From academia to industry

Learnings from my journey

My journey

From Physics to Data Science and Engineering

2007-2012 PhD@UB

- Work on rare B decays + computing
- Convener of small subgroup
- Convener of large physics WG

2012-2016 Postdoc@EPFL

2016-2019 SNF Ambizione@UZH

> 2019-Data@Proton

Proton

- Hired to build data department from scratch, including on-premise data platform (no cloud due to privacy)
- Grow team from 2 to 17, with Data
 Scientists, Engineers and Operations
- Bring data-driven decision making across the whole organization, large impact starting from nothing

What do I do now?

Data platform for privacy

- Grow the team to support the company's needs
 - Hire new engineers and scientists, build the second line of managers
 - Add processes, tweak, strong-arm, streamline, to make sure that the team can do their very best at all times
 - Bureaucracy
- Work with company leadership to maximize impact
- Code and build things from time to time

How did I get here?

Dumb luck and the value of being first

- Extreme case: from academia to "leadership" in one step
- Once in the position, was given freedom to do what I thought best, and it worked out
 - Environment a key point for success (physics start-up mentality)
- Lots of mistakes in making the transition: bad preparation, too much confidence, wrong attitude
- A bit of good judgment here and there too

What matters (and doesn't) when transitioning from academia to industry (data)?

Why should you listen to me?

Or how I learned my lessons

- Did IC work as data scientist, data engineer, and data operations
- As team leader, built a small department and managed relationships with "customers"
 - Designed several hiring pipelines, run about 100 candidates through the full pipeline, reviewed 2000+ CVs
 - Hired 17+ people for my team, know their stories too
- More than 200+ final interviews, from Junior to C-suite

Ready?

Why do you want to leave academia? Why do you want to go to the data field?

Do you have what employers are looking for? How can you be useful, imposter syndrome and all that

- Analytic skills, problem-solving, independence, decent-to-great CS skills
- Fight against imposter syndrome
 - Prepare, prepare, prepare
- Beware of hubris
 - Skills are there, but you are an unknown quantity, therefore a risk
 - Humility will take you very far

Which companies to apply for?

Research and networking

- Research (LinkedIn, Google) based on the answers to questions such as
 - Are you interested in any particular industry? Any particular mission or type of company? Any company that you admire?
 - What type of environment would you thrive in? Start-up vs corporate
- Check/contact people you know (many ex-CERN in industry!)
 - A contact in a company will get you past the first screening
- Try to contact people on LinkedIn and find out more about those companies

Which jobs to apply for?

Know thyself

- Think of the type of work you'd like to do
 - CERN scientists are excellent generalists
 - Specialized careers (ML engineering, data engineering) require special skills, so be honest
- It's OK to not fulfill all the requirements for the job, but be honest!
- Lead/senior positions are challenging, even if you have a very long experience in academia
- Consider "stepping stones" in job type and seniority, gaining experience is important

How to prepare for the transition?

Things to learn, things not to learn

- CERN people tend to focus on learning very technical aspects
 - Data science: Python/R, data cleaning, SQL, visualization tool (Tableau, PowerBI)
 - ML, deep learning, etc, only for ML engineers. For DS, you just need to be able to explain some of your projects.
- Business concepts are key: learn the basic concepts surrounding the industry you're interested in, the vocabulary, etc
 - Blogs, newsletters (Substack), LinkedIn "influencers", Twitter (not anymore?)
 - Study theory (in some industries)

How to get interviewed?

Standing above the crowd

- Short skills-based CV
 - Simplify, nobody cares about your scientific achievements
 - Share skills, connect the work you've done with industry concepts
 - Tell a story
 - Have a non-scientist proof-read your CV for jargon and complexity
- HR interviews are mostly used to assess team/company fit
 - Research the company, show interest, don't oversell
 - Ask questions!

How to maximize your chances?

Interviewing for success

- Research the industry and position, understand the business concepts and be comfortable using them.
- If there are some specific technical elements that you don't know, study them.
- Focus on simple communication, thought process,
- Find parallels in your work, show you can transport your academia experience quickly (you're a fast learner)
- Ask questions, show interest but don't fake it
- Don't take it personally if it doesn't work out

What differences can you expect?

Academia vs industry

- Data is never clean, the smaller the company the worse it is. Data exploration and cleaning skills are very important at the beginning.
- Iteration speed is usually much faster in industry
 - Perfect is the enemy of good enough
 - Think about the ROI (30k\$ vs 3\$ questions), scale matters
- Impact of your work is very clear (the smaller the clearer it is)
- Coordination with non-technical stakeholders, communicate and simplify concepts to obtain buy-in

What to take home from today? Key learnings

- Be confident, you're good (the hard part is getting the job)
- But not THAT good
- Prepare, work hard, be curious
- Play the long game, take time to learn and discover what you like and are good at
- Be mentally ready for rejection

Get in touch Albert Puig Navarro

albert.puig.navarro@proton.ch https://www.linkedin.com/in/ albertpuignavarro/

https://careers.proton.me/

