
THE DATA

The Fermi Gamma Ray telescope has been continuously monitoring the sky in 50MeV to 1TeV range 

since 2008. The gamma-ray properties used in this work are obtained from the 4LAC catalog, which 

contains a total of 2863 sources. Out of these only 1591 AGNs have measured redshifts. Ideally, we 

should use all the 1591 AGNs to train our ML models, but due to incomplete observations for some 

sources, we need to discard them. This leads us to a total of 730 AGNs which we use for training. 

These are made up of 422 BL Lacertae Objects (BLLs) and 308 Flat Spectrum Radio Quasars 

(FSRQs). Furthermore, we have the generalization set, which is made up of those AGN sources which 

do not have measured redshifts. Our trained model should ultimately predict the redshift of these 

AGNs. 

Some of the variables are used in their logarithmic form since they span over several orders of 

magnitude and we predict the redshift in the scale of 1/z+1 (see Fig. 4).

Fig 1: The scatter matrix plot of  the predictors used. These observed 

properties are used to predict the redshift. The scatter matrix plot shows 

their distribution with respect to eachother. The blue points denote the 

distribution of  the generalization set. 

MACHINE LEARNING MODELS

Machine learning (ML) is a field of computer science where we mimic the way a human brain learns. It focuses 

on analyzing the data and finding hidden patterns using sophisticated algorithms. In our project we train the ML 

models on the AGNs that have observed redshifts. We basically ask the models to understand the underlying 

relations between the observed photometric properties and redshift, such that we can use these relations to 

predict the redshift in the future.

There exist many machine learning algorithms which can be used to figure out these underlying relations. In our 

project we are using four methods, namely, Random Forest, XGBoost (Extreme Gradient Boosting), Bayesian 

GLM (Generalized Linear Models), and Big LASSO (Least Absolute Square Selection Operator). 

Random Forest and XGBoost belong to the class of ML algorithms called regression trees. These work by 

partitioning the data based on the values of the independent variables and averaging the value of the 

dependent variables. 

Baysian GLM is a baysian inference of the linear model. It determines the most likely estimate of the response 

variable (in our case the redshift) given the particular set of predictors and the prior distribution on the set of 

regression parameters. It works on the Fisher principle: “what value of the unknown parameter is most likely to 

generate the observed data”.

Finally, Big LASSO is a modification of the usual LASSO method, designed to work with large data sets. 

FEATURE SELECTION

One of the techniques that is used in our project is called feature selection. In this technique we pick out those

observed properties from the catalog which are better at predicting the redshift. For this purpose we use the 

LASSO method. LASSO algorithm uses a shrinkage method for linear regression by requiring the l1 norm (sum 

of the magnitude of all vectors in the given space) of the solution vector to be less than or equal to a positive 

number known as the tuning parameter (λ). By varying this tuning parameter we train the model to fit the data 

and reduce the prediction errors. 

The λ tuning parameter is tuned such that the prediction error is within 1 sigma deviation. Based on this LASSO 

assigns coefficients to the predictors, depicting how effective they are in predicting the redshift. We pick those 

predictors which have a coefficient of 5% or more. In this way, we picked 7 predictors out of a total of 14 present 

in the catalog. These are:

LogEnergy Flux - Logarithm in base of 10 of the energy flux, the units are in erg cm−2s−1, in the 100 MeV 

100 GeV range obtained by the spectral fitting in this range.

LogSignificance - The source detection significance in Gaussian sigma units, on the range from 50 MeV to 1 

TeV. 

Log Highest Energy - Measured in GeV, it is the energy of the highest energy photon detected for each source, 

selected from the lowest instrumental background noise data, with an associated probability of more than 

95%.

Logν - Logarithm in base of 10 of the synchrotron peak frequency in the observer frame, measured in Hz.

LogPivot Energy - The energy, in MeV, at which the error in the differential photon flux is minimal, derived 

from the likelihood analysis in the range from 100 MeV - 1 TeV.

LP β - the spectral parameter (β) when fitting with Log Parabola spectrum from 50 MeV to 1 TeV.

Gaia G Magnitude - Gaia Magnitude at the g-band provided by the 4LAC, taken from the Gaia Survey

SUPERLEARNER

Superlearner (SL) is an ML algorithm that allows us to combine multiple algorithms into an ensemble. An

ensemble is a collection of ML algorithms that work together to give a prediction that is more accurate than any 

of the constituent models. This is a great way to overcome the short comings of individual models and obtain 

better results. 

Indeed, SL works in this way. It take the methods we specify, and then trains each of them individually on the 

data. 

It trains the models using the 10 fold cross validation (10fCV) method, where by the data is split into 10 equal 

portions, the models are trained on 9 of them and then they predict the redshift for the 10th portion. This is done 

iteratively till all the 10 portions have been predicted. 

Then, SL compares the errors on the predictions of each model and combines them by assigning a coefficient, 

such that the final prediction has a lower error than any of the constituent models. 

INTRODUCTION

In this work, we are building a machine learning model which can predict the redshift of gamma-ray 

loud AGNs, based on their observed photometric properties.  

Measuring the redshift of AGNs is a difficult and time-consuming task, as it requires detailed 

spectroscopic observations. Hence, there is a requirement for a method that can estimate the redshift 

using the photometric observations of an AGN. Over the years many such methods have been 

proposed, with machine learning (ML) being one of the most recent developments. 

In this work we are using the Fermi 4 LAC catalog to train our ensemble machine learning model and 

predict the redshift.

Fig 2: LASSO feature selection. The bars show the coefficient

LASSO assigns to each predictor. We choose those predictors which 

have a coefficient more than 5%.  

Fig 3: This figure depicts the distribution of  the redshift in our data. 

Since there is an imbalance in the distribution of  the redshifts (more 

low-z AGN than high-z), we apply a transformation of  1/(z+1), such 

that the distribution is more uniform.  

Fig 4: This is the transformed redshift distribution which has a more 

even distribution than pure redshift. We train the ML models to 

predict on this distribution, rather than directly the redshift. Such a 

transformation improves our final ability to better predict the 

redshift.

RESULTS

Having trained our ML models, we need to obtain a realistic estimate of how well the model performs in a real 

world scenario. For this, we use the 10fCV method, performed 100 times where the splits in the data are 

randomized. The final results are an average of these 100 iterations. We perform the procedure 100 times so 

as to derandomize and stabilize the results, and to ensure that we are not under or over fitting. Once we obtain 

the predictions of the redshifts via this process, we compare them to the observed redshifts we already have 

and calculate multiple statistical parameters. The statistical parameters used in order to compare our results 

with those of others in the field are: Bias,σNMAD(normalized median absolute deviation), Pearson correlation r, 

RMSE (root mean square error), and standard deviation (σ). We quote the measured values of these 

parameters for ∆znorm and ∆z, where ∆znorm = zspec− zpred / (1+zspec)  and ∆z= zspec− zpred. We also quote the 

catastrophic outlier percentage, which is the number of predictions that lie outside the 2σ error bars.

Fig 4: This shows the correlation plot between the 

observed and predicted redshifts. 

Correlation R = 0.71

RMSE = 0.434

Bias (Δz) = 8.5 x 10-2

Bias (Δznorm) = 11.6 x 10-4

σnmad(Δz) = 0.287

σnmad(Δznorm) = 0.192

Catastrphic outliers = 5%

Fig 5: Comparision of  our results with those of  others in 

the literature.

Fig 6: This shows 

the distribution of  

the Δz. Ideally we

should see a 

histogram 

concentrated at 0. 

Due to the 

imbalance in our 

training data, we see 

that the difference in 

redshifts for high-z 

AGNs is large. This 

can only be rectified 

by using a more 

unifom distribution 

to train out ML 

models. 

Fig 7: The relative 

influence of  our 

chosen predictors 

are shown here. We 

see that the LP_beta

property has the 

highest influence in 

predicting the 

redshift, followed by 

LogPivot_Energy. It 

is noteworthy that 

in case of  gamma-

ray loud AGNs, 

luminosity is not the 

most effective 

predictor of  

redshift, unlike in 

AGN classes

PREDICTION ON THE GENERALIZATION SET

Having trained out models, we want to use it to

predict the redshift of the AGNs in the 

generalization set. For that purpose, we first 

removed all the non-BLL AGNs. This was done 

because the generalization se is dominated by BLL 

and we want to investigate the redshift predictions 

on this category. Additionally, we also trim the 

generalization set so that we are not extrapolating, 

meaning we are not trying to predict the redshift of 

those AGNs which lie beyond the parameter space 

the model has been trained on. The histograms 

shown in Fig. 8 depict the predicted redshift over 

the observed ones. 

Fig 8: The histogram distribution of  the generalization set over 

the training set, exclusively for BLLs.

CONCLUSIONS AND FUTURE WORK

• In this project we developed a methodology to predict the redshift of gamma-ray loud AGNs using their 

observed properties.

• This increases the size of the 4LAC catalog with measured redshifts by 61%.

• Currently, to the best of our knowledge, no work in the blazar literature attempts to estimate the redshift 

using their observed γ-ray characteristics

• We aim to further improve our prediction by increasing the sample size, using more robust ML models and 

eliminating missing data. 

• We are currently also implementing this methodology to predict the redshift of GRBs using their plateau 

emission parameters.
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