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Regular BH models

Can we have a unified framework 
that be able to discribe and investigate both kinds of regular BH models?

I : Classical regular BHs
e.g. Bardeen, Hayward

II: quantum BHs
e.g. LQC insipred models

Yes if we extend the polymerization to more generic class of functions

The formalism developed in  [2308.10949] (embedding LTB into 
polymerized models) can be used

 seminal works see [Bojowald et al, 08’ 09’ 

Viqar Husain’s talk
Cong Zhang’s talk
Panel: Quantum BHs
Parallel sessions: BHs



grandunificationtheory.com

I: Classical regular BHs

and many others can be understood as GR + Non-linear electrodynamics [Bronnikov, 23 for a review

Most famous ones: Bardeen (1968) and Hayward (2005)

In Schwarzschild-like coord

Schwarzschild solution

Phenomenological models with GR +  (usually quite exotic) matter

Ø Are they related to QG/Quantum geometries?
Ø What are more physical situations, e.g. inhomogeneous gravitational collapse beyond static/stationary?
Ø GR has Birkhoff theorem, which states that vacuum solution is uniquely given by stationary Schwarzschild BH. Can 

they be explained as vacuum solutions for some effective theory of QG?

Ø Perturbations? still in classical GR

Can we build an effective (high-derivative) Lagrangian inspired from QG?

Regular BHs: resolve the central singularity that is present in black hole solutions in GR 



scienceabc.com : Big 
Bounce to Multiverse

grandunificationt
heory.com

Effective regular BHs from backgroud independent QG:

One way: symmetry reduced models to derive an effective dynamics for the continuum geometry: e.g. loop 
inspired cosmology and (static) spherically symmetric spacetime [Ashtekar, Brizuela, Boehmer, Bojowald, Bodendorfer, Campiglia, 
Chiou, Corichi, Elizaga Navascué, Gambini, Giesel, Han, Husain, Li, Lewandowski, Ma, Mena Marugán, Pullin, Vandersloot, Olmedo, Oriti, Perez, 
Rovelli, Singh, Wang, Wilson-Ewing, Yang, Zhang.....

However, it is hard to go beyond symmetry reduced spacetime: 
Ø Can not encode QG effects for perturbations, 
Ø 4d covariant Lagrangian is missing : problem of general covariance, and coordinate transformations

(even if the algebra is closed, the coordinate transformations are generally not the classical ones, unless one        
reproduces exactly the diffeo algebra)

Ø Consistently embedding of dust collapse models (e.g. junction conditions are generally modified in the 
effective dynamics, Oppenheimer-Snyder may not be hold in general.)

To extract observational effects: 
• QG observables are defined relationally e.g. matter field/observer defines the notion of time/gauge fixing [Brown and 

Kuchar 95’, Giesel Thiemann 07, Husain, Pawlowski 11, Witten, 2022
• We need a emergent spacetime in continuum gravitational physics          continuum limit for discrete approach

Related to renormalization,  
 Really hard for full QG theoryreally hard to derive dynamics from a full fundenmental QG 

Solution: effective 4d (high-derivative) covariant Lagrangian with LTB embedding

II: quantum BHs

Concrete example: [Giesel, HL, Singh, Rullit and Weigl, 2308.10953



scienceabc.com : Big 
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Regular black holes, Polymerized models and Modified gravity
Modified gravity as emergent effective theory of underlying QG

However, usually it is hard to investigate (exact) black hole solutions in modified gravity, 
especially with (inifite) higher derivatives which captures the UV compeletion of underlying QG

Extended Mimetic theory 

ü (Inifite) higher derivatives encoded in the mimetic potential (QG and UV complete/asymptotic safe)
ü Mimetic field plays the role of observer (relational framework for background independent QG)
ü Allow decoupled dynamics s.t. we have decoupled EoMs with dust comoving frame (Lemaître–Tolman-Bondi (LTB) 

coordinates), gluing along dust geodesics is allowed (Oppenheimer-Snyder)
ü One can prove a Birkhoff-like theorem for the polymerized vacuum solution (uniqueness/stationary)
ü Allow to reconstruct the theory consistently (Hamiltonian and 4d mimetic lagrangian) from static solutions
ü A limiting curvature mechanism to have regular BHs/cosmology
ü Encode the inhomogeneous dust collapse solutions and their reduction to cosmological dynamics (1+1d emdeding)
ü “Exact” (inhomogeneous dust collapse) solutions as an inverse function of an integration (modified Friedmann Eq)
ü Effective dynamics where we assume it captures the main quantum effects and holds for all radius (e.g. at r=0 for BHs 

with a regular center) 

ü  

What we propose:

Polymerized Hamiltonian



Higher order derivative scalar tensor modified gravity theory which only propagates 2 (gravity) +1 (scalar) d.o.f. (subclass of DHOST)

Extended Mimetic Gravity

Non-rotational dust: dust collapse

dust density

[Achour, Lamy, HL, Noui, 17
[Langlois, Mancarella, Noui, Vernizzi, 18
[Han, HL, 22

Two folds role of �: 
• a nature observer (clock field),  � → � as gauge fixing (unitary gauge, � ≡ ��� = 1)
• introduce the QG effects in higher derivatives.
  

Equations of motion for � is not independent: gauge fixing for � commute with variation, e.g. ��|�=�,�=1 = �(�|�=�,�=1) 

Modified Einstein Eq: 

QG effect

dust density

Polymerized vacuum: � = 0higher derivative coupling

Non rotational dust energy-momentum

Effective Einstein tensor

under this gauge, ��
� = ��

� (extrinsic curvatures)

higher derivative 
coupling

Non rotational dustcontraction of higher order derivatives

Only 2 independent terms in spherically symmetric spacetime
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Hamiltonian under the gauge � → �:  �� =  �� �� +���� in spherically symmetric case
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1
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����� − ������ 

� polymerization function ��,  � can be identified 
as �∆ = � �  in loop inspired models 

Diffeo generates coords. trans along � as a field theory

�� = � �� ��,  � dust density



LTB spacetime

PDE

Dust driven collapse: non-interacting, pressure-less field (for simplicity, we assume marginally bound case here)

dust as free falling observers form a decoupled system
Lemaître–Tolman-Bondi (LTB) coordinate

ODE

A special coordinates system:

Can we do this for effective models?  

LTB                 Existence of non-flat vacuum solution and Birkhoff theorem

Yes, but only for a subclass of polymerization

Dynamics is given by

[Giesel, HL, Singh, Rullit and Weigl, 2308.10949 for details

� =
1
2�
� �2� =  ��� ,

cosmological Hamiltonian

ü Decoupled ODE instead of PDE
ü Friedmann equation for each x
ü Conserved quantity �(�) =  �(�) relates to the 

gravitational mass inside the sphere at radius x (can do 
inhomogeneous collapse)

ü General solution 
ü Vacuum: Birkhoff theorem (vacuum solution �(�) = �  is 

unique & asymptotically static (Killing vec. field along s(x)+t)

� = �3



A subclass of the model: no �� polymerization

�� = � �� ��,  � dust density
� = 0 polymerized vacuum

Requiring the existence of LTB further constrains the model [Stefan Weigl's talk yesterday

� = ��
2 ��

 

�(1) + � �’ − 3� = 0, �’(�) = 2�(2)(�)

impose constraint on Y

with mimetic lagrangians expressed in 1+1d (mimetic-dilaton gravity, � = 1
2
log ��)

�, � functions of �1, �2

� defines a Hamilton on each x
given by polymerization functions �(b)Decoupled system

Conserved quantity �(�)

The model is compeletely detemrmined by �(b)

effective QG dynamics at cosmology, e.g. LQC

≡ �3

Extended Mimetic theory with LTB

Oppenheimer-Snyder and inhomogeneous dust collapse is naturally encoded in the model

underlying dynamics to the model [Lewandowski, Ma, Yang, Zhang 22, (Cong Zhang’s talk)
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see our paper for decoupling in non-marginally bound case



Decoupled dynamics

 In general non-linear dynamics possible phase space trajectories

single bounce

multiple bounces

no bounceGR
�(�, �) = �(�)−1  

2��(�)
�  

 Modified Friedmann equation for each �� 

for each ��: 

General solution in marginally bound case for each �� 

R is a continous function expressed in piecewise segments for each ��

unique asymptotically stationary (static) solution Birkhoff-like theorem

Asymptotic flatness for �1 is ensured by requiring the theory has correct asymptotic limit at � → 0, � → �2 

no bounce:  �(b) monotonic and unbounded
Bouncing:  �(b)  not monotonic (usually bounded)

Decoupled system

Conserved quantity �(�)

effective QG dynamics at cosmology, e.g. LQC

≡ �3

The model is compeletely detemrmined by �(b)

 The asymptotically 
classical regime

Polymerization 
function �



Polymerized vacuum in Schwarzschild-like coordinates
Coordinate 
transformation:
(�, �) → (�, � = ��)

Only well defined for each monotonic segment ��

For each monotonic segment �� we have a �(�), they may be in different forms: different Schwarzschild-like solution 

Corollary 1 (Birkhoff-like theorem 2)

The vacuum solution in Lemma 1 expressed in Schwarzschild-like coordinates may not 
be unique, but countably (possibly infinitely) many. Each Schwarzschild-like metric 
corresponds to a piecewise monotonic segment in � of the unique vacuum solution in LTB 
coordinates in Lemma 1. 

Lemma 1 (Birkhoff-like theorem 1)

The model admits a unique asymptotically flat vacuum LTB solution labeled by
mass m which has an extra Killing field (asymptotically stationary and static). 

�(�)(�)2 = �2  Modified Friedmann equation

For symmetric 
bounce and 
unbouncing solutions, 
the Schwarzschild-
like solution is unique

Only one 
Schwarzschild-like 
solution �(1) 
connected with 
asymptotics

single bounce

multiple bounces

no bounceGRPolymerization 
function �

 The asymptotically 
classical regime



Reconstruction algorithm
See our paper for a more general reconstruction with

However, in such case we do not have corresponding mimetic gravity

See our paper for a more general reconstruction with



Limiting curvature mechanism for regular BHs

In marginally bound case

Mimetic again:

Curvature scalars become

Curvature scalars will be bounded if Y and X (or 
�’)  (and their derivatives) are bounded

We only impose constraint on Y in the subclass

As a result, �’ can be 0 thus X can diverge. If X diverges, this is a shell-crossing singularity where �’ = 0
Weak singularity where spacetime can be extended beyond it using weak solutions/shock waves

center singularity is removed

�’(�) = 2�(2)(�), 
polymerization function � can be unbounded

A bounded �(2)

To remove all singularities, we also need to put bound on X, this is related to polymerize ��, see [Han, HL, 2212.04605, 
However, we do not have LTB reduction in that case

Ø For bouncing solutions shell-crossing can happen in the polymerized vacuum, 

Ø For no bouncing solutions, shell-crossing only happens with no trivial matter profiles 
(general dust collapse) and can be avioded by choosing a good matter profile (similar to GR)

shell-crossing singularitycenter singularity

shock wave 
[Viqar Husain’s talk

Polymerization may not remove singularities
[Idrus Belfaqih’s talk yesterday



Examples: Bouncing solution

Standard 
LQC

Thiemann regularized 
LQC

Two different Schwarzschild-like solution 
before and after bounce

Thiemann regularized LQC
 (Yang, Ding, Ma; Dapor, Liegener; Li, Singh, Wang...)

Minimal radius

standard LQC

���� from �2 ≥ 0 

���� from � = ��
�3

���� from � = 0
                    � = 0

LTB solution obtianed from either segments 
by analytic continuation

[Fazzini, Rovelli, Soltani 23’ 
[Giesel, HL, Singh and Weigl 2308.10953



shell crossing prevents the appearance of other Schwarzschild-like 
solutions after the bounce!

Examples: Bouncing solution

In geneal, shell crossing singularity always 
appear as � ∈ (−∞, + ∞) (e.g. after the bounce)
Special case: vacuum in LQC, there is no 
singularity!

Vacuum also has shell-crossing singularity, happens at bounce!

Schwarzschild singluarity is been replaced by shell crossing singularity, 
non-aviodable shell-crossing in general:  shock solutions..

At ��� = 0, LTB is not a good coordinates! For vacuum solution since ��� = ��� , 
this happens exactly at the bounce!

shell-crossing

standard LQC

[Fazzini, Husain, Wilson-Ewing 23, (Viqar Husain’s talk)

Thiemann regularized LQC

We can check the curvature invariants for any dust matter profile  (marginally 
bound case) with the help of LTB solution

(. . . )
Lewandowski, Ma, Yang, Zhang, 22’
Fazzini, Rovelli, Soltani 23’ 
Giesel, HL, Singh and Weigl 2308.10953

Geodesics do not 
stop at bounce and 
do not intersect after 
the bounce

S linear in z, thus always have polessimilar to standard LQC

�

x

dust �(−)

�(+)

Polymerized vacuum [Johannes Münch, 21



Examples: solutions with a regular center

Limiting curvature for regular BHs: e.g. Hayward, a tanh function present

shell crossing similar to classical GR for � has a lower bound shell crossing unaviodable as � ∈ ℝ 
(except polymerized vacuum)

Hayward

LQC

Mimetic potential

���� from � = ��
�3

 

���� from � = 0 

���� from �2 ≥ 0 



Examples: regular solution

Limiting curvature: bounded �(2) 

�’(�) = 2�(2)(�)

classical
Bardeen

Hayward

LQC

linear for large b

To have a regular solution, unbounded polymerization functions need to be at most linear for large b

classical case is quadratic in b

 The asymptotically 
classical regime



Summary

A general framework and classification of regular spherically symmetric BH theories

Regular cosmology: 
LQC, bouncing cosmology, ...

Emergent modified gravity
4d Covariant Extended Mimetic Lagrangian

Regular black holes: 
Loops BH, Bardeen, Hayward....

1+1d Effective 
black hole 

models

QG

 Birkhoff-like theorem

 Limiting curvature for regular BHs

“exact” LTB solutions

I : Classical regular BHs
e.g. Bardeen, Hayward

II: quantum BHs
e.g. LQC insipred models

 Unbounded polymerization function  Bounded polymerization function 

 inhomogeneous dust collapse
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Extension to more broader 
class of models Gravitational wave/QNMS

many new possibilities!



THANKS!



We can not distinguish a no-bouncing solution with a 
regular center from a bouncing solution for � > ���� 
(before the bounce), which is inside the horizon 
generally....

Bouncing and no-bouncing?
Hayward as a geometric series

LQC

similar facts for Bardeen and general BHs with regular center, 
with binomial series..

classical

LQC

Converging for

Truncated geometric series

All odd n truncations give bouncing solution (from the - sign)

Hayward

Hayward

For all truncated bouncing solutions, polymerization 
functions are still nonpolynomial and there is no 
truncation on it, but identifying coeffecients

expansion of sin^2 function



Diffeo

Suppose we can invert  � = ��  
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Only combinations in the form  ��
��
, ����

��
 will appear in the Hamiltonian  ---- (This is called � scheme for loop inspired models)

��, ��, � combines gives the polymerization function ��  ��
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Canonical analysis

momenta
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� (QG) parameter, s.t. lim
�→0

��  = 0Polymerized hamiltonian

�� = � �� ��,  � dust density
� = 0 polymerized vacuum


