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Motivation: Floating-Point Errors
● Floating-point (FP) errors can have terrible implications for programs with high-precision calculations 

or simple, but repetitive computations.  
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● Using higher precision is one solution, but this leads to larger program sizes. Other approaches 
require reimplemenation to prevent error accumulation (such as Kahan summation). 

double c = -5e13;

for (unsigned int i = 0; i < 1e8; i++){

   if (i % 2) c = c - 1e-6;

   else c = c + 1e6;

}

Exact solution, 
c = −5 × 1013  +  ½  * 108 * 106  −  ½  * 108 * 10−6 
 =  −50

*Rounding Mode c

Rounded to the nearest −0.02460

Rounded towards −∞           -207373.07020 

Rounded towards +∞ −0.00820 

Rounded towards 0 −0.00820

*IEEE-754 double precision. Example from: Problem — True North Floating Point

https://www.truenorthfloatingpoint.com/problem


Floating Point Errors in Data Intensive Science 

● Data intensive sciences must cope with a rapidly increasing data volume and a transition to a fully 
heterogeneous computing environment.  Results are even more sensitive to floating-point errors in 
critical applications. 

● For example: float vs. double can make a large difference in performance as many GPUs either do 
not provide double-precision float, do not follow the IEEE compliance or have fairly slow access.
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● High Energy Physics is an example field seeing a large influx of 
data. Huge data rates (100s PB/yr this decade) require 
selectively saving data and to optimally save the data to optimize 
as much space as possible. As such, robust detection of 
floating-point errors can foster development of important new 
lossy compression algorithms.

In October 2017 the CERN data centre broke its own record for 
data storage when it collected 12.3 petabytes of data over a single 
month. Breaking data records bit-by-bit
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Our Approach to Estimating FP Errors 

● A general representation of floating point errors in arbitrary dimensions is then: 
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The absolute error in a function f.

All input and intermediate 
variables.

The upper bound on the relative 
approximation error due to rounding. 
Machine dependent.

The derivative of f with respect to xi.The error due to linearization 
of the Taylor series expansion.

We can get this from AD.

We know this - machine dependant.

Approximation error - hard 
to estimate.

● This formula gives a good upper bound estimate to Af, and serves our general purpose use case. Automatic 
differentiation (AD) is an efficient means to compute the needed derivatives 
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AD Evaluates the Exact Derivative of a Function

● AD applies the chain rule of differential calculus throughout the semantics of the original program.
● For a complex nested function, two recursive relationships  calculate the derivative.

● There are multiple approaches to implementing AD on programs, including operator Overloading 
and Source Transformation.

● In the context of FP error estimation, we are more concerned with reverse-mode AD as it 
provides the derivative of the function with respect to all intermediate and input variables.
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Reverse-mode AD:

Forward-mode AD:
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Clad: Source-Transformation AD Tool
● Clad is implemented as a plugin to the clang compiler. It inspects the internal compiler 

representation of the target function to generates its derivative. 

 double sqr(double x){

return x * x;

}

double sqr_darg0(double x){

      double _d_x = 1;

      return _d_x * x + x * _d_x;

}

clad::differentiate(sqr, “x”)

Advantages of Clad’s approach
● Requires little or no code modification for computing derivatives of existing codebase.
● Supports a growing subset of C++ constructs, statements and data-types as well as differentiating 

CUDA-based programs.
● Enables efficient gradient computation (independent time complexity from inputs) in its reverse 

accumulation mode enabling scalable FP error-estimation.
● Well integrated into the compiler, allowing automatic generation of error estimation code.
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https://github.com/vgvassilev/clad


AD-Based FP Error Estimation Framework 
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Call to 
clad::estimate_error()

Error 
Estimation 

Handler

Error 
Model

Clad’s gradient 
generation 

module

Generation of error 
estimation along with the 

function’s derivative.

Exchange errors and 
derivatives through 

callbacks

Control flow from the 
Clang compilation pipeline

Control flow back to the 
Clang compilation pipeline

Support for custom error models 
via plugins
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AD-Based FP Error Estimation Framework 
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float func(float x, float y) {

 float z;

 z = x + y;

 return z;

}

A function we want to estimate the error of.

auto df = clad::estimate_error(func);

In the main function, we call a function 
that tells clad to estimate the error in 

‘func’.

 float x = 1.95e-5, y = 1.37e-7;

 float dx = 0, dy = 0;

 double fp_error = 0;

 df.execute(x, y, &dx, &dy, fp_error);

 std::cout << "FP error in func: " << fp_error;

Finally, call the generated function through the ‘execute’ 
interface of clad objects. After the execution, the last parameter 

will store the accumulated FP error in the function. 

Garima Singh - Floating-Point Error Estimation Using Automatic Differentiation - 141st Parallelism, Performance and Programming Model Meeting 2022



Sensitivity Analysis

● Our uncertainty framework enables a sensitivity analysis of all input and intermediate variables to 
floating point errors and reason about the numerical stability of algorithms..  
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● If the sensitivity of any variable is high, then the function is more prone to floating-point errors in 
computations involving that variable. 

● This information can be useful when developing programs. The appropriate precision can be used 
throughout the program given a requirement on floating-point accuracy of the result. 

One example use case is mixed precision tuning: “demoting” certain types to lower precision while still 
maintaining the desired accuracy can be beneficial for optimizing speed, size and precision.
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Case Study: Simpson’s Rule long double simpsons(long double a, long double b) {

int n = 1000000;

// calculates the integral of a function f

// over the interval [a, b] for n iterations.

long double h = (b - a) / (2.0 * n);

long double x = a;

long double tmp;

long double fa = f(a), fb = f(b);

long double s1 = fa;

for(int l = 0; l < n; l++) {

  x = x + h;

  s1 = s1 + 4.0 * f(x);

  x = x + h;

  s1 = s1 + 2.0 * f(x);

}

s1 = s1 - fb;

tmp = h / 3.0;

s1 = s1 * tmp;

return s1;

}

● The program on the right side is used to to evaluate 
the integral of a function using Simpson’s rule for 
numerical integration.
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Example adapted from ADAPT: Algorithmic Differentiation Applied to Floating-Point Precision 
Tuning.

// defines f(x) = pi * sin(x * pi)

// integral = 2 over [0, 1]

long double f(long double x) {

 long double pi = M_PI;

 long double tmp = x * pi;

 long double tmp2 = sin(tmp) * pi;

 return tmp2;

}

The function is implemented with all variables 
in extended precision. Is that necessary?
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https://www.researchgate.net/publication/331755867_ADAPT_Algorithmic_Differentiation_Applied_to_Floating-Point_Precision_Tuning
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Clad’s Results long double simpsons(long double a, long double b) {

int n = 1000000;

// calculates the integral of a function f

// over the interval [a, b] for n iterations.

long double h = (b - a) / (2.0 * n);

long double x = a;

long double tmp;

long double fa = f(a), fb = f(b);

long double s1 = fa;

for(int l = 0; l < n; l++) {

  x = x + h;

  s1 = s1 + 4.0 * f(x);

  x = x + h;

  s1 = s1 + 2.0 * f(x);

}

s1 = s1 - fb;

tmp = h / 3.0;

s1 = s1 * tmp;

return s1;

}

● Clad provides a good estimate for the asymptotic 
error bound on the FP errors. 

● More accurate estimates can be derived using 
custom error models with the FP error estimation 
framework.
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Example adapted from ADAPT: Algorithmic Differentiation Applied to Floating-Point Precision 
Tuning.

Precision configurations
simspons(0, 1)

Absolute 
Error

Clad 
Estimated 

Error

10-byte extended precision 
(long double)

4.1e-14 3.1e-12

IEEE double-precision 
(double)

6.8e-11 6.2e-9

IEEE single-precision 
(float)

 0.03812 3.31
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Choosing Variables for Precision Tuning
long double simpsons(long double a, long double b) {

int n = 1000000;

// calculates the integral of a function f

// over the interval [a, b] for n iterations.

long double h = (b - a) / (2.0 * n);

long double x = a;

long double tmp;

long double fa = f(a), fb = f(b);

long double s1 = fa;

for(int l = 0; l < n; l++) {

  x = x + h;

  s1 = s1 + 4.0 * f(x);

  x = x + h;

  s1 = s1 + 2.0 * f(x);

}

s1 = s1 - fb;

tmp = h / 3.0;

s1 = s1 * tmp;

return s1;

}

● How do you pick the right variables to keep in higher 
precision?
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Example adapted from ADAPT: Algorithmic Differentiation Applied to Floating-Point 
Precision Tuning.

Clad calculates the total FP error contribution of every 
variable, we can then ask clad to print this information to 
some file (let’s assume the file is called ‘errors’). Clad 
will print the error for each variable as follows:

variable-name: error-value

Note: It is also possible to configure what clad prints i.e. 
the value of ‘error-value’ can be customized to print 
derivatives or even sensitivities of variables.

With this information, it is trivial to filter out the variables 
whose error violates a certain boundary or threshold. 
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Case Study: Simpson’s Rule
Results

long double simpsons(double a, double b) {

int n = 1000000;

double h = (b - a) / (2.0 * n);

long double x = a;

double tmp;

double fa = f(a), fb = f(b);

long double s1 = fa;

for(int l = 0; l < n; l++) {

  x = x + h;

  s1 = s1 + 4.0 * f(x);

  x = x + h;

  s1 = s1 + 2.0 * f(x);

}

s1 = s1 - fb;

tmp = h / 3.0;

s1 = s1 * tmp;

return s1;

}

“Demoting” low-sensitivity variables to lower precision 
improves performance by ~10% in this example. 

Here clad’s estimate also agrees that there is no significant 
change in the final error. This can be useful in the cases where 
an accurate ground-truth comparison is not available.
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long double f(long double x) {

 long double pi = M_PI;

 long double tmp = x * pi;

 long double tmp2 = sin(tmp) * pi;

 return tmp2;

}
Precision 

configurations
Absolute 

Error
Clad 

Estimated 
Error

Variables in 
lower precision 

(out of 11)

10-byte extended 
precision (long double)

4.07e-14 3.1e-12 0

Clad’s mixed precision 4.08e-14 3.0e-12 6

IEEE double-precision 
(double)

6.8e-11 6.2e-9 -

IEEE single-precision 
(float)

 0.03812 3.31 -
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Case Study: Numerical Stability
Overview
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int count = 30;

double Sn= sqrt(2);

double pi;

double n = 4;

for (int i = 1; i < count; i++) {

   Sn = ApproximatePi(Sn);

   n = 2*n;

   pi = n * Sn / 2;

}

double unstable_ApproximatePi(double Sn){

 double e = Sn * Sn;

 double tmp = std::sqrt(4 - e);

 double Sn1 = std::sqrt(2 - tmp);

 return Sn1;

}

Let us Define a functions that approximate the value of pi.

Reference: ADAPT: algorithmic differentiation applied to floating-point precision tuning 
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Case Study: Numerical Stability
Initial Results

14

double unstable_ApproximatePi(double Sn){

 double e = Sn * Sn;

 double tmp = std::sqrt(4 - e);

 double Sn1 = std::sqrt(2 - tmp);

 return Sn1;

}

After executing the code for ~30 iterations, we 
get the following results:

What is happening at the ~25th
  iteration?
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Case Study: Numerical Stability
Sensitivity Analysis
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double unstable_ApproximatePi(double Sn){

 double e = Sn * Sn;

 double tmp = std::sqrt(4 - e);

 double Sn1 = std::sqrt(2 - tmp);

 return Sn1;

}

To figure out what is wrong, we can user clad’s error 
estimation to analyse the sensitivity of each intermediate 
variable. Which (in our case) is given as follows: 
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Case Study: Numerical Stability
Verifying Results
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double stable_ApproximatePi(double Tn) {

double e = Tn * Tn;

double tmp = std::sqrt(4 + e);

double Tn1 = 2 * Tn / (2 + tmp);

return Tn1;

}

double unstable_ApproximatePi(double Sn){

 double e = Sn * Sn;

 double tmp = std::sqrt(4 - e);

 double Sn1 = std::sqrt(2 - tmp);

 return Sn1;

}

We will analyse 2 things:
● The comparison of results for 30 iterations
● Sensitivity in all intermediate variables
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Case Study: Numerical Stability
Verifying Results

17

double stable_ApproximatePi(double Tn) {

double e = Tn * Tn;

double tmp = std::sqrt(4 + e);

double Tn1 = 2 * Tn / (2 + tmp);

return Tn1;

}

double unstable_ApproximatePi(double Sn){

 double e = Sn * Sn;

 double tmp = std::sqrt(4 - e);

 double Sn1 = std::sqrt(2 - tmp);

 return Sn1;

}
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Using Custom Models
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Clad supports the usage of custom defined models:

1. Implement the clad::FPErrorEstimationModel class, a generic interface that provides the 
error expressions for clad to generate. 

2. Override the AssignError() function. This function is called for all LHS of every assignment 
expression in the target function. 

The function AssignError() essentially represents the mathematical formula of an error model in 
a form that clang can understand and convert to code. It provides users with the reference to the 
variable of interest and its derivative. The user in turn has to return an expression which will be 
used to accumulate the error.

While filling in these functions requires some clang API knowledge, it is possible to bypass this by 
just creating a function call expression as the error expression and then implement the function as 
you like!
 
For more information on how to build a custom model from scratch, check here! And for more 
information the FP error estimation framework, check here!
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Summary 
● AD based FP error analysis enables understanding the largest contributions to FP 

errors and enables mixed-precision program optimization.
● Clad has a novel, customizable, AD-based error estimation framework that 

automates FP error analysis, available with `conda install clad`.
● We demonstrated a case study for sensitivity analysis of a Simpson’s rule program 

and verified the numerical stability of an approximate pi function.
● We illustrated how to create a custom FP error analysis model capable of 

incorporating domain-specific knowledge

We plan add functionality to use the mixed precision recommendations to 
automatically generate optimized code which will allow further research in the area 
of lossy compression. 
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https://github.com/vgvassilev/clad | Binder - Jupyter Notebook
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Motivation: FP errors in High Energy Physics 
● High energy physics (HEP), also sees many applications of floating point errors as physicists often 

have to deal with complex algorithms that may accumulate errors that could be proportional to the 
large amounts of input data.

● An example - ROOT, a data analysis framework, is used widely by physicists at CERN. It provides 
RooFit, a toolkit for modeling the expected distribution of events in a physics analysis. RooFit is 
often used for minimization probability density functions (pdfs) with respect to a set of specific 
inputs. Here, sometimes floating point errors can cause these minimizations to not converge 
correctly, and hence, it might be useful to automatically detect and warn users if the floating point 
errors could be playing a role in the convergence problems.  
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Analysis data from RooFit, src: http://roofit.sourceforge.net/
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Alternative: Motivation: FP errors in High Energy Physics 

● The event field of High Energy Physics re-processes exabytes of data in its quest for “interesting” 
physics, organized into independent “events” allowing embarrassingly parallelism

● Each re-processing phase (simulation, reconstruction, analysis) consist of a long pipeline of systems 
mostly written in C++

● How we can automatize our understanding about FP representation effects and use it to our 
benefit?

○ How much we can trust our results?
○ Can we process less data while keeping an acceptable accuracy?
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Example - Simpsons

long double simpsons(double a, double b) {

int n = 1000000;

double h = (b - a) / (2.0 * n);

long double x = a;

double tmp;

double fa = f(a), fb = f(b);

long double s1 = fa;

for(int l = 0; l < n; l++) {

  x = x + h;

  s1 = s1 + 4.0 * f(x);

  x = x + h;

  s1 = s1 + 2.0 * f(x);

}

s1 = s1 - fb;

tmp = h / 3.0;

s1 = s1 * tmp;

return s1;

}

● Clad’s mixed precision configuration is upto 10% 
faster than the 10-byte extended precision 
configuration.
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Example adapted from ADAPT: Algorithmic Differentiation Applied to Floating-Point Precision 
Tuning[3]

long double f(double x) {

 double pi = M_PI;

 long double tmp = x * pi;

 long double tmp2 = sin(tmp) * pi;

 return tmp2;

}

Benchmarked with QuickBench:https://quick-bench.com/q/x0WmkQvqdMR3e8BegqyHhLxvOtw
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Data Flow in the Field of High Energy Physics
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Mixed Precision Tuning

● As mentioned in the previous slides, mixed precision tuning can be extremely useful for programs that 
want to optimize both speed, size and precision. 

● As such, “demoting” certain types to lower precision while still maintaining the desired accuracy can 
be beneficial.

● Let’s talk about a simple case study in the upcoming slides. 
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