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Motivation

Singularities such as the big bang are the limits of validity of
Einstein’s beautiful theory of GR. Incorporating quantum gravity
necessary. How does quantum nature of spacetime affect the
classical singularities and the physics of very early universe?

Lesson from LQG: classical differential geometry replaced by
quantum geometry. Cosmological and BH spacetimes provide a
tractable setting to rigorously implement LQG techniques.

Though not explicitly derived from LQG, loop quantum cosmology
provides a rigorous mathematical and phenomenological platform.
Quantum geometry results in bounds on curvature invariants.
Singularities generically resolved and replaced by bounce in Planck
regime. Rich physics explored. Potential signatures in CMB.

Goal of this talk: Explore non-trivial consequences of
quantization choices on physical implications. (Some surprises).
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Outline

Overview

Implications of quantization ambiguities

Unfinished business: a forgotten loop area assignment
ambiguity (some useful lessons)
Regularization ambiguities: (some surprises)

Distinct signatures
Can the universe be cyclic?

Conclusions
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Loop quantum cosmology

Symmetry reduce connection and triads at classical level, and then
loop quantize geometry. Various kinematical features of LQG
exported to LQC (Bojowald; Ashtekar, Bojowald, Lewandowski (2001-03)).

Rigorous quantization of the spacetime results in a singularity
resolution due to non-perturbative effects (Ashtekar, Pawlowski, PS (06)).
Results generalized to various spacetimes.

Mathematical aspects: (Ashtekar, Brunnemann, Campiglia, Henderson, Lewandowski,

Kaminski, Noui, Pawlowski, Perez, Thiemann, Szulc, Varadarajan ...)

Quantization of iso, aniso, pol. Gowdy T3 models: (Ashtekar,

Corichi, Martin-Benito, Mena Marugán, Olmedo, Pawlowski, PS, Vandersloot, Wilson-Ewing, ... )

Connection with LQG: (Beetle, Bruno, Engle, Hogan, Fleishchack, Mendonca, Vilensky)

(Towards) Cosmological sector from LQG: (Assaniousi, Dapor, Han, Li, Liu,

Liegner, Kaminski, Ma, Elizega Navascués, Pawlowski, PS, Thiemann, Wang, ...)

Effective dynamics: Copeland, Garriga, Maartens, Tsujikawa, Vilenkin, & many authors

Numerical techniques: (Cartin, Diener, Gupt, Khanna, Joe, Megevand, PS, ... )

Perturbations: (Agullo, Ashtekar, Barrau, Bojowald, Bolliet, Hossain, Grain, Gomar, Li,

Nelson, Maartens, Martin-Benito, Mena Marugán, Olmedo, PS, Tsujikawa, Wang, Wilson-Ewing, ... )
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Loop quantum cosmology

Evolution determined by a quantum difference equation. Arises
from expressing field strength in terms of holonomies computed
over loops in quantum geometry.

For spatially-flat isotropic FLRW model (Ashtekar, Pawlowski, PS (2006))

C+(v)Ψ(v + 4, φ) + C0(v)Ψ(v, φ) + C−(v)Ψ(v − 4, φ) = ĤφΨ(v, φ)
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Big bang replaced by bounce at ρmax = 3/8πGλ2 ≈ 0.41ρPlanck. This
is supremum in phys. Hilbert space (Ashtekar, Corichi, PS(08)); Consistent
quantum probability of bounce is unity (Craig, PS(13)); Rigorously
tested effective dynamics using HPC (Diener, Gupt, Joe, Megevand, PS(14,18)).
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Physics from LQC: some main results

Genericness of singularity resolution: All strong curvature
singularities are resolved for isotropic, Bianchi-I, II, IX and
Kantwoski-Sachs spacetimes (PS (09,11); PS, Vidotto (10); Saini, PS (16-19))

Observable effects in CMB: Excellent agreement with
observations for different inflationary models (Agullo, Ashtekar, Gupt, Li,

Martin-Benito, Mena Marugán, Olmedo, PS, Wang ...) Potential explanation of
anomalies with different initial states (Ashtekar, Gupt, Jeong, Sreenath

(16-20); Martin-Benito, Neves, Olmedo (21)) and with inclusion of
non-gaussianities (Agullo, Bolliet, Kranas, Sreenath (18-20))

Insights on resolution of black hole singularities: Has inspired
rigorous quantizations of Schwarzschild spacetime ( Ashtekar,

Bojowald, Corichi, Garćıa-Quismondo, Giesel, Li, Mena-Marugán, Modesto, Olmedo, Rastgoo, Saini,

PS, Wang, ...), spherically symmetric models (Alonso-Bardaji, Bojowald, Brizuela,

Gambini, Giesel, Han, Husain, Lewandowski, Li, Liu, Ma, Pullin, PS, Wilson-Ewing, Zhang ...)

(Talks by V. Husain, H. Liu, C. Zhang)
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Some old questions:

What about quantization ambiguities? Can they be ruled out
phenomenologically?

There have been earlier paradigms of bouncing and cyclic
models but with singularity problems. Does quantum
geometry help in resolution of singularities of the cyclic
models such as Ekpyrotic model (Steinhardt, Turok, ...)?
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Some old and new questions:

What about quantization ambiguities? Can they be ruled out
phenomenologically? Do they result in distinct signatures?

revisiting a loop area assignment ambiguity

Regularization ambiguities

There have been earlier paradigms of bouncing and cyclic
models but with singularity problems. Does quantum
geometry help in resolution of singularities of the cyclic
models such as Ekpyrotic model (Steinhardt, Turok, ...)? Since such
models are restricted observationally, does LQC make them
viable? Or any other constraints?
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Quantization ambiguities: loop area assignment

In isotropic models ambiguities related to assigning minimum loop
area severely restricted using independence from fiducial structures
and classicality at late times (Corichi, PS (08); Engle, Vilensky (19)). Unique
quantization in standard LQC – µ̄ scheme (Ashtekar, Pawlowski, PS(06))

In anisotropic models, single choice if spatial manifold R3
(Ashtekar,

Wilson-Ewing (09); Corichi, PS (09); Engle, Vilensky (18))

µ̄i scheme: µ̄i ∝ (|pjpk/pi|)1/2
(Chiou, Vandersloot (08); Ashtekar, Wilson-Ewing (09))

but an earlier choice possible if topology is T3:

µ̄′i scheme: µ̄i ∝ |pi|−1/2 (Chiou (08), Martin-Benito, Mena Marugán, Pawlowski (09))

Both choices result in µ̄ scheme in isotropic limit.

Singularity resolution and recovery of large volume universe after
the bounce for both. Energy conditions not violated. Classicality
for both (shear conserved) (Chiou, Vandersloot (08)). µ̄i scheme results in
universal bounds on shear (Corichi, PS (09)) and is topology free
(preferred choice), but µ̄′i gives a much simpler quantization.
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Implications of quantization ambiguity in Bianchi-I model

In classical Bianchi-I spacetime with matter having vanishing
anisotropic stress, anisotropic shear is conserved.

Shear scalar is not preserved across the bounce for a large class of
initial conditions for the µ̄′i scheme (Motaharfar, Thareja, PS (23))

Effect difficult to observe for small anisotropic shear, therefore
missed in earlier works.
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Resolution of quantization ambiguity: Bianchi-I model

Shear problem in µ̄′i scheme arises because one of the connections
never becomes classical after the bounce!

Even though the universe becomes macroscopic, it retains quantum
character after bounce in one direction even after a very long time.

Gives cyclic evolution even for dust when it is spatially flat! Even
though non-singular and resulting in a macroscopic universe on
both sides of the bounce, µ̄′i scheme is not classically viable.
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Quantization ambiguities: different regularizations

(Yang, Ding, Ma (09); Assanioussi, Dapor, Liegener, Pawlowski (18); Li, PS, Wang (18); Han, Liu (20))

In standard LQC, Euclidean and Lorentzian terms of Hamiltonian
constraint combined before quantization (Ashtekar, Bojowald, Lewandowski (03))

Cgrav = C(E)
grav − (1 + γ2)C(L)

grav

where

C(E)
grav =

1

2

∫
d3x εijkF

i
ab

EajEbk√
det(q)

and

C(L)
grav =

∫
d3xKj

[aK
k
b]

EajEbk√
det(q)

Thiemann’s regularization of the Hamiltonian constraint: treat
these terms independently (Thiemann (98); Giesel, Thiemann (07))

Quantize using identities on classical phase space and express
in terms of holonomies (closer to LQG): (mLQC-I)

Use Ki
a = γ−1Aia in spatially flat, then quantize: (mLQC-II)
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Quantization ambiguities: different regularizations

In Thiemann’s regularization of Hamiltonian constraint one finds
an emergent deSitter pre-bounce phase in mLQC-I, and a very
similar bounce as in LQC in mLQC-II.
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Figure: LQC (red), mLQC-I (blue),
mLQC-II (green)

Bounce at nearly same density,
but non-trivial modified Fried-
mann dynamics (Li, PS, Wang (18)).

All strong curvature singular-
ities resolved (Saini, PS (18)). In-
flationary attractors (Li, PS, Wang

(20)). In pre-inflation, post-
bounce evolution very quickly
agrees with LQC.

Effects in primordial power spectrum explored: (Agullo (19); Li, PS, Wang (20),

Li, Olmedo, PS, Wang (20)). (B-F Li’s talk)
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Distinct signatures of regularizations

Even though post-bounce physics almost identical within few
Planck seconds, mLQC-I/II potentially yield distinct signatures.

mLQC-II leads to significant power amplification at large scales.
Competition between LQC and mLQC-I for a better fit.
(Li, Motaharfar, PS (to appear))
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Robustness of distinct signatures of regularizations

Results do not change if one uses dressed or hybrid metric
approach.
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15 / 20



Cyclic models?

Conventional wisdom: cyclic models are straightforward to
construct with negative potential or positive spatial curvature if big
bang/crunch singularity is resolved.
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The closed FLRW model has big bang/crunch singularities which
are successfully resolved by LQC without violating any energy
conditions. (Ashtekar, Pawlowski, PS, Vandersloot; Szulc, Kaminski, Lewandowski (2007))
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Cyclic models?

In a spatially flat universe add a negative cosmological constant or
a negative potential to the matter density with w > −1/3:

H2 =
ȧ2

a2
=

8πG

3
(ρ− ρΛ), ρΛ =

|Λ|
8πG

Hubble rate vanishes in a finite future evolution causing a
recollapse which is followed by a big crunch in GR.

Replaced by bounce in standard LQC, leads to a continuous cycle
(Bentivegna, Pawlowski (07)).

Ekpyrotic/cyclic models can be made non-singular in standard
LQC (PS, Vandersloot, Vereshchagin (06); Wilson-Ewing (13); Li, Saini, PS (20)), even in
presence of anisotropies (Cailleatau, PS, Vandersloot (09), Brown, PS (to appear))

(Talks by R. Brown, E. Frion)

But LQC can not help with viability. Spectrum still not scale
invariant after quantum geometric corrections in simple realizations
(Cai, Wilson-Ewing (14); Li, Saini, PS (20))
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ȧ2

a2
=

8πG

3
(ρ− ρΛ), ρΛ =

|Λ|
8πG

Hubble rate vanishes in a finite future evolution causing a
recollapse which is followed by a big crunch in GR.

Replaced by bounce in standard LQC, leads to a continuous cycle
(Bentivegna, Pawlowski (07)).

Ekpyrotic/cyclic models can be made non-singular in standard
LQC (PS, Vandersloot, Vereshchagin (06); Wilson-Ewing (13); Li, Saini, PS (20)), even in
presence of anisotropies (Cailleatau, PS, Vandersloot (09), Brown, PS (to appear))

(Talks by R. Brown, E. Frion)

But LQC can not help with viability. Spectrum still not scale
invariant after quantum geometric corrections in simple realizations
(Cai, Wilson-Ewing (14); Li, Saini, PS (20))

17 / 20



Cyclic models?

Unlike standard LQC where cyclic models are dynamically possible,
Thiemann regularized LQC (mLQC-I) severely restricts cyclic
models. Emergent quantum geometric deSitter phase not only in
pre-bounce but appears also post-bounce after recollapse. (Li, PS (22))
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Some new answers:

Can quantization ambiguities be ruled out
phenomenologically? Yes
Do they result in distinct signatures? Yes

a forgotten loop area assignment
ambiguity. Not classically viable as earlier believed. Ruled out
but gave useful lessons.

Regularization ambiguities. mLQC-II can be ruled out!
mLQC-I seems promising.

Does quantum geometry help in resolution of singularities of
the cyclic models such as Ekpyrotic model (Steinhardt, Turok, ...)? Yes.
Since such models are restricted observationally, does LQC
make them viable? Not so far. Or any other constraints? Yes!
If Thiemann regularization is correct, no cyclic models in
spatially flat universes. Thiemann regularized LQC (mLQC-I)
favors inflationary paradigm.
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Summary

LQC offers a platform to extract rigorous physics at the
Planck scale. Non-singular dynamics. Extensive
phenomenology studied. Many robustness checks.

There are well justified quantization ambiguities which at first
sight may seem like standard LQC but can result in very
different physical implications.

Some lessons:

Recovery of macroscopic universe not enough for classicality
even when energy conditions satisfied. Precise classicality
requirements important.
Explore wide range of parameters.
Consider different types of matter.
Quantizations beyond standard LQC are complex/rich.
Many opportunities.
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