C-IV-a*	$\hat{w}_{1} e^{i \sigma_{1}}, 0, \hat{w}_{S}$	$r e^{i \rho}+x,-r e^{i \rho}+x, x$
C-IV-b	$\hat{w}_{1}, \pm i \hat{w}_{2}, \hat{w}_{S}$	$r e^{i \rho}+x,-r e^{-i \rho}+x,-r e^{i \rho}+r e^{-i \rho}+x$
C-IV-c	$\begin{gathered} \sqrt{1+2 \cos ^{2} \sigma_{2}} \hat{w}_{2} \\ \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S} \\ \hline \end{gathered}$	$\begin{gathered} r e^{i \rho}+r \sqrt{3\left(1+2 \cos ^{2} \rho\right)}+x \\ r e^{i \rho}-r \sqrt{3\left(1+2 \cos ^{2} \rho\right)}+x,-2 r e^{i \rho}+x \end{gathered}$
C-IV-d*	$\hat{w}_{1} e^{i \sigma_{1}}, \pm \hat{w}_{2} e^{i \sigma_{1}}, \hat{w}_{S}$	$r_{1} e^{i \rho}+x,\left(r_{2}-r_{1}\right) e^{i \rho}+x,-r_{2} e^{i \rho}+x$
C-IV-e	$\begin{gathered} \sqrt{-\frac{\sin 2 \sigma_{2}}{\sin 2 \sigma_{1}}} \hat{w}_{2} e^{i \sigma_{1}} \\ \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S} \end{gathered}$	$\begin{gathered} r e^{i \rho_{2}}+r e^{i \rho_{1}} \xi+x, r e^{i \rho_{2}}-r e^{i \rho_{1}} \xi+x \\ -2 r e^{i \rho_{2}}+x \end{gathered}$
C-IV-f	$\begin{gathered} \sqrt{2+\frac{\cos \left(\sigma_{1}-2 \sigma_{2}\right)}{\cos \sigma_{1}}} \hat{w}_{2} e^{i \sigma_{1}} \\ \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S} \end{gathered}$	$\begin{gathered} r e^{i \rho_{1}}+r e^{i \rho_{2}} \psi+x \\ r e^{i \rho_{1}}-r e^{i \rho_{2}} \psi+x,-2 r e^{i \rho_{1}}+x \end{gathered}$
C-V*	$\hat{w}_{1} e^{i \sigma_{1}}, \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S}$	$x e^{i \tau_{1}}, y e^{i \tau_{2}}, z$

Constraints

Vacuum	Constraints
C-I-a	$\mu_{1}^{2}=-2\left(\lambda_{1}-\lambda_{2}\right) \hat{w}_{1}^{2}$
C-III-a	$\begin{gathered} \mu_{0}^{2}=-\frac{1}{2} \lambda_{b} \hat{w}_{2}^{2}-\lambda_{8} \hat{w}_{S}^{2}, \\ \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right) \hat{w}_{2}^{2}-\frac{1}{2}\left(\lambda_{b}-8 \cos ^{2} \sigma_{2} \lambda_{7}\right) \hat{w}_{S}^{2} \\ \lambda_{4}=\frac{4 \cos \sigma_{2} \hat{w}_{S}}{\hat{w}_{2}} \lambda_{7} \end{gathered}$
C-III-b	$\begin{gathered} \mu_{0}^{2}=-\frac{1}{2} \lambda_{b} \hat{w}_{1}^{2}-\lambda_{8} \hat{w}_{S}^{2} \\ \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right) \hat{w}_{1}^{2}-\frac{1}{2} \lambda_{b} \hat{w}_{S}^{2} \\ \lambda_{4}=0 \end{gathered}$
C-III-c	$\begin{gathered} \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right), \\ \lambda_{2}+\lambda_{3}=0, \lambda_{4}=0 \end{gathered}$
C-III-d, e	$\begin{gathered} \mu_{0}^{2}=\left(\lambda_{2}+\lambda_{3}\right) \frac{\left(\hat{w}_{1}^{2}-\hat{w}_{2}^{2}\right)^{2}}{\hat{w}_{S}^{2}}-\epsilon \lambda_{4} \frac{\left(\hat{w}_{1}^{2}-\hat{w}_{2}^{2}\right)\left(\hat{w}_{\hat{1}}^{2}-3 \hat{w}_{2}^{2}\right)}{4 \hat{w}_{2} \hat{w}_{S}} \\ -\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\lambda_{8} \hat{w}_{S}^{2} \\ \mu_{1}^{2}=-\left(\lambda_{1}-\lambda_{2}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\epsilon \lambda_{4} \frac{\hat{w}_{S}^{2}\left(\hat{w}_{1}^{2}-\hat{w}_{2}^{2}\right)}{4 \hat{w}_{2}^{2}}-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2}, \\ \lambda_{7}=\frac{\hat{w}_{1}^{2}-\hat{w}_{2}^{2}}{\hat{w}_{S}^{2}}\left(\lambda_{2}+\lambda_{3}\right)-\epsilon \frac{\left(\hat{w}_{1}^{2}-5 \hat{w}_{2}^{2}\right)}{4 \hat{w}_{2} \hat{w}_{S}} \lambda_{4} \end{gathered}$
C-III-f,g	$\begin{gathered} \mu_{0}^{2}=-\frac{1}{2} \lambda_{b}\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\lambda_{8} \hat{w}_{S}^{2}, \\ \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\frac{1}{2} \lambda_{b} \hat{w}_{S}^{2}, \lambda_{4}=0 \end{gathered}$
C-III-h	$\begin{gathered} \mu_{0}^{2}=-2 \lambda_{b} \hat{w}_{2}^{2}-\lambda_{8} \hat{w}_{S}^{2} \\ \mu_{1}^{2}=-4\left(\lambda_{1}+\lambda_{3}\right) \hat{w}_{2}^{2}-\frac{1}{2}\left(\lambda_{b}-8 \cos ^{2} \sigma_{2} \lambda_{7}\right) \hat{w}_{S}^{2} \\ \lambda_{4}=\mp \frac{2 \cos \sigma_{2} \hat{w}_{S}}{\hat{w}_{2}} \lambda_{7} \end{gathered}$
C-III-i	$\begin{gathered} \mu_{0}^{2}=\frac{16\left(1-3 \tan ^{2} \sigma_{1}\right)^{2}}{\left(1+9 \tan ^{2} \sigma_{1}\right)^{2}}\left(\lambda_{2}+\lambda_{3}\right) \frac{\hat{w}_{2}^{4}}{\hat{w}_{S}^{2}} \pm \frac{6\left(1-\tan ^{2} \sigma_{1}\right)\left(1-3 \tan ^{2} \sigma_{1}\right)}{\left(1+9 \tan ^{2} \sigma_{1}\right)^{\frac{3}{2}}} \lambda_{4} \frac{\hat{w}_{2}^{3}}{\hat{w}_{S}} \\ -\frac{2\left(1+3 \tan ^{2} \sigma_{1}\right)}{1+\tan ^{2} \sigma_{1}}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{2}^{2}-\lambda_{8} \hat{w}_{S}^{2} \\ \mu_{1}^{2}=- \\ \frac{4\left(1+3 \tan ^{2} \sigma_{1}\right)}{1+9 \tan ^{2} \sigma_{1}}\left(\lambda_{1}-\lambda_{2}\right) \hat{w}_{2}^{2} \mp \frac{\left(1-3 \tan ^{2} \sigma_{1}\right)}{2 \sqrt{1+9 \tan ^{2} \sigma_{1}}} \lambda_{4} \hat{w}_{2} \hat{w}_{S} \\ -\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2}, \\ \lambda_{7}=-\frac{4\left(1-3 \tan ^{2} \sigma_{1}\right) \hat{w}_{2}^{2}}{\left(1+9 \tan ^{2} \sigma_{1}\right) \hat{w}_{S}^{2}}\left(\lambda_{2}+\lambda_{3}\right) \mp \frac{\left(5-3 \tan ^{2} \sigma_{1}\right) \hat{w}_{2}}{2 \sqrt{1+9 \tan ^{2} \sigma_{1}} \hat{w}_{S}} \lambda_{4} \end{gathered}$

Vacuum	Constraints
C-IV-a	$\mu_{0}^{2}=-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{1}^{2}-\lambda_{8} \hat{w}_{S}^{2}$,
	$\mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right) \hat{w}_{1}^{2}-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2}$,
	$\lambda_{4}=0, \lambda_{7}=0$

Potentially interesting cases for DM

Vacua with $w_{1}=0 \quad w_{S} \neq 0 \quad \lambda_{4} \neq 0$

$$
\begin{array}{ccl}
\mathrm{R}-\mathrm{I}-1, & \mathrm{R}-\mathrm{II}-1 \mathrm{a}, & \mathrm{C}-\mathrm{III}-\mathrm{a} \\
\left(0,0, w_{S}\right) & \left(0, w_{2}, w_{S}\right) & \left(0, \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S}\right)
\end{array}
$$

R-I-1 was studied imposing $\quad \lambda_{4}=0 \quad$ A. C. B. Machado and V. Pleitez (2012)
E. C. F. S. Fortes, A. C. B. Machado, J. Montaño and V. Pleitez (2014)

In our cases, R-II-1a and C-III-a only one of the three Higgs doublets is inert Symmetry that stabilises DM is a remnant which survives SSB

In all these cases w_s is different from zero, fermions only couple to one Higgs doublet as a result of the $\mathbf{S}_{\mathbf{3}}$ symmetry thus avoiding FCNC

List of different constraints applied in our analysis

- Cut 1: perturbativity, stability, unitarity checks, LEP constraints;
- Cut 2: SM-like gauge and Yukawa sector, S and T variables, $\bar{B} \rightarrow X(s) \gamma$ decays;
- Cut 3: SM-like Higgs particle decays, DM relic density, direct searches;

In order to evaluate Cut 3 micrOMEGAS was used
G. Belanger, F. Boudjema, A. Pukhov and A. Semenov, Comput. Phys. Commun. 185 (2014) 960-985

Full numerical analysis done by Anton Kunčinas

R-II-1a allows DM masses in range 52.5 to 89 GeV CP is conserved
No high-mass region. Reason:
Portal coupling grows with DM mass
Triliniar and quartic portal couplings:

Tuneable in the IDM

C-III-a allows DM mass in range 6.5 to 44.5 GeV
CP is violated
It is possible to suppress DM-DM-active scalar couplings at low mass No high-mass region, same as above

Conclusions

Symmetries play a crucial rôle in multi-Higgs models
Multi-Higgs models provide interesting scenarios for Dark Matter

Multi-Higgs Models have a rich phenomenology

There is presently a lot of interest for this kind of models

Discoveries at the LHC are eagerly awaited

