Covariant LQG in numerics: real, complex critical points, and ongoing developments

Dongxue Qu

Perimeter Institute

M. Han, H. Liu, DQ, 2404.10563 (2024),
M. Han, DQ, C. Zhang, 2404.02796 (2024),
M. Han, H. Liu, DQ, F. Vidotto, C. Zhang, 2402.07984 (2024),
M. Han, H. Liu, DQ, 2301.02930 (2023)

Loops'24@Florida

Dongxue Qu (Perimeter Institute)

Outline

- Motivation
- Spinfoam overviews
- Real and complex critical point
 - × Numerical algorithm of constructing boundary data and real critical point
 - ☆ Computing complex critical points
- Cosmological dynamics from spinfoam with scalar matter

Outline

- Spinfoam overviews
- Real and complex critical point
 - ☆ Numerical algorithm of constructing boundary data and real critical point
 - ☆ Computing complex critical points
- Cosmological dynamics from spinfoam with scalar matter

- Spinfoam theory is a covariant approach of LQG
- Spinfoam amplitude defines transition amplitude of LQG states.

- Spinfoam theory is a covariant approach of LQG
- Spinfoam amplitude defines transition amplitude of LQG states.
- Main challenge: the difficulty of computing spinfoam amplitude numerics on spinfoam models
 - ☆ sl2cfoam based on 15*j* + boosters [Dona, Fanizza, Sarno, Speziale, Gozzini 2018-2023]
 - Spinfoam renormalization [Bahr, Dittrich, Steinhaus, 2016-2023]
 - **Effective spinfoam model** [Asante, Dittrich, Haggard, 2020-2023]
 - Lefschetz thimble, Monte-Carlo [Steinhaus 2024, Donà, Frisoni and Vidotto, 2023, Han, Huang, Liu and DQ, 2020-2021]
 - Complex critical point and asymptotic expansion [Han, Huang, Liu, DQ, 2020-2024]

- Spinfoam theory is a covariant approach of LQG
- Spinfoam amplitude defines transition amplitude of LQG states.
- - sl2cfoam based on 15*j* + boosters [Dona, Fanizza, Sarno, Speziale, Gozzini 2018-2023]
 - Spinfoam renormalization [Bahr, Dittrich, Steinhaus, 2016-2023]
 - **Effective spinfoam model** [Asante, Dittrich, Haggard, 2020-2023]
 - Lefschetz thimble, Monte-Carlo [Steinhaus 2024, Donà, Frisoni and Vidotto, 2023, Han, Huang, Liu and DQ, 2020-2021]
 - Complex critical point and asymptotic expansion [Han, Huang, Liu, DQ, 2020-2024]
- The method of complex critical points: A generalized stationary phase approximation of spinfoam amplitude

- Spinfoam theory is a covariant approach of LQG
- Spinfoam amplitude defines transition amplitude of LQG states.
- - sl2cfoam based on 15*j* + boosters [Dona, Fanizza, Sarno, Speziale, Gozzini 2018-2023]
 - Spinfoam renormalization [Bahr, Dittrich, Steinhaus, 2016-2023]
 - **Effective spinfoam model** [Asante, Dittrich, Haggard, 2020-2023]
 - Lefschetz thimble, Monte-Carlo [Steinhaus 2024, Donà, Frisoni and Vidotto, 2023, Han, Huang, Liu and DQ, 2020-2021]
 - Complex critical point and asymptotic expansion [Han, Huang, Liu, DQ, 2020-2024]
- The method of complex critical points: A generalized stationary phase approximation of spinfoam amplitude
 - ☆ Numerical algorithm of constructing boundary data and real critical point

- Spinfoam theory is a covariant approach of LQG
- Spinfoam amplitude defines transition amplitude of LQG states.
- - sl2cfoam based on 15*j* + boosters [Dona, Fanizza, Sarno, Speziale, Gozzini 2018-2023]
 - Spinfoam renormalization [Bahr, Dittrich, Steinhaus, 2016-2023]
 - **Effective spinfoam model** [Asante, Dittrich, Haggard, 2020-2023]
 - Lefschetz thimble, Monte-Carlo [Steinhaus 2024, Donà, Frisoni and Vidotto, 2023, Han, Huang, Liu and DQ, 2020-2021]
 - Complex critical point and asymptotic expansion [Han, Huang, Liu, DQ, 2020-2024]
- The method of complex critical points: A generalized stationary phase approximation of spinfoam amplitude
 - ☆ Numerical algorithm of constructing boundary data and real critical point
 - * Deformation of boundary data and computing complex critical points

Application of complex critical point method

Application of complex critical point method

• The semiclassical analysis of spinfoam quantum gravity: Look at the large-*j* behavior:

$$\frac{d\mathcal{C}a}{\ell_p^2} \sim \gamma \sqrt{j(j+1)}, \quad \text{area} \gg \ell_p^2$$

[Asante, Bahr, Barrett, Bianchi, Bonzom, Conrady, Ding, Dittrich, Dona, Engle, Freidel, Gozzini, Haggard, Han, Hellmann, Huang, Kaminski, Kisielowski, Liu, Livine, Magliaro, Perini, Pereira, Riello, Rovelli, Sahlmann, Sarno, Speziale, Zhang, etc.]

Barbero-Immirzi parameter

Application of complex critical point method

• The semiclassical analysis of spinfoam quantum gravity: Look at the large-*j* behavior:

$$\frac{d\mathcal{L}_a}{\ell_p^2} \sim \gamma \sqrt{j(j+1)}, \quad \text{area} \gg \ell_p^2$$

[Asante, Bahr, Barrett, Bianchi, Bonzom, Conrady, Ding, Dittrich, Dona, Engle, Freidel, Gozzini, Haggard, Han, Hellmann, Huang, Kaminski, Kisielowski, Liu, Livine, Magliaro, Perini, Pereira, Riello, Rovelli, Sahlmann, Sarno, Speziale, Zhang, etc.] Barbero-Immirzi parameter

Extract properties of effective theory from the spinfoam amplitude in the large-j regime.

Application of complex critical point method

The semiclassical analysis of spinfoam quantum gravity: Look at the large-j behavior: area

$$\frac{d\mathcal{C}a}{\ell_p^2} \sim \gamma \sqrt{j(j+1)}, \quad \text{area} \gg \ell_p^2$$

[Asante, Bahr, Barrett, Bianchi, Bonzom, Conrady, Ding, Dittrich, Dona, Engle, Freidel, Gozzini, Haggard, Han, Hellmann, Huang, Kaminski, Kisielowski, Liu, Livine, Magliaro, Perini, Pereira, Riello, Rovelli, Sahlmann, Sarno, Speziale, Zhang, etc.] Barbero-Immirzi parameter

• Extract properties of effective theory from the spinfoam amplitude in the large-*j* regime.

• New development: understanding of quantum cosmology from spinfoam theory, investigate the effective dynamics of cosmology from the large-*j* spinfoam amplitude.

Outline

- Spinfoam overviews
- Real and complex critical point
 - ☆ Numerical algorithm of constructing boundary data and real critical point
 - ☆ Computing complex critical points
- Cosmological dynamics from spinfoam with scalar matter

Spinfoam overview

Dongxue Qu (Perimeter Institute)

Covariant LQG

Loops'24@Florida 7

Covariant path integral formulation of Quantum Gravity (QG):

$$Z(h_f,h_i) = \int_{h_i}^{h_f} \mathcal{D}[g] e^{\frac{i}{\ell_p^2} \int_{\mathcal{M}} \mathrm{d}^4 x \sqrt{-g}R},$$

Summing over histories of 3-geometries:

 j_1 i j_4 j_2 j_3

Inspired by [F. Vidotto, Loops'24 Summer School], [E. Livine, 2024], [C, Rovelli, F. Vidotto, 2014]

Dongxue Qu (Perimeter Institute)

Covariant path integral formulation of Quantum Gravity (QG):

$$Z(h_f, h_i) = \int_{h_i}^{h_f} \mathscr{D}[g] e^{\frac{i}{\ell_p^2} \int_{\mathscr{M}} \mathrm{d}^4 x \sqrt{-g}R},$$

Summing over histories of 3-geometries:

Adapt into LQG framework:

Quantum 3-geometry = Spin-network state (Γ, j_l, i_n)

Inspired by [F. Vidotto, Loops'24 Summer School], [E. Livine, 2024], [C, Rovelli, F. Vidotto, 2014]

Dongxue Qu (Perimeter Institute)

Summing over histories of 3-geometries:

Covariant path integral formulation of Quantum Gravity (QG):

$$Z(h_f, h_i) = \int_{h_i}^{h_f} \mathscr{D}[g] e^{\frac{i}{\ell_p^2} \int_{\mathscr{M}} \mathrm{d}^4 x \sqrt{-g}R},$$

Sub spin-network f h_f Final spin-network Σ_f : 3-dim \mathcal{M} : 4-dim \mathcal{L} : 4-dim Σ_i : 3-dim

Adapt into LQG framework:

Quantum 3-geometry = Spin-network state (Γ, j_l, i_n)

• Spins $j_l \in \text{irrep}[SU(2)]$

• Intertwiners
$$i_n \in \text{Inv}[V_{j_1} \otimes \cdots \otimes V_{j_n}^*]$$

$$j_1$$
 i j_4
 j_2
 j_3

Inspired by [F. Vidotto, Loops'24 Summer School], [E. Livine, 2024], [C, Rovelli, F. Vidotto, 2014]

Summing over histories of 3-geometries:

Covariant path integral formulation of Quantum Gravity (QG):

$$Z(h_f, h_i) = \int_{h_i}^{h_f} \mathscr{D}[g] e^{\frac{i}{\ell_p^2} \int_{\mathscr{M}} \mathrm{d}^4 x \sqrt{-g}R},$$

Sub spin-network h_f Final spin-network g \mathcal{M} : 4-dim

Initial spin-network

Adapt into LQG framework:

Quantum 3-geometry = Spin-network state (Γ, j_l, i_n)

- Spins $j_l \in \text{irrep}[SU(2)]$
- Intertwiners $i_n \in \text{Inv}[V_{j_1} \otimes \cdots \otimes V_{j_n}^*]$

LQG Hilbert space on graph Γ : $\mathscr{H}_{\Gamma} = L^2 \left(SU(2)^{\# \text{ of links}} / SU(2)^{\# \text{ of nodes}} \right)$

Inspired by [F. Vidotto, Loops'24 Summer School], [E. Livine, 2024], [C, Rovelli, F. Vidotto, 2014]

Dongxue Qu (Perimeter Institute)

Sub spin-network

Covariant LQG

 Σ_i : 3-dim

Summing over histories of 3-geometries:

Covariant path integral formulation of Quantum Gravity (QG):

$$Z(h_f, h_i) = \int_{h_i}^{h_f} \mathscr{D}[g] e^{\frac{i}{\ell_p^2} \int_{\mathscr{M}} \mathrm{d}^4 x \sqrt{-g}R},$$

Adapt into LQG framework:

Quantum 3-geometry = Spin-network state (Γ, j_l, i_n)

- Spins $j_l \in \text{irrep}[SU(2)]$
- Intertwiners $i_n \in \text{Inv}[V_{j_1} \otimes \cdots \otimes V_{j_n}^*]$

LQG Hilbert space on graph Γ : $\mathscr{H}_{\Gamma} = L^2 \left(SU(2)^{\# \text{ of links}} / SU(2)^{\# \text{ of nodes}} \right)$

Nodes: quantum polyhedron (quantum number i_n) Links: quanta of area (quantum number j_l)

Inspired by [F. Vidotto, Loops'24 Summer School], [E. Livine, 2024], [C, Rovelli, F. Vidotto, 2014]

Covariant LQG

13

Inspired by [F. Vidotto, Loops'24 Summer School], [E. Livine, 2024], [C, Rovelli, F. Vidotto, 2014]

Dongxue Qu (Perimeter Institute)

Histories of spin-networks = Spinfoam

Inspired by [F. Vidotto, Loops'24 Summer School], [E. Livine, 2024], [C, Rovelli, F. Vidotto, 2014]

Dongxue Qu (Perimeter Institute)

				[E. Livine, 2024]
	Spatial imprint	Spinfoam cell	Algebra	Geometry
Histories of spin-networks = Spinfoam	Link <i>l</i>	Face <i>f</i>	Spin j _l	Area
	Node <i>n</i>	Edge <i>e</i>	Intertwiner <i>i_n</i>	Volume
	Transition	Vertex v	Amplitude A	4d event

Inspired by [F. Vidotto, Loops'24 Summer School], [E. Livine, 2024], [C, Rovelli, F. Vidotto, 2014]

Dongxue Qu (Perimeter Institute)

				[E. Livine, 2024]
Histories of spin-networks = Spinfoam	Spatial imprint	Spinfoam cell	Algebra	Geometry
	Link <i>l</i>	Face <i>f</i>	Spin j _l	Area
	Node <i>n</i>	Edge <i>e</i>	Intertwiner <i>i_n</i>	Volume
	Transition	Vertex v	Amplitude A	4d event
Sub spin-network $S_f = (\Gamma_f, j_{l_f}, i_{n_f})$ Final spin-network Σ_f Spinfoam Sub spin-network $S_i = (\Gamma_i, j_{l_i}, i_{n_i})$	Spint	foam amplitude: A(2-complex	$\mathcal{K}^*, S_i, S_f)$ Boundary 3-geom i_{l_4} i_{l_3} i_{l_5} i_{l_2} i_{l_4} i_{l_3} i_{l_5} i_{l_5} i_{l_6} f_1 v f_2 i_{l_1} i_{l_1} i_{l_1}	etries j_{l_3} f_3 j_{l_3}

Inspired by [F. Vidotto, Loops'24 Summer School], [E. Livine, 2024], [C, Rovelli, F. Vidotto, 2014]

To study the quantum dynamics in LQG: spinfoam amplitude.

[M. Han, DQ, et al 2023]

Dongxue Qu (Perimeter Institute)

[M. Han, DQ, et al 2023]

Dongxue Qu (Perimeter Institute)

[M. Han, DQ, et al 2023]

A spinfoam $= (\mathscr{K}^*, j_f, i_e)$ 4-simplex e_1 e_2 4-d triangulation 2 - complex K \mathscr{K}^* 4-simplex σ Vertex *v* \mathscr{K} Tetrahedron Oriented edge \mathscr{K}^* τ e Triangle t **Oriented Face** f e_5

 e_4

A spinfoam $= (\mathscr{K}^*, j_f, i_e)$ 4-simplex e_1 e_2 4-d triangulation 2 - complex K \mathscr{K}^* 4-simplex σ Vertex *v* \mathscr{K} Tetrahedron Oriented edge \mathscr{K}^* τ e Triangle *t* **Oriented Face** f •• e₅

*e*₄

A spinfoam $= (\mathscr{K}^*, j_f, i_e)$ 4-simplex e_1 e_2 4-d triangulation 2 - complex K \mathscr{K}^* 4-simplex σ Vertex *v* \mathscr{K} Tetrahedron Oriented edge \mathscr{K}^* τ e Triangle *t* **Oriented Face** f • • e₅

*e*₄

A spinfoam $= (\mathscr{K}^*, j_f, i_e)$ 4-simplex e_1 e_2 4-d triangulation 2 - complex K \mathscr{K}^* 4-simplex σ Vertex *v* \mathscr{K} Tetrahedron Oriented edge \mathscr{K}^* τ e Triangle *t* **Oriented Face** f • • e₅

*e*₄

A spinfoam $= (\mathscr{K}^*, j_f, i_e)$ 4-simplex e_1 e_2 4-d triangulation 2 - complex K \mathscr{K}^* 4-simplex σ Vertex *v* \mathscr{K} Tetrahedron Oriented edge \mathscr{K}^* τ e Triangle *t* **Oriented Face** f • • e₅

*e*₄

A spinfoam $= (\mathscr{K}^*, j_f, i_e)$ 4-simplex e_1 e_2 4-d triangulation 2 - complex K \mathscr{K}^* 4-simplex σ Vertex *v* \mathscr{K} Tetrahedron Oriented edge \mathscr{K}^* τ e Triangle *t* **Oriented Face** f • • e₅

*e*₄

A spinfoam $= (\mathscr{K}^*, j_f, i_e)$ 4-simplex e_1 e_2 4-d triangulation 2 - complex K \mathscr{K}^* 4-simplex σ Vertex *v* \mathscr{K} Tetrahedron Oriented edge \mathscr{K}^* τ e Triangle t **Oriented Face** f • • e₅

*e*₄

*e*₃

Dongxue Qu (Perimeter Institute)

Covariant LQG

Loops'24@Florida 11

Spinfoam amplitude:
$$A = \sum_{j_f, i_e} \prod_f W(j_f) \prod_v A_v(j_f, i_e)$$

 $A_v(j_f, i_e) := \operatorname{Tr} \left(\bigotimes_e I_e \bigotimes_{e'} I_{e'}^* \right)$
 I_e is SL(2,C) intertwiner determined by SU(2) intertwiner i_e

Spinfoam amplitude:
$$A = \sum_{j_f, i_e} \prod_f W(j_f) \prod_v A_v(j_f, i_e)$$

 $A_v(j_f, i_e) := \operatorname{Tr} \left(\bigotimes_e I_e \bigotimes_{e'} I_{e'}^* \right)$
 I_e is SL(2,C) intertwiner determined by SU(2) intertwiner i_e
 $Y : \begin{bmatrix} \operatorname{SU}(2) \text{ unitary irrep.} \\ j_f \end{bmatrix} \rightarrow \begin{bmatrix} \operatorname{SL}(2, \mathbb{C}) \text{ unitary irrep.} \\ (\rho, k) = (\gamma j_f, j_f) \end{bmatrix}$

 $Y: |j,m\rangle \to |\gamma j,j;j,m\rangle$

Spinfoam amplitude:
$$A = \sum_{j_f, i_e} \prod_f W(j_f) \prod_v A_v(j_f, i_e)$$

 $A_v(j_f, i_e) := \operatorname{Tr} \left(\bigotimes_e I_e \bigotimes_{e'} I_{e'}^* \right)$
 J_e is SL(2,C) intertwiner determined by SU(2) intertwiner i_e
 $Y : \begin{bmatrix} \operatorname{SU}(2) \text{ unitary irrep.} \\ j_f \end{bmatrix} \rightarrow \begin{bmatrix} \operatorname{SL}(2,\mathbb{C}) \text{ unitary irrep.} \\ (\rho, k) = (\gamma j_f, j_f) \end{bmatrix}$
 $Y : |j, m\rangle \rightarrow |\gamma j, j; j, m\rangle$
 $I_e = P_{\operatorname{SL}(2,\mathbb{C})}^{\operatorname{Inv}} \circ Y(i_e)$

Path integral formulation of spinfoam amplitude:

$$A(\mathscr{K}) = \sum_{\{j_h\}} \prod_h \dim(j_h) \int [dX] e^{S[j_h, X]}.$$

$$S = \sum_v S_v, \qquad S_v = \sum_{(e, e')} \left(S_{vef} + S_{ve'f} \right).$$

[J. Simao and S. Steinhaus, 2021], [H. Liu and M. Han, 2019], [W. Kaminski, M. Kisielowski, H. Sahlmann, 2018], [M. Han, 2013], [Barrett et al, 2010]

Path integral formulation of spinfoam amplitude:

$$A(\mathscr{K}) = \sum_{\{j_h\}} \prod_h \dim(j_h) \int [dX] e^{S[j_h, X]}.$$

$$\tilde{\xi}_{ef} = \begin{cases} \xi_{ef} & \text{SU(2) spinor} \\ \xi_{ef}^{\pm} & \text{SU(1,1) spinor} \end{cases}$$

$$S = \sum_{v} S_{v}, \qquad S_{v} = \sum_{(e,e')} \left(S_{vef} + S_{ve'f} \right).$$

$$S_{vef} = j_f \left\{ 2 \ln \left[\left(m_{ef} \langle \tilde{\xi}_{ef}, Z_{vef} \rangle \right)^{\frac{\kappa_{vef} + \epsilon_e}{2}} (m_{ef} \langle Z_{vef}, \tilde{\xi}_{ef} \rangle)^{\frac{-\kappa_{vef} + \epsilon_e}{2}} \right] + (\iota\gamma\kappa_{vef} - \epsilon_e) \ln \left[m_{ef} \langle Z_{vef}, Z_{vef} \rangle \right] \right\}, \qquad Z_{vef} = g_{ve}^{\mathsf{T}} z_{vf} \qquad (1)$$

$$\mathsf{Half-edge action } S_{vef} \text{ for timelike face (Hnybida-Conrady extension model):}$$

$$\left[- \left(\sqrt{|u| + \sigma_{ee}} \right)^{\kappa_{vef}} \right]$$

$$S_{vef} = j_f \left[2 \ln \left(\sqrt{\frac{\langle l_{ef}^+, Z_{vef} \rangle}{\langle Z_{vef}, l_{ef}^+ \rangle}} \right)^{vef} - \frac{\iota}{\gamma} \kappa_{vef} \ln \left(\langle l_{ef}^+, Z_{vef} \rangle \langle Z_{vef}, l_{ef}^+ \rangle \right) \right].$$
(2)

[J. Simao and S. Steinhaus, 2021], [H. Liu and M. Han, 2019], [W. Kaminski, M. Kisielowski, H. Sahlmann, 2018], [M. Han, 2013], [Barrett et al, 2010]

Path integral formulation of spinfoam amplitude:

$$A(\mathscr{K}) = \sum_{\{j_h\}} \prod_h \dim(j_h) \int [dX] e^{S[j_h,X]}.$$

$$S = \sum_{v} S_{v}, \qquad S_v = \sum_{(e,e')} \left(S_{vef} + S_{ve'f} \right).$$

$$S = \sum_{v} S_{v}, \qquad S_v = \sum_{(e,e')} \left(S_{vef} + S_{ve'f} \right).$$

$$S = \sum_{v} S_{v}, \qquad S_v = \sum_{(e,e')} \left(S_{vef} + S_{ve'f} \right).$$

$$S_{vef} = j_f \left\{ 2 \ln \left[\left(m_{ef} \langle \tilde{\xi}_{ef}, Z_{vef} \rangle \right)^{\frac{\kappa_{vef} + \epsilon_e}{2}} (m_{ef} \langle Z_{vef}, \tilde{\xi}_{ef} \rangle)^{\frac{-\kappa_{vef} + \epsilon_e}{2}} \right] + \left(i\gamma \kappa_{vef} - \epsilon_e \right) \ln \left[m_{ef} \langle Z_{vef}, Z_{vef} \rangle \right] \right\}, \qquad Z_{vef} = g_{ve}^{\mathrm{T}} z_{vf} \qquad (1)$$

$$S_{vef} = j_f \left\{ 2 \ln \left[\left(\sqrt{\frac{\langle l_{ef}^+, Z_{vef} \rangle}{\langle Z_{vef}, l_{ef}^+ \rangle}} \right)^{\frac{\kappa_{vef}}{2}} - \frac{i}{\gamma} \kappa_{vef} \ln \left(\langle l_{ef}^+, Z_{vef} \rangle \langle Z_{vef}, l_{ef}^+ \rangle \right) \right]. \qquad (2)$$

Boundary data: spins j_b (face areas), and SU(2) spinors ξ_{ef} , or SU(1,1) spinors ξ_{ef}^{\pm} , l_{ef}^{+} (tetrahedron face normals). Integration variables $X: g_{ve} \in SL(2,\mathbb{C})$, $z_{vf} \in \mathbb{CP}^1$ and (may include) SU(1,1) spinors ξ_{ef}^{\pm} , l_{ef}^{+} .

[J. Simao and S. Steinhaus, 2021], [H. Liu and M. Han, 2019], [W. Kaminski, M. Kisielowski, H. Sahlmann, 2018], [M. Han, 2013], [Barrett et al, 2010]

Path integral formulation of spinfoam amplitude:

$$A(\mathscr{K}) = \sum_{\{j_h\}} \prod_h \dim(j_h) \int [dX] e^{S[j_h, X]}.$$

$$S = \sum_v S_v, \qquad S_v = \sum_{(e,e')} \left(S_{vef} + S_{ve'f} \right).$$

$$S = \sum_v S_v, \qquad S_v = \sum_{(e,e')} \left(S_{vef} + S_{ve'f} \right).$$

$$S = \sum_v S_v, \qquad S_v = \sum_{(e,e')} \left(S_{vef} + S_{ve'f} \right).$$

$$S_{vef} = j_f \left\{ 2 \ln \left[\left(m_{ef} \langle \tilde{\xi}_{ef}, Z_{vef} \rangle \right)^{\frac{\kappa_{vef} + \epsilon_e}{2}} (m_{ef} \langle Z_{vef}, \tilde{\xi}_{ef} \rangle)^{\frac{-\kappa_{vef} + \epsilon_e}{2}} \right] + \left(i\gamma \kappa_{vef} - \epsilon_e \right) \ln \left[m_{ef} \langle Z_{vef}, Z_{vef} \rangle \right] \right\}, \qquad Z_{vef} = g_{ve}^{\mathrm{T}} z_{vf} \qquad (1)$$

$$S_{vef} = j_f \left\{ 2 \ln \left[\left(\sqrt{\frac{\langle l_{ef}^+, Z_{vef} \rangle}{\langle Z_{vef}, l_{ef}^+ \rangle}} \right)^{\frac{\kappa_{vef}}{2}} \right] + \left(i\gamma \kappa_{vef} - \epsilon_e \right) \ln \left[m_{ef} \langle Z_{vef}, Z_{vef} \rangle \right] \right\}, \qquad Z_{vef} = g_{ve}^{\mathrm{T}} z_{vf} \qquad (1)$$

Boundary data: spins j_b (face areas), and SU(2) spinors ξ_{ef} , or SU(1,1) spinors ξ_{ef}^{\pm} , l_{ef}^{+} (tetrahedron face normals). Integration variables $X: g_{ve} \in SL(2,\mathbb{C})$, $z_{vf} \in \mathbb{CP}^1$ and (may include) SU(1,1) spinors ξ_{ef}^{\pm} , l_{ef}^{+} .

Path integral formulation of spinfoam amplitude is important to semi-classical analysis.

[J. Simao and S. Steinhaus, 2021], [H. Liu and M. Han, 2019], [W. Kaminski, M. Kisielowski, H. Sahlmann, 2018], [M. Han, 2013], [Barrett et al, 2010]

Outline

- Motivation
- Spinfoam overviews
- Real and complex critical point

* Numerical algorithm of constructing boundary data and real critical point

- ☆ Computing complex critical points
- Cosmological dynamics from spinfoam with scalar matter

Numerical algorithm of constructing boundary data and critical point

arXiv: 2404.10563 M. Han, H. Liu, DQ (2024.04) https://github.com/dqu2017/Real-and-Complex-Critical-Points

Dongxue Qu (Perimeter Institute)

• To probe the large-*j* regime, we scale spins $j_f \rightarrow \lambda j_f$ with $\lambda \gg 1$,

Dongxue Qu (Perimeter Institute)

• To probe the large-*j* regime, we scale spins $j_f \rightarrow \lambda j_f$ with $\lambda \gg 1$,

$$A_{\nu}(\lambda j_f, \tilde{\xi}_{ef}, l_{ef}^{\pm}) = \int [\mathrm{d}g_{\nu e} \mathrm{d}z_{\nu f}] \, e^{\lambda S_{\nu}}.$$

Dongxue Qu (Perimeter Institute)

• To probe the large-*j* regime, we scale spins $j_f \rightarrow \lambda j_f$ with $\lambda \gg 1$,

$$A_{v}(\lambda j_{f}, \tilde{\xi}_{ef}, l_{ef}^{\pm}) = \int [\mathrm{d}g_{ve} \mathrm{d}z_{vf}] e^{\lambda S_{v}}.$$

• Applying the stationary phase approximation:

• To probe the large-*j* regime, we scale spins $j_f \rightarrow \lambda j_f$ with $\lambda \gg 1$,

$$A_{v}(\lambda j_{f}, \tilde{\xi}_{ef}, l_{ef}^{\pm}) = \int [\mathrm{d}g_{ve} \mathrm{d}z_{vf}] e^{\lambda S_{v}}.$$

• Applying the stationary phase approximation:

 $\delta_g S_v = \delta_z S_v = 0$, Re(S_v) = 0. The solution is called *(real) critical point*.

Dongxue Qu (Perimeter Institute)

• To probe the large-*j* regime, we scale spins $j_f \rightarrow \lambda j_f$ with $\lambda \gg 1$,

$$A_{\nu}(\lambda j_f, \tilde{\xi}_{ef}, l_{ef}^{\pm}) = \int [\mathrm{d}g_{\nu e} \mathrm{d}z_{\nu f}] e^{\lambda S_{\nu}}.$$

• Applying the stationary phase approximation:

 $\delta_g S_v = \delta_z S_v = 0$, Re(S_v) = 0. The solution is called *(real) critical point*.

Stationary phase analysis of spinfoam: critical points \implies Discrete geometries [Barrett et al, 2010]

• To probe the large-*j* regime, we scale spins $j_f \rightarrow \lambda j_f$ with $\lambda \gg 1$,

$$A_{\nu}(\lambda j_f, \tilde{\xi}_{ef}, l_{ef}^{\pm}) = \int [\mathrm{d}g_{\nu e} \mathrm{d}z_{\nu f}] e^{\lambda S_{\nu}}.$$

• Applying the stationary phase approximation:

 $\delta_g S_v = \delta_z S_v = 0$, Re(S_v) = 0. The solution is called *(real) critical point*.

Stationary phase analysis of spinfoam: critical points \implies Discrete geometries [Barrett et al, 2010]

Practical viewpoint for physical scenario

Discrete geometries \implies boundary data and critical points

4-simplex

[J. Simao and S. Steinhaus, 2021] [P. Dona, M. Fanizza, G. Sarno, S. Speziale 2019], [W. Kaminski, M. Kisielowski, H. Sahlmann, 2018], [Barrett et al, 2010]

[J. Simao and S. Steinhaus, 2021] [P. Dona, M. Fanizza, G. Sarno, S. Speziale 2019], [W. Kaminski, M. Kisielowski, H. Sahlmann, 2018], [Barrett et al, 2010]

Covariant LQG

P.

 P_3

 P_5

[J. Simao and S. Steinhaus, 2021] [P. Dona, M. Fanizza, G. Sarno, S. Speziale 2019], [W. Kaminski, M. Kisielowski, H. Sahlmann, 2018], [Barrett et al, 2010]

Covariant LQG

 P_{2}

 P_5

 P_5

 $sign(e_i) = (+1, +1, -1, -1, -1)$

 $N_{ve_{\Delta}}$

 N_{ve_3}

 N_{ve_5}

Pa

[J. Simao and S. Steinhaus, 2021] [P. Dona, M. Fanizza, G. Sarno, S. Speziale 2019], [W. Kaminski, M. Kisielowski, H. Sahlmann, 2018], [Barrett et al, 2010]

Dongxue Qu (Perimeter Institute)

[J. Simao and S. Steinhaus, 2021] [P. Dona, M. Fanizza, G. Sarno, S. Speziale 2019], [W. Kaminski, M. Kisielowski, H. Sahlmann, 2018], [Barrett et al, 2010]

[J. Simao and S. Steinhaus, 2021] [P. Dona, M. Fanizza, G. Sarno, S. Speziale 2019], [W. Kaminski, M. Kisielowski, H. Sahlmann, 2018], [Barrett et al, 2010]

Dongxue Qu (Perimeter Institute)

[J. Simao and S. Steinhaus, 2021] [P. Dona, M. Fanizza, G. Sarno, S. Speziale 2019], [W. Kaminski, M. Kisielowski, H. Sahlmann, 2018], [Barrett et al, 2010]

Dongxue Qu (Perimeter Institute)

Dongxue Qu (Perimeter Institute)

[J. Simao and S. Steinhaus, 2021], [H. Liu and M. Han, 2019], [W. Kaminski, M. Kisielowski, H. Sahlmann, 2018]

From the 4-simplex geometry \implies Boundary data $(j_f, \tilde{\xi}_{ef}, l_{ef}^{\pm})$ and critical point (g_{ve}^0, z_{vf}^0)

$$\begin{split} P_1 &= (0,0,0,0), \quad P_2 = (0,0,0,1), \quad P_3 = (0,0,1,1), \\ P_4 &= (0,1,1,1), \quad P_5 = (\frac{1}{2},1,1,1) \,. \end{split}$$

[J. Simao and S. Steinhaus, 2021], [H. Liu and M. Han, 2019], [W. Kaminski, M. Kisielowski, H. Sahlmann, 2018]

$$\begin{split} P_1 &= (0,0,0,0), \quad P_2 = (0,0,0,1), \quad P_3 = (0,0,1,1), \\ P_4 &= (0,1,1,1), \quad P_5 = (\frac{1}{2},1,1,1) \,. \end{split}$$

[J. Simao and S. Steinhaus, 2021], [H. Liu and M. Han, 2019], [W. Kaminski, M. Kisielowski, H. Sahlmann, 2018]

$$\begin{split} P_1 &= (0,0,0,0), \quad P_2 = (0,0,0,1), \quad P_3 = (0,0,1,1), \\ P_4 &= (0,1,1,1), \quad P_5 = (\frac{1}{2},1,1,1) \,. \end{split}$$

[J. Simao and S. Steinhaus, 2021], [H. Liu and M. Han, 2019], [W. Kaminski, M. Kisielowski, H. Sahlmann, 2018]
4-simplex action

[J. Simao and S. Steinhaus, 2021], [H. Liu and M. Han, 2019], [W. Kaminski, M. Kisielowski, H. Sahlmann, 2018]

4-simplex action

[J. Simao and S. Steinhaus, 2021], [H. Liu and M. Han, 2019], [W. Kaminski, M. Kisielowski, H. Sahlmann, 2018]

4-simplex action

https://github.com/dqu2017/Real-and-Complex-Critical-Points

[J. Simao and S. Steinhaus, 2021], [H. Liu and M. Han, 2019], [W. Kaminski, M. Kisielowski, H. Sahlmann, 2018]

Dongxue Qu (Perimeter Institute)

[J. Simao and S. Steinhaus, 2021], [H. Liu and M. Han, 2019], [W. Kaminski, M. Kisielowski, H. Sahlmann, 2018], [M. Han and M. Zhang, 2011], [H. Liu loops24' summer school lecture]

[J. Simao and S. Steinhaus, 2021], [H. Liu and M. Han, 2019], [W. Kaminski, M. Kisielowski, H. Sahlmann, 2018], [M. Han and M. Zhang, 2011], [H. Liu loops24' summer school lecture]

[J. Simao and S. Steinhaus, 2021], [H. Liu and M. Han, 2019], [W. Kaminski, M. Kisielowski, H. Sahlmann, 2018], [M. Han and M. Zhang, 2011], [H. Liu loops24' summer school lecture]

[J. Simao and S. Steinhaus, 2021], [H. Liu and M. Han, 2019], [W. Kaminski, M. Kisielowski, H. Sahlmann, 2018], [M. Han and M. Zhang, 2011], [H. Liu loops24' summer school lecture]

[J. Simao and S. Steinhaus, 2021], [H. Liu and M. Han, 2019], [W. Kaminski, M. Kisielowski, H. Sahlmann, 2018], [M. Han and M. Zhang, 2011], [H. Liu loops24' summer school lecture]

Dongxue Qu (Perimeter Institute)

[J. Simao and S. Steinhaus, 2021], [H. Liu and M. Han, 2019], [W. Kaminski, M. Kisielowski, H. Sahlmann, 2018], [M. Han and M. Zhang, 2011], [H. Liu loops24' summer school lecture]

Dongxue Qu (Perimeter Institute)

[J. Simao and S. Steinhaus, 2021], [H. Liu and M. Han, 2019], [W. Kaminski, M. Kisielowski, H. Sahlmann, 2018], [M. Han and M. Zhang, 2011], [H. Liu loops24' summer school lecture]

Dongxue Qu (Perimeter Institute)

https://github.com/dqu2017/Real-and-Complex-Critical-Points

https://github.com/dqu2017/Real-and-Complex-Critical-Points

e

e2.

Outline

- Motivation
- Spinfoam overviews
- Real and complex critical point

☆ Numerical algorithm of constructing boundary data and real critical point

☆ Computing complex critical points

• Cosmological dynamics from spinfoam with scalar matter

Complex critical Points and Applications

arXiv: 2404.10563 (2023.01) arXiv: 2404.10563 (2021.10) M. Han, Z.Huang, H. Liu, DQ

The full spinfoam amplitude on the simplicial \mathcal{K} needs to sum over internal *j*:

$$A(\mathcal{K}) = \sum_{j_h} d_{j_h} \int d\mu(g, \mathbf{z}) e^S, \quad S = \sum_h j_h F_h(g, \mathbf{z}) + \sum_b j_b F_b(g, \mathbf{z}, \xi)$$

Confusion of "*Flatness Problem*": the spin foam amplitude seems to be dominated only by *flat Regge geometries* in the large-*j* regime:

 $\delta_{j_h} S = 0 \Longrightarrow \text{deficit angles (discrete curvature)} \ \delta = 0 \mod 4\pi \mathbb{Z}/\gamma$

[Hörmander, 1983] [Melin, Sjöstrand, 1975]

The full spinfoam amplitude on the simplicial \mathcal{K} needs to sum over internal *j*:

$$A(\mathscr{K}) = \sum_{j_h} d_{j_h} \int d\mu(g, \mathbf{z}) e^{S}, \quad S = \sum_h j_h F_h(g, \mathbf{z}) + \sum_b j_b F_b(g, \mathbf{z}, \xi)$$

Confusion of "*Flatness coblem*": the spin foam amplitude seems to be dominated only by *flat Regge geometries* in the large-*j* regime: $\delta_{j_h}S = 0 \implies$ deficit angles (discrete curvature) $\delta = 0 \mod 4\pi \mathbb{Z}/\gamma$

[Hörmander, 1983] [Melin, Sjöstrand, 1975]

The full spinfoam amplitude on the simplicial \mathcal{K} needs to sum over internal *j*:

$$A(\mathscr{K}) = \sum_{j_h} d_{j_h} \int d\mu(g, \mathbf{z}) e^{S}, \quad S = \sum_h j_h F_h(g, \mathbf{z}) + \sum_b j_b F_b(g, \mathbf{z}, \xi)$$

Confusion of "*Flatness coblem*": the spin foam amplitude seems to be dominated only by *flat Regge geometries* in the large-*j* regime: $\delta_{j_h}S = 0 \implies$ deficit angles (discrete curvature) $\delta = 0 \mod 4\pi \mathbb{Z}/\gamma$

We consider the large- λ integral:

$$\int_{\mathscr{K}} \mathrm{d}^N x \, \mu(x) \, e^{\lambda S(r,x)},$$

• S(r, x) and $\mu(x)$ are analytic functions for $r \in U \subset \mathbb{R}^k$, $x \in K \subset \mathbb{R}^N$.

• $U \times K$ is a compact neighborhood of (r^0, x^0) , x^0 is a real critical point.

[Hörmander, 1983] [Melin, Sjöstrand, 1975]

The full spinfoam amplitude on the simplicial \mathcal{K} needs to sum over internal *j*:

$$A(\mathscr{K}) = \sum_{j_h} d_{j_h} \int d\mu(g, \mathbf{z}) e^{S}, \quad S = \sum_h j_h F_h(g, \mathbf{z}) + \sum_b j_b F_b(g, \mathbf{z}, \xi)$$

Confusion of "*Flatness roblem*": the spin foam amplitude seems to be dominated only by *flat Regge geometries* in the large-*j* regime: $\delta_{j_h}S = 0 \implies$ deficit angles (discrete curvature) $\delta = 0 \mod 4\pi \mathbb{Z}/\gamma$

We consider the large- λ integral:

$$\int_{\mathscr{K}} \mathrm{d}^N x \, \mu(x) \, e^{\lambda S(r,x)},$$

• S(r, x) and $\mu(x)$ are analytic functions for $r \in U \subset \mathbb{R}^k$, $x \in K \subset \mathbb{R}^N$.

• $U \times K$ is a compact neighborhood of (r^0, x^0) , x^0 is a real critical point.

Analytic Extension: $x \to z \in \mathbb{C}^N$, $S(r, x) \to S(r, z)$

Complex critical points: z = Z(r) are the solutions of the complex critical equation

 $\partial_{\tau} \mathcal{S} = 0$

[Hörmander, 1983] [Melin, Sjöstrand, 1975]

The full spinfoam amplitude on the simplicial \mathcal{K} needs to sum over internal *j*:

$$A(\mathscr{K}) = \sum_{j_h} d_{j_h} \int d\mu(g, \mathbf{z}) e^{S}, \quad S = \sum_h j_h F_h(g, \mathbf{z}) + \sum_b j_b F_b(g, \mathbf{z}, \xi)$$

Confusion of "*Flatness coblem*": the spin foam amplitude seems to be dominated only by *flat Regge geometries* in the large-*j* regime: $\delta_{j_h}S = 0 \implies$ deficit angles (discrete curvature) $\delta = 0 \mod 4\pi \mathbb{Z}/\gamma$

We consider the large- λ integral:

$$\int_{\mathscr{K}} \mathrm{d}^N x \, \mu(x) \, e^{\lambda S(r,x)},$$

• S(r, x) and $\mu(x)$ are analytic functions for $r \in U \subset \mathbb{R}^k$, $x \in K \subset \mathbb{R}^N$.

• $U \times K$ is a compact neighborhood of (r^0, x^0) , x^0 is a real critical point.

Analytic Extension: $x \to z \in \mathbb{C}^N$, $S(r, x) \to S(r, z)$

Complex critical points: z = Z(r) are the solutions of the complex critical equation

 $\partial_{\tau} \mathcal{S} = 0$

[Hörmander, 1983] [Melin, Sjöstrand, 1975]

[Hörmander, 1983] [Melin, Sjöstrand, 1975]

Dongxue Qu (Perimeter Institute)

• There exists constant C > 0 such that

[Hörmander, 1983] [Melin, Sjöstrand, 1975]

Dongxue Qu (Perimeter Institute)

• There exists constant C > 0 such that

 $\operatorname{Re}(\mathcal{S}) \leq -C \left| \operatorname{Im}(Z) \right|^2.$

[Hörmander, 1983] [Melin, Sjöstrand, 1975]

• There exists constant C > 0 such that

$$\operatorname{Re}(\mathcal{S}) \le -C \,|\, \operatorname{Im}(Z)\,|^2$$

Interpolating two regimes:

[Hörmander, 1983] [Melin, Sjöstrand, 1975]

Large- λ asymptotic expansion for the integral: $\int_{K} d^{N}x \,\mu(x)e^{\lambda S(r,x)} = \left(\frac{1}{\lambda}\right)^{\frac{N}{2}} \frac{e^{\lambda S(r,Z(r))}\mu(Z(r))}{\sqrt{\det\left(-\delta_{z,z}^{2}S(r,Z(r))/2\pi\right)}} \left[1 + O(1/\lambda)\right]$

• There exists constant C > 0 such that

$$\operatorname{Re}(\mathscr{S}) \leq -C \left| \operatorname{Im}(Z) \right|^2.$$

Interpolating two regimes:

$$\begin{cases} r = r^0, & \operatorname{Re}(\mathscr{S}(r^0, Z(r^0)) = 0, & \operatorname{oscillatory phase}.\\ r \neq r^0, & \operatorname{Re}(\mathscr{S}(r, Z(r)) < 0, & \operatorname{exponentially decaying amplitude} e^{\lambda \operatorname{Re}(\mathscr{S})}. \end{cases}$$

Large- λ asymptotic expansion for the integral: $\int_{K} d^{N}x \,\mu(x)e^{\lambda S(r,x)} = \left(\frac{1}{\lambda}\right)^{\frac{N}{2}} \frac{e^{\lambda S(r,Z(r))}\mu(Z(r))}{\sqrt{\det\left(-\delta_{z,z}^{2}S(r,Z(r))/2\pi\right)}} \left[1 + O(1/\lambda)\right]$

• There exists constant C > 0 such that

$$\operatorname{Re}(\mathscr{S}) \le -C \,|\, \operatorname{Im}(Z)\,|^2$$

• Interpolating two regimes:

 $\begin{cases} r = r^0, & \operatorname{Re}(\mathcal{S}(r^0, Z(r^0)) = 0, & \operatorname{oscillatory phase}.\\ r \neq r^0, & \operatorname{Re}(\mathcal{S}(r, Z(r)) < 0, & \operatorname{exponentially decaying amplitude} e^{\lambda \operatorname{Re}(\mathcal{S})}. \end{cases}$

It gives a smooth description of the asymptotics in the parameter space of r

For given λ , there always exists small Im(Z) such that $\text{Re}(\mathcal{S})$ is not small

[Hörmander, 1983] [Melin, Sjöstrand, 1975]

Dongxue Qu (Perimeter Institute)

Large- λ asymptotic expansion for the integral: $\int_{K} d^{N}x \,\mu(x)e^{\lambda S(r,x)} = \left(\frac{1}{\lambda}\right)^{\frac{N}{2}} \frac{e^{\lambda S(r,Z(r))}\mu(Z(r))}{\sqrt{\det\left(-\delta_{z,z}^{2}S(r,Z(r))/2\pi\right)}} \left[1 + O(1/\lambda)\right]$

• There exists constant C > 0 such that

$$\operatorname{Re}(\mathcal{S}) \le -C \left| \operatorname{Im}(Z) \right|^2$$

• Interpolating two regimes:

 $\begin{cases} r = r^0, & \operatorname{Re}(\mathcal{S}(r^0, Z(r^0)) = 0, & \operatorname{oscillatory phase}.\\ r \neq r^0, & \operatorname{Re}(\mathcal{S}(r, Z(r)) < 0, & \operatorname{exponentially decaying amplitude} e^{\lambda \operatorname{Re}(\mathcal{S})}. \end{cases}$

It gives a smooth description of the asymptotics in the parameter space of r

For given λ , there always exists small Im(Z) such that Re(\mathscr{S}) is not small

https://github.com/dqu2017/Real-and-Complex-Critical-Points

GammaValue = 1 / 100; ComplexSoln = getComplexSoln[GammaValue, Flatsoln];

[Hörmander, 1983] [Melin, Sjöstrand, 1975]

Dongxue Qu (Perimeter Institute)

Large- λ asymptotic expansion for the integral: $\int_{K} d^{N}x \,\mu(x)e^{\lambda S(r,x)} = \left(\frac{1}{\lambda}\right)^{\frac{N}{2}} \frac{e^{\lambda S(r,Z(r))}\mu(Z(r))}{\sqrt{\det\left(-\delta_{z,z}^{2}S(r,Z(r))/2\pi\right)}} \left[1 + O(1/\lambda)\right]$

• There exists constant C > 0 such that

$$\operatorname{Re}(\mathcal{S}) \le -C \left| \operatorname{Im}(Z) \right|^2$$

• Interpolating two regimes:

 $\begin{cases} r = r^0, & \operatorname{Re}(\mathcal{S}(r^0, Z(r^0)) = 0, & \operatorname{oscillatory phase}. \\ r \neq r^0, & \operatorname{Re}(\mathcal{S}(r, Z(r)) < 0, & \operatorname{exponentially decaying amplitude} e^{\lambda \operatorname{Re}(\mathcal{S})}. \end{cases}$

It gives a smooth description of the asymptotics in the parameter space of r

For given λ , there always exists small Im(Z) such that Re(\mathscr{S}) is not small

https://github.com/dqu2017/Real-and-Complex-Critical-Points

GammaValue = 1 / 100; ComplexSoln = getComplexSoln[GammaValue, Flatsoln];

[Hörmander, 1983] [Melin, Sjöstrand, 1975]

Dongxue Qu (Perimeter Institute)

Large- λ asymptotic expansion for the integral: $\int_{K} d^{N}x \,\mu(x)e^{\lambda S(r,x)} = \left(\frac{1}{\lambda}\right)^{\frac{N}{2}} \frac{e^{\lambda S(r,Z(r))}\mu(Z(r))}{\sqrt{\det\left(-\delta_{z,z}^{2}S(r,Z(r))/2\pi\right)}} \left[1 + O(1/\lambda)\right]$

• There exists constant C > 0 such that

$$\operatorname{Re}(\mathscr{S}) \le -C \left| \operatorname{Im}(Z) \right|^2$$

• Interpolating two regimes:

 $\begin{cases} r = r^0, & \operatorname{Re}(\mathcal{S}(r^0, Z(r^0)) = 0, & \operatorname{oscillatory phase}.\\ r \neq r^0, & \operatorname{Re}(\mathcal{S}(r, Z(r)) < 0, & \operatorname{exponentially decaying amplitude} e^{\lambda \operatorname{Re}(\mathcal{S})}. \end{cases}$

It gives a smooth description of the asymptotics in the parameter space of r

For given λ , there always exists small Im(Z) such that $\operatorname{Re}(\mathscr{S})$ is not small

https://github.com/dqu2017/Real-and-Complex-Critical-Points

```
GammaValue = 1/100;
ComplexSoln = getComplexSoln[GammaValue,,Flatsoln];
actionDelta3 /. γ → GammaValue /. ComplexSoln // ExpandAll
-1.41654×10<sup>-8</sup> + 1276.02 i
```

[Hörmander, 1983] [Melin, Sjöstrand, 1975]

Dongxue Qu (Perimeter Institute)

Covariant LQG

Z(r) $x^{0} = Z(r^{0})$ Re(z)

• For boundary data $r = r^0 = \{j_f, \xi_{eb}\}$ of Lorentzian Regge geometry (tetrahedra are glued with shape matching): 2 solutions and 2 oscillatory phases in the asymptotic: $A_v \simeq \lambda^{-12} \left(N_+ e^{i\lambda S_{Regge}} + N_- e^{-i\lambda S_{Regge}} \right)$.

• For $r \neq r^0$, it leads to no solutions, and A_v will be exponentially suppressed.

• For boundary data $r = r^0 = \{j_f, \xi_{eb}\}$ of Lorentzian Regge geometry (tetrahedra are glued with shape matching): 2 solutions and 2 oscillatory phases in the asymptotic: $A_v \simeq \lambda^{-12} \left(N_+ e^{i\lambda S_{Regge}} + N_- e^{-i\lambda S_{Regge}} \right)$.

• For $r \neq r^0$, it leads to no solutions, and A_v will be exponentially suppressed. δz_4 is the deviation from shape matching: $\delta z_4 \neq 0$, tetrahedra are glued with only area-matching but without shape-matching.

 e_3

• For boundary data $r = r^0 = \{j_f, \xi_{eb}\}$ of Lorentzian Regge geometry (tetrahedra are glued with shape matching): 2 solutions and 2 oscillatory phases in the asymptotic: $A_v \simeq \lambda^{-12} \left(N_+ e^{i\lambda S_{Regge}} + N_- e^{-i\lambda S_{Regge}} \right)$.

• For $r \neq r^0$, it leads to no solutions, and A_v will be exponentially suppressed. δz_4 is the deviation from shape matching: $\delta z_4 \neq 0$, tetrahedra are glued with only area-matching but without shape-matching.

For any given λ , there exists small deformation, such that the amplitude is not suppressed.

 e_{Δ}

 e_1

 e_3

`e₅

• For boundary data $r = r^0 = \{j_f, \xi_{eb}\}$ of Lorentzian Regge geometry (tetrahedra are glued with shape matching): 2 solutions and 2 oscillatory phases in the asymptotic: $A_v \simeq \lambda^{-12} \left(N_+ e^{i\lambda S_{Regge}} + N_- e^{-i\lambda S_{Regge}} \right)$.

• For $r \neq r^0$, it leads to no solutions, and A_v will be exponentially suppressed. δz_4 is the deviation from shape matching: $\delta z_4 \neq 0$, tetrahedra are glued with only area-matching but without shape-matching.

For any given λ , there exists small deformation, such that the amplitude is not suppressed.

Flatness problem:

- For the boundary data corresponds to a flat Regge geometry, there is a real critical point and the amplitude gives an oscillatory phase.
- For the boundary data corresponds to a curved Regge geometry, there is no real critical points and the amplitude is exponentially suppressed.

 e_1

 e_2

 e_{Δ}

 e_3

 e_5

• For boundary data $r = r^0 = \{j_f, \xi_{eb}\}$ of Lorentzian Regge geometry (tetrahedra are glued with shape matching): 2 solutions and 2 oscillatory phases in the asymptotic: $A_v \simeq \lambda^{-12} \left(N_+ e^{i\lambda S_{Regge}} + N_- e^{-i\lambda S_{Regge}} \right)$.

• For $r \neq r^0$, it leads to no solutions, and A_v will be exponentially suppressed. δz_4 is the deviation from shape matching: $\delta z_4 \neq 0$, tetrahedra are glued with only area-matching but without shape-matching.

For any given λ , there exists small deformation, such that the amplitude is not suppressed.

 e_{Δ}

 e_1

 e_3

`e₅

• For boundary data $r = r^0 = \{j_f, \xi_{eb}\}$ of Lorentzian Regge geometry (tetrahedra are glued with shape matching): 2 solutions and 2 oscillatory phases in the asymptotic: $A_v \simeq \lambda^{-12} \left(N_+ e^{i\lambda S_{Regge}} + N_- e^{-i\lambda S_{Regge}} \right).$

• For $r \neq r^0$, it leads to no solutions, and A_v will be exponentially suppressed. δz_4 is the deviation from shape matching: $\delta z_4 \neq 0$, tetrahedra are glued with only area-matching but without shape-matching.

For any given λ , there exists small deformation, such that the amplitude is not suppressed.

 e_1

 e_{Δ}

 e_3

e5

Applications: Δ_3^2 triangulation

- Δ_3 triangulation has no internal edge: trivial Regge dynamics
- 1 internal edges $l_{12} = L_0 + \delta L$ on double- Δ_3 triangulation: non-trivial Regge dynamics.

The spinfoam amplitude and the splitting *j*-variables:

$$A(\mathscr{K}) = \int dj_{h_o} \mathscr{Z}_{\mathscr{K}} (j_{h_o}), \quad \mathscr{Z}_{\mathscr{K}} (j_{h_o}) = \int \prod_{\bar{h}} dj_{\bar{h}} \prod_{h} (2\lambda d_{\lambda j_h}) \int [dg d\mathbf{z}] e^{\lambda S}.$$

$$\mathscr{Z}_{\mathscr{K}} (j_{h_o}) \sim e^{\lambda S (j_{h_o})} \text{ Effective action}$$

• changing variable $j_{h_o} \to l_{12} : A(\mathscr{K}) \sim \int dl_{12} e^{\lambda \mathscr{S}(l_{12})}$, similar to path integral of Regge

Applications: Δ_3^2 triangulation

Regge dynamics is reproduced for small γ , and gets corrections for finite γ
Outline

Motivation

- Spinfoam overviews
- Real and complex critical point

☆ Numerical algorithm of constructing boundary data and real critical point

☆ Computing complex critical points

Cosmological dynamics from spinfoam with scalar matter

Cosmological Dynamics from Covariant Loop Quantum Gravity with Scalar Matter

arXiv: 2402.07984 (2024.02)

M. Han, H. Liu, F. Vidotto, DQ and C. Zhang

A hypercube consists of 24 4-simplices: $(v_1, v_2, \dots, v_{24})$.

Periodic boundary condition

 v_6

A hypercube consists of 24 4-simplices: $(v_1, v_2, \dots, v_{24})$.

Periodic boundary condition

• Flat hypercube:
$$a_f = a_i$$
.
• Curved hypercube: $a_f = a_i - 2\delta a$, $\delta a \neq 0$
• The spinfoam action with a coherent spin-network boundary state is
 $S_{SF} = S[j_h, X; j_b, \xi_{eb}] + \left[i\sum_{b_f} \gamma \vartheta_{b_f}^0 (j_{b_f} - j_{b_f}^0) - i\sum_{b_i} \gamma \vartheta_{b_i}^0 (j_{b_i} - j_{b_i}^0) - \sum_{b_i} \frac{1}{2j_b^0} (j_b - j_{b_i}^0)^2\right]$.
• The scalar field action with the coherent state as the boundary state
 $S_{Scalar}(g, \varphi_{v}; \varphi_{v_{b_i(f)}}, \pi_{v_{b_i(f)}}) = \frac{1}{2}\sum_{b_{v'}} \rho_{vv'} (\varphi_v - \varphi_v)^2 + \frac{1}{4h}\sum_{v_{b_i}} \left(z_{v_{b_i}}^2 - 2\left(\varphi_{v_{b_i}} - z_{v_{b_i}}^2\right) - z_{v_{b_i}}^2 z_{v_{b_i}}\right) + \frac{1}{4h}\sum_{v_{b_f}} \left(z_{v_{b_f}}^2 - 2\left(\varphi_{v_{b_f}} - z_{v_{b_f}}^2\right)^2 - z_{v_{b_f}}^2 z_{v_{b_f}}\right)$
where the initial and final scalar data are $z_{v_{b_i}} = \phi_{v_{b_i}} + i\pi_{v_{b_i}}$, $z_{v_{b_f}} = \phi_{v_{b_f}} + i\pi_{v_{b_f}}$.

Dongxue Qu (Perimeter Institute)

Covariant LQG

Loops'24@Florida 29

A hypercube consists of 24 4-simplices: $(v_1, v_2, \dots, v_{24})$.

Periodic boundary condition

 v_6

A hypercube consists of 24 4-simplices: $(v_1, v_2, \dots, v_{24})$.

Periodic boundary condition

 V_{19}

The spinfoam amplitude coupled with scalar matter:

$$\int \prod_{I=1}^{N_{\text{out}}} dj_I^{\text{out}} \mathcal{Z}_{\mathscr{K}} \left(j_I^{\text{out}}, \xi_{eb}, K_{i(f)}, \phi_{i(f)}, \pi_{i(f)} \right), \qquad \mathcal{Z}_{\mathscr{K}} = \int d^N \mathbf{x} \, \mu(\mathbf{x}) \, e^{S_{\text{tot}}(r, \mathbf{x})}, \qquad S_{\text{tot}}(r, \mathbf{x}) = S_{\text{SF}} + S_{\text{Scalar}}.$$

• External data $r = (a_{i(f)}, K_{i(f)}, \phi_{i(f)}, \pi_{i(f)}).$

• The integration variables $\mathbf{x} = \{g_{ve}, z_{vf}, \xi_{eh}^{\pm}, l_{eh}^{+}, j_{\bar{h}}, \varphi_{v}\} \implies 1192$ real variables

Dongxue Qu (Perimeter Institute)

- When r^0 is determined by $a_i = a_f = 1$, fixed *h* value, and $K_b = \phi_{v_b} = \pi_{v_b} = 0 \implies$ Real critical point.
- When $r = r^0 + \delta r \implies$ Complex critical point.

- When r^0 is determined by $a_i = a_f = 1$, fixed *h* value, and $K_b = \phi_{v_b} = \pi_{v_b} = 0 \implies$ Real critical point.
- When $r = r^0 + \delta r \implies$ Complex critical point.

- When r^0 is determined by $a_i = a_f = 1$, fixed *h* value, and $K_b = \phi_{v_b} = \pi_{v_b} = 0 \implies$ Real critical point.
- When $r = r^0 + \delta r \implies$ Complex critical point.

Each sample (K_f, ϕ_f, π_f) , we can find the numerical solutions to $\partial_z \mathcal{S}_{tot}(r, \mathbf{z}) = 0 \Longrightarrow Z(r)$ is the complex critical point

Covariant LQG

The maximum of spinfoam amplitude corresponds to the Hamiltonian constraint (modified Friedmann equation) [E. Bianchi, C. Rovelli, F. Vidotto, 2010]

Dongxue Qu (Perimeter Institute)

The constraint equation of K_f and π_f is given by

$$K_{\rm crit}^2 = \alpha_0 + \alpha_2 \pi_f^2 + \alpha_3 \pi_f^3 + \alpha_4 \pi_f^4 + O(\pi_f^5)$$

For $\phi_f = 1.001$: $\alpha_0 = 0.00617_{\pm 1.08 \times 10^{-8}}, \quad \alpha_2 = 0.0133_{\pm 6.32 \times 10^{-5}},$ $\alpha_3 = -0.113_{\pm 1.52 \times 10^{-3}}, \quad \alpha_4 = 1.034_{\pm 9.39 \times 10^{-3}}.$ For $\phi_f = 1.01$: $\alpha_0 = 0.00616_{\pm 1.56 \times 10^{-8}}, \quad \alpha_2 = 0.00690_{\pm 4.38 \times 10^{-5}},$ $\alpha_3 = 0.00518_{\pm 1.05 \times 10^{-3}}, \quad \alpha_4 = 0.447_{\pm 6.50 \times 10^{-3}}.$

The constraint equation of K_f and π_f is given by

$$K_{\rm crit}^2 = \alpha_0 + \alpha_2 \pi_f^2 + \alpha_3 \pi_f^3 + \alpha_4 \pi_f^4 + O(\pi_f^5)$$

For $\phi_f = 1.001$: $\alpha_0 = 0.00617_{\pm 1.08 \times 10^{-8}}, \quad \alpha_2 = 0.0133_{\pm 6.32 \times 10^{-5}},$ $\alpha_3 = -0.113_{\pm 1.52 \times 10^{-3}}, \quad \alpha_4 = 1.034_{\pm 9.39 \times 10^{-3}}.$ For $\phi_f = 1.01$: $\alpha_0 = 0.00616_{\pm 1.56 \times 10^{-8}}, \quad \alpha_2 = 0.00690_{\pm 4.38 \times 10^{-5}},$ $\alpha_3 = 0.00518_{\pm 1.05 \times 10^{-3}}, \quad \alpha_4 = 0.447_{\pm 6.50 \times 10^{-3}}.$

Compare to classical Friedmann equation $K_i^2 = 8\pi G \frac{3\pi_i^2}{2a_i^6}$:

The constraint equation of K_f and π_f is given by

$$K_{\rm crit}^2 = \alpha_0 + \alpha_2 \pi_f^2 + \alpha_3 \pi_f^3 + \alpha_4 \pi_f^4 + O(\pi_f^5)$$

For $\phi_f = 1.001$: $\alpha_0 = 0.00617_{\pm 1.08 \times 10^{-8}}, \quad \alpha_2 = 0.0133_{\pm 6.32 \times 10^{-5}},$ $\alpha_3 = -0.113_{\pm 1.52 \times 10^{-3}}, \quad \alpha_4 = 1.034_{\pm 9.39 \times 10^{-3}}.$ For $\phi_f = 1.01$: $\alpha_0 = 0.00616_{\pm 1.56 \times 10^{-8}}, \quad \alpha_2 = 0.00690_{\pm 4.38 \times 10^{-5}},$ $\alpha_3 = 0.00518_{\pm 1.05 \times 10^{-3}}, \quad \alpha_4 = 0.447_{\pm 6.50 \times 10^{-3}}.$

Compare to classical Friedmann equation $K_i^2 = 8\pi G \frac{3\pi_i^2}{2a_i^6}$:

• An effective scalar density ρ_{eff} : π_f^2 terms and higher derivative terms with π_f^3 and π_f^4 .

The constraint equation of K_f and π_f is given by

$$K_{\rm crit}^2 = \alpha_0 + \alpha_2 \pi_f^2 + \alpha_3 \pi_f^3 + \alpha_4 \pi_f^4 + O(\pi_f^5)$$

For $\phi_f = 1.001$: $\alpha_0 = 0.00617_{\pm 1.08 \times 10^{-8}}, \quad \alpha_2 = 0.0133_{\pm 6.32 \times 10^{-5}},$ $\alpha_3 = -0.113_{\pm 1.52 \times 10^{-3}}, \quad \alpha_4 = 1.034_{\pm 9.39 \times 10^{-3}}.$ For $\phi_f = 1.01$: $\alpha_0 = 0.00616_{\pm 1.56 \times 10^{-8}}, \quad \alpha_2 = 0.00690_{\pm 4.38 \times 10^{-5}},$ $\alpha_3 = 0.00518_{\pm 1.05 \times 10^{-3}}, \quad \alpha_4 = 0.447_{\pm 6.50 \times 10^{-3}}.$

Compare to classical Friedmann equation
$$K_i^2 = 8\pi G \frac{3\pi_i^2}{2a_i^6}$$

• An effective scalar density ρ_{eff} : π_f^2 terms and higher derivative terms with π_f^3 and π_f^4 .

• $\alpha_0(\phi_f)$ is understood as an effective scalar potential.

The constraint equation of K_f and π_f is given by

$$K_{\rm crit}^2 = \alpha_0 + \alpha_2 \pi_f^2 + \alpha_3 \pi_f^3 + \alpha_4 \pi_f^4 + O(\pi_f^5)$$

For $\phi_f = 1.001$: $\alpha_0 = 0.00617_{\pm 1.08 \times 10^{-8}}, \quad \alpha_2 = 0.0133_{\pm 6.32 \times 10^{-5}},$ $\alpha_3 = -0.113_{\pm 1.52 \times 10^{-3}}, \quad \alpha_4 = 1.034_{\pm 9.39 \times 10^{-3}}.$ For $\phi_f = 1.01$: $\alpha_0 = 0.00616_{\pm 1.56 \times 10^{-8}}, \quad \alpha_2 = 0.00690_{\pm 4.38 \times 10^{-5}},$ $\alpha_3 = 0.00518_{\pm 1.05 \times 10^{-3}}, \quad \alpha_4 = 0.447_{\pm 6.50 \times 10^{-3}}.$

Compare to classical Friedmann equation
$$K_i^2 = 8\pi G \frac{3\pi_i^2}{2a_i^6}$$
:

• An effective scalar density ρ_{eff} : π_f^2 terms and higher derivative terms with π_f^3 and π_f^4 .

• $\alpha_0(\phi_f)$ is understood as an effective scalar potential.

• $\alpha_0 > 0$ plays a role similar to an effective positive cosmological constant.

The constraint equation of K_f and π_f is given by

$$K_{\rm crit}^2 = \alpha_0 + \alpha_2 \pi_f^2 + \alpha_3 \pi_f^3 + \alpha_4 \pi_f^4 + O(\pi_f^5)$$

For $\phi_f = 1.001$: $\alpha_0 = 0.00617_{\pm 1.08 \times 10^{-8}}, \quad \alpha_2 = 0.0133_{\pm 6.32 \times 10^{-5}},$ $\alpha_3 = -0.113_{\pm 1.52 \times 10^{-3}}, \quad \alpha_4 = 1.034_{\pm 9.39 \times 10^{-3}}.$ For $\phi_f = 1.01$: $\alpha_0 = 0.00616_{\pm 1.56 \times 10^{-8}}, \quad \alpha_2 = 0.00690_{\pm 4.38 \times 10^{-5}},$ $\alpha_3 = 0.00518_{\pm 1.05 \times 10^{-3}}, \quad \alpha_4 = 0.447_{\pm 6.50 \times 10^{-3}}.$

Compare to classical Friedmann equation
$$K_i^2 = 8\pi G \frac{3\pi_i^2}{2a_i^6}$$

• An effective scalar density ρ_{eff} : π_f^2 terms and higher derivative terms with π_f^3 and π_f^4 .

• $\alpha_0(\phi_f)$ is understood as an effective scalar potential.

• $\alpha_0 > 0$ plays a role similar to an effective positive cosmological constant.

• $\alpha_0 \neq 0$ indicates that on the final slice $K_{crit} > K_i$, implying the accelerating expansion of the universe.

• This model consists of two hypercubes: 48 4-simplices.

- Flat geometry: $a_f = a_i = a_m$.
- Curved geometries: $a_f = a_i = a$, $a_m = a - 2\delta a$, $0 < \delta a < \frac{a}{2}$.

- This model consists of two hypercubes: 48 4-simplices.
- Make an analog of the (time-reversal) symmetric cosmic bounce.

- Flat geometry: $a_f = a_i = a_m$.
- Curved geometries: $a_f = a_i = a$, $a_m = a - 2\delta a$, $0 < \delta a < \frac{a}{2}$.

- This model consists of two hypercubes: 48 4-simplices.
- Make an analog of the (time-reversal) symmetric cosmic bounce.
- Impose the following conditions for the initial and final data:

• Flat geometry: $a_f = a_i = a_m$.

Curved geometries:
$$a_f = a_i = a$$
,
 $a_m = a - 2\delta a$, $0 < \delta a < \frac{a}{2}$.

- This model consists of two hypercubes: 48 4-simplices.
- Make an analog of the (time-reversal) symmetric cosmic bounce.
- Impose the following conditions for the initial and final data:

$$a_i = a_f = a$$
, $K_f = -K_i > 0$, $\phi_f = -\phi_i > 0$, $\pi_f = \pi_i > 0$.

- Flat geometry: $a_f = a_i = a_m$.
- Curved geometries: $a_f = a_i = a$, $a_m = a - 2\delta a$, $0 < \delta a < \frac{a}{2}$.

- This model consists of two hypercubes: 48 4-simplices.
- Make an analog of the (time-reversal) symmetric cosmic bounce.
- Impose the following conditions for the initial and final data:

$$a_i = a_f = a$$
, $K_f = -K_i > 0$, $\phi_f = -\phi_i > 0$, $\pi_f = \pi_i > 0$.

• $K_i < 0$ and $K_f > 0 \rightarrow$ contracting and expanding universes at the initial and final slices.

- Flat geometry: $a_f = a_i = a_m$.
- Curved geometries: $a_f = a_i = a$, $a_m = a - 2\delta a$, $0 < \delta a < \frac{a}{2}$.

- This model consists of two hypercubes: 48 4-simplices.
- Make an analog of the (time-reversal) symmetric cosmic bounce.
- Impose the following conditions for the initial and final data:

$$a_i = a_f = a$$
, $K_f = -K_i > 0$, $\phi_f = -\phi_i > 0$, $\pi_f = \pi_i > 0$.

- $K_i < 0$ and $K_f > 0 \rightarrow$ contracting and expanding universes at the initial and final slices.
- \dot{a} evolves from negative to positive \rightarrow a cosmic bounce occurring in the evolution.

Covariant LQG

Each sample (K_i, ϕ_i, π_i) , we can find the numerical solutions to $\partial_{\mathbf{z}} \mathcal{S}_{tot}(r, \mathbf{z}) = 0 \Longrightarrow Z(r)$ is the complex critical point

 $K_i = -K_f = K_{crit}$ should have the interpretation as the quantum analog of a cosmic bounce.

Each sample (K_i, ϕ_i, π_i) , we can find the numerical solutions to $\partial_z S_{tot}(r, \mathbf{z}) = 0 \Longrightarrow Z(r)$ is the complex critical point

For
$$\phi_i = -0.025$$
:
 $\alpha_2 = 0.000146_{\pm 8.40 \times 10^{-6}}$,
 $\alpha_3 = -0.0197_{\pm 2.14 \times 10^{-4}}$, $\alpha_4 = 0.354_{\pm 0.00133}$.
For $\phi_i = -0.04$:
 $\alpha_2 = 0.00170_{\pm 1.56 \times 10^{-5}}$,
 $\alpha_3 = -0.0571_{\pm 3.44 \times 10^{-4}}$, $\alpha_4 = 0.465_{\pm 0.00190}$.

- $$\begin{split} \text{For } \phi_i &= -\ 0.025; \\ \alpha_2 &= 0.000146_{\pm 8.40 \times 10^{-6}}, \\ \alpha_3 &= -\ 0.0197_{\pm 2.14 \times 10^{-4}}, \quad \alpha_4 &= 0.354_{\pm 0.00133} \,. \end{split} \\ \begin{aligned} \text{For } \phi_i &= -\ 0.04; \\ \alpha_2 &= 0.00170_{\pm 1.56 \times 10^{-5}}, \\ \alpha_3 &= -\ 0.0571_{\pm 3.44 \times 10^{-4}}, \quad \alpha_4 &= 0.465_{\pm 0.00190} \,. \end{split}$$
- A modified Friedmann equation when a symmetric bounce happens.

- $\begin{aligned} & \text{For } \phi_i = -\ 0.025; & \text{For } \phi_i = -\ 0.04; \\ & \alpha_2 = 0.000146_{\pm 8.40 \times 10^{-6}}, & \alpha_2 = 0.00170_{\pm 1.56 \times 10^{-5}}, \\ & \alpha_3 = -\ 0.0197_{\pm 2.14 \times 10^{-4}}, & \alpha_4 = 0.354_{\pm 0.00133}. & \alpha_3 = -\ 0.0571_{\pm 3.44 \times 10^{-4}}, & \alpha_4 = 0.465_{\pm 0.00190}. \end{aligned}$
- A modified Friedmann equation when a symmetric bounce happens.
- The effective scalar density ρ_{eff} , which contains higher derivative terms with π_i^3 and π_i^4 .

- $$\begin{split} \text{For } \phi_i &= -\ 0.025 \text{:} \\ \alpha_2 &= 0.000146_{\pm 8.40 \times 10^{-6}}, \\ \alpha_3 &= -\ 0.0197_{\pm 2.14 \times 10^{-4}}, \quad \alpha_4 &= 0.354_{\pm 0.00133} \text{.} \end{split} \\ \end{split} \\ \begin{aligned} \text{For } \phi_i &= -\ 0.04 \text{:} \\ \alpha_2 &= 0.00170_{\pm 1.56 \times 10^{-5}}, \\ \alpha_3 &= -\ 0.0571_{\pm 3.44 \times 10^{-4}}, \quad \alpha_4 &= 0.465_{\pm 0.00190} \text{.} \end{aligned}$$
- A modified Friedmann equation when a symmetric bounce happens.
- The effective scalar density ρ_{eff} , which contains higher derivative terms with π_i^3 and π_i^4 .
- The scalar potential vanishes due to no constant term.

Conclusion

- The numerical method of real and complex critical points is a powerful tool to study spinfoam amplitude.
- Our work provides a general procedure to numerically construct the critical points of the spinfoam amplitude on the simplicial complex.
- For the cases that real critical point is absent, we use the method of complex critical points.
- We can use the method of complex critical points to study more physical scenario quantum cosmology.
- The coupling of scalar matter to spinfoam yields nontrivial physical implications for the effective cosmological dynamics.
- Similar studies have been carried out to the black-to-white-hole transition. [Cong Zhang's talk]

Outlook

Numerical Algorithm

- The algorithm of computing the Next-to-leading order in stationary phase approximation [Haida Li's talk]
- Compare to the result of sl2cfoam based on 15*j* + boosters.
- Lefschetz thimble from the complex critical point to compute spinfoam propagator on curved spacetime

Outlook

Numerical Algorithm

- The algorithm of computing the Next-to-leading order in stationary phase approximation [Haida Li's talk]
- Compare to the result of sl2cfoam based on 15j + boosters.
- Lefschetz thimble from the complex critical point to compute spinfoam propagator on curved spacetime

Physical Application

- More hypercubes along *t*-direction, leading to a more accurate representation of cosmology.
- Develop techniques for fitting the constraint among $(a_{i(f)}, K_{i(f)}, \phi_{i(f)}, \pi_{i(f)})$ within a higherdimensional parameter space.
- Compare to LQC. [A. Ashtekar, M. Campiglia, A. Henderson, 2010]

Thank you for your attention!

Covariant LQG