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0. Preamble

• A change of gears vis a vis previous 3 talks on black holes.

Goal: To point directions for future work by the LQG community

to address the issue of entanglement and information recovery that has not
received sufficient attention in LQG. (Emphasis will be on null surfaces.)

• Horizons, ∆, of BHs in equilibrium, and Null Infinity, I +, of asymptotically flat
space-times are null 3-manifolds but have drastically different physical
connotations: Typically ∆ lies in the strong field region and there is no radiation flux across it,

while I + lies in the asymptotic, weak field regime with possibly large fluxes of radiation across

it! Yet, surprisingly, they share a large number of geometric properties, making
them both Weakly Isolated Horizons (WIHs) h. At first this is quite shocking.

• But the dramatic differences in their physics emerge from the same central
equation governing the dynamics of the connection on WIHs h. This unified

perspective helps relate properties of black hole horizons and null infinity in the classical theory.

Since the gravitational connection plays a central role in this discussion, this
framework well-tailored for LQG. Suitable extensions of well-established results on
quantum geometry, and of the ongoing work on null surfaces, will provide sharp
tools to correlate observables at the horizon and at null infinity and address issues
related to entanglement during BH evaporation.
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1. Geometrical WIHs

• A Non Expanding Horizon (NEH) in 4-d Space-time (M̄, ḡab) is a null submanifold h,
topologically S2 × R , such that:

(i) Every null normal k̄a to h is expansion-free, θk̄ = 0; and,

(ii) On h the Ricci tensor satisfies R̄abk̄a = αk̄b for some function α.

• Raychaudhuri Eq. implies that shear of k̄a also vanishes ⇒ the intrinsic (degenerate)
metric q̄ab satisfies Lk̄ q̄ab = 0; it is ‘time independent’. As a result, by pull-back, the
space-time derivative operator ∇̄ induces a canonical intrinsic derivative D̄ on h:

←∇̄ = D̄. It satisfies: D̄aq̄ab = 0, and, D̄ak̄b = ω̄a k̄b for some 1-form ω̄a.

• We can always restrict ourselves to geodesic null normals k̄aD̄ak̄b = 0. Then NEH

conditions ⇒ Lk̄ω̄a = 0; ω̄a is also ‘time-independent’. Furthermore, we can now severely

restrict the rescaling freedom in k̄a by demanding that ω̄a be divergence-free, i.e, q̄abD̄aω̄b = 0.

Only remaining freedom: k̄a → ck̄a where c is a positive constant.

• Thus, every NEH can be naturally equipped with a (small) equivalence class of
null normals [k̄a] (where k̄′ a ≈ k̄a iff k̄′ a = ck̄a) such that Lk̄ω̄a = 0. An NEH
equipped with such an equivalence class [k̄a] is called a Weakly Isolated Horizon

(WIH). The triplet ([k̄a], q̄ab, D̄) is said to constitute the geometry of the WIH h.
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Time Dependence on Geometric WIHs

• On any geometrical WIH (h, [k̄a], q̄ab, D̄), fields q̄ab, ω̄a are time independent :

˙̄qab := Lk̄ q̄ab = 0 and ˙̄ωa := Lk̄ ω̄a = 0 ⇔ ˙̄Dak̄b = 0.

Furthermore, one can show that, given any horizontal 1-form ha (i.e. hak̄a = 0),
˙̄Dahb := (Lk̄D̄a − D̄aLk̄)hb = 0.

• Thus, time dependence of D̄ is completely determined by Ḋaj̄b for any 1-form j̄b

satisfying j̄ak̄a = −1. It is given by:
˙̄Daj̄b =

(
D̄aω̄b + ω̄aω̄b

)
+
(
k̄c C̄c←ab

d j̄d + 1
2
S̄←ab + α q̄ab

)
(1).

(C̄abc
d and S̄ab are the 4-d Weyl and 4-d Schouten tensors and R̄abk̄a = α k̄b.) None of the

terms on the right hand side vanishes on h! Thus part of the geometry of a WIH
is dynamical. This dynamics is driven by the pull-back to h of the 4-d curvature
tensor R̄abcd, since ω̄a is part of D̄.

• So far no field equations have been imposed; we only have a geometric
condition on R̄ab. So Eq. (1) holds both on BH horizons ∆ and null infinity I +.
We will find that the diametrically opposite physics of ∆ and I + emerges from
the fact that field equations imply that complementary terms on the right side of
(1) vanish in the two cases.
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2. BH WIHs ∆

• To discuss these horizons, let us now assume Einstein’s vacuum field equations
on them. Following literature, we will drop ‘bars’ over symbols ḡab, R̄abcd, D̄ and
use the notation: h→ ∆; k̄a → `a; j̄b → na.

• Now the Ricci tensor terms in equation (1) for Ḋ vanish. Furthermore, already
on geometric WIHs h, the the Weyl term that enters the equation (1) for Ḋ is
given by `c C̄c←ab

d nd = −( 1
4
R qab +D[aωb]) (with R the 2-d scalar curvature). Therefore,

Ḋanb = D(aωb) + ωaωb − 1
4
R qab (2)

• Thus, even on BH WIHs ∆, the derivative operator D is time-dependent! But
this dependence is highly constrained, because the right side of (2), is time
independent. (L`qab = 0, L`ω = 0, (and ωa`a = 0).) Therefore, (qab, D) on ∆ are
completely determined by its values on a 2-sphere cross-section; they are ‘corner
data’, representing ‘Coulombic fields’. There are no 3-d degrees of freedom that
are hallmarks of radiation. The LQG quantum geometry provides novel insights
for spectra of Coulombic observables by making their spectra discrete.
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3. Asymptotic WIH I +

• A physical space-time (M, gab) is said to be asymptotically flat at future at
future infinity if it admits a conformal completion (M̂, ĝab), where M̂ = M ∪I + is
a manifold with a boundary I +, topologically S2 × R, and ĝab = Ω2gab on M s.t.

(i) At I +, we have Ω =̂ 0 and ∇̂aΩ 6=̂ 0; and,
(ii) gab satisfies Einstein’s equations Gab = 8πGTab, with Ω−2 Tab admitting a

smooth limit to I +.

These conditions imply: (a) I + is null with null normal n̂a := ∇̂aΩ; and, (b) we can always

choose Ω such that ∇̂an̂a = 0. As is standard, let us work with these divergence-free conformal

frames. (If in addition the conformal factor is such that the (degenerate) metric on I is a unit

2-sphere metric, we are in a Bondi conformal frame: gabdx
adxb =̂ 2dudr + dθ2 + sin2 θdφ2).

• Conformal Einstein’s equations at I + imply: (1) R̂abn̂b ∝ n̂a at I +, and,
(2) ∇̂an̂b = 0 at I +. Thus I + is a null 3-manifold, for which the expansion θn̂ of
the null normal vanishes, and the Ricci tensor is such that it is an NEH. Also,
condition (2) ⇒ ∇̂an̂b ≡ ω̂an̂b = 0, whence ω̂a = 0, and (I +, n̂a) is a WIH.

Thus (I +, n̂a, q̂ab, D̂) is a WIH in the conformally completed space-time (M̂, ĝab).
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Time dependence of the WIH geometry of I +

• Since I + is a WIH, the metric q̂ab is time independent. Recall that on any
WIH, the time dependence of D̄ is given by

˙̄Daj̄b = D̄aω̄b + ω̄aω̄b + k̄c C̄c←ab
d j̄d + 1

2
S̄←ab + α q̄ab (1).

In the notation used at I +: k̄a → n̂a, j̄b → ˆ̀
b, D̄ → D̂, ω̄a → ω̂a.

Interestingly, since ω̂a = 0, and Ĉabc
d = 0 at I +, all the terms that contribute to

Ḋ on BH horizons ∆ now vanish at I + and terms that vanish at ∆ now survive!
Thus, at I + we have: ˙̂

Da ˆ̀
b = 1

2
Ŝ←ab + α q̂ab ∼ 1

2
N̂ab

• Thus, the time dependence of the connection D̂ at I + is driven by the Ricci
curvature of ĝab (∼ Bondi news). Therefore, D̂ has 2-degrees of freedom per point
of I +. These are 3-d degrees of freedom, representing the radiative modes. Put
differently, while the WIH geometry of ∆, carries only ‘coulombic’ information
contained in the ‘corner data’, that at I + carries ‘radiative’ information contained
on all of I +. This diametrically opposite physics emerges from the same equation
because Einstein’s and conformal Einstein’s equations set complementary terms in
(1) to zero!

• Non-perturbative quantization radiative modes is also available: Asymptotic
Quantization. Open Problem: LQG Description of the radiative modes on I +!
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4. Opportunities for the LQG Community

• Physics at BH horizons ∆ is drastically different from that at I +. Yet, both
emerge from the same equation (1); in spite of dramatic diversity, there is striking
underlying unity! This unity has already led the finding that there are strong
correlations between dynamics at the horizon, and at null infinity in the classical
theory, opening the field of gravitational wave tomography to read-off horizon
dynamics (soon after a merger) from waveforms at null infinity (AA, Khera). In the
quantum theory, the framework offers opportunities study correlations between
observables at the horizon with those at null infinity, that lie at the heart of the
‘information-loss issue’.

• Specifically, while there are many fascinating results on black hole evaporation
in LQG, the focus tends to be on singularity resolution and the structure of the
quantum-extended space-time, issues of entanglement and recovery of
information, that originally sparked interest in black hole evaporation in the wider
physics community, have not received as much attention in LQG. The WIH
framework provides a natural springboard to rectify this situation. Because of its
emphasis on gravitational connections D on ∆ and D̂ on I +, it leads to
observables that are well suited to LQG. Investigations of correlations between
them should lead to a sharper understanding of entanglement.
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Opportunities for the LQG Community: Examples

Quantum Geometry of LQG is especially well-suited for ”Coulombic” observables:

(i) the Charge associated with the natural horizon time-translation symmetry ξa

(= κv`a) is M∆ = κ
8πG

A∆. Since area A∆ is quantized in LQG, M∆ would be
naturally quantized. Multipoles: observables fully characterizing horizon geometry can also

be promoted to operators in LQG.

CGHS Black Holes: Surprising universality in the Semi-classical phase of evaporation
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The final Bondi mass vs ADM mass
Universal Correlation: Bondi mass vs horizon area

Macroscopic BHs (with Hawking evaporation time longer than Planck time) have a universal

Bondi mass mass of m? = 0.86 MPl (per evaporation channel) at the end of the semi-classical

phase. And the Bondi mass is universally correlated with the horizon area throughout the

process. Suggests: (i) Universality of m? originates in the area gap! and, (ii) Horizon and I +

observables are correlated.
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Opportunities for the LQG Community:Examples

(ii) Observable at I + corresponding to M∆ is Mbms associated with a BMS unit
time translation (ξa = n̂a). Even in presence of matter at I +, Mbms is expressible
purely in terms of geometry, and therefore again well suited for LQG. Its usual
expressions (involving Weyl curvature, shear and news) seem too complicated for the
LQG Quantum Geometry. However, it can be recast as:

Mbms = 1
16πG

lim
∮
r=r◦

(θn + 1
r

) d2V as ro →∞ along u = u◦,

where θn is the rate of change of the area 2-form along inward-pointing null
normal na. Therefore Mbms would be a well-defined operator in LQG, again with
a discrete spectrum. During evaporation, it would be strongly correlated with M∆

and A∆. (seen explicitly in the mean field approximation in the CGHS model).

• The evaporation process will appear as a correlated decrease in the discrete
eigenvalues of M∆ (encoded in the punctures on ∆) and discrete eigenvalues of Mbms.
Can we develop in some detail the LQG picture of the evaporation process as
emission of area quanta/punctures from ∆ to I +?
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Opportunities for the LQG Community (contd)

(iii) These considerations could be first developed in detail for
the semi-classical phase in which, say, 1M� initial black hole
shrinks to Lunar mass ∼ 10−7M�. This Process takes some
1067 years! During this adiabatic phase, it would be appropriate
to let T-DH be a perturbed WIH and treat dynamics at I + also
perturbatively. Interestingly, symmetry groups of ∆ and I + are
essentially the same and the expressions for fluxes associated
with these symmetries are essentially identical in the classical
theory (AA, Khera, Kolanowski, Lewandowski)

Credit: De Lorenzo
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• Challenge and opportunity: Study the correlations between these observables in
the adiabatically changing Unruh vacuum not only in the matter sector but also in
the gravitational sector, which has not been investigated so far. These correlations
will provide much deeper control on entanglement.
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Source Material
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109, L061501 (2024), arXiv; 2401:15618;
2. AA & S. Speziale, Null Infinity as a Weakly Isolated Horizon, arXiv: 2402.17977

3. AA, F. Pretorius & F. Ramazanaglu, Surprises in the Evaporation of 2-Dimensional Black

Holes, Phys. Rev. Lett. 106, 161303 1-4 (2011), arXiv:1011.6442. Phys. Rev. arXiv: D83,

044040 1-18 (2011), arXiv:1012.0077.

• Further details on Weakly Isolated Horizons:
4. AA, C. Beetle, J. Lewandowski, Mechanics of Rotating Isolated Horizons, Physical Review
D64 (2001) 044016; gr-qc/0103026

5. AA, N. Khera, M. Kolanowski and J. Lewandowski, Non-expanding horizons: Multipoles and
symmetries, JHEP 01, 28 (2022), arXiv:2111.07873

6. AA, N. Khera, M. Kolanowski and J. Lewandowski, Charges and fluxes on (perturbed)

non-expanding horizons, JHEP 02, 066 (2022) (38 pages), arXiv:2112.05608

• Further details on Null Infinity:
7. R. Geroch, Asymptotic Structure of Space-time, In: Volume edited by F. Esposito and L.
Witten (Plenum Press, New York and London, 1976) pp. 1?105.

8. AA Geometry and physics of null infinity, prepared for Surveys in Differential Geometry, edited

by L. Bieri and S. T.- Yau, pp99-122, (International press, Boston, 2015 ); arXiv: 1409:1800.
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