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What is quantum gravity?

¢ What are the fundamental degrees of freedom? What is quantum geometry?
¢ What is the origin of black hole entropy? What are the microstates?

* What are the observables? What is the S-matrix?

* What is quantum general covariance? What are quantum reference frames?
* What are the UV and IR behaviors? What happens to singularities?

* What is the role of matter?

¢ What are the symmetries of quantum gravity?
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What is quantum gravity?

What are the fundamental degrees of freedom? What is quantum geometry?

What is the origin of black hole entropy? What are the microstates?
What are the observables? What is the S-matrix?

* What is quantum general covariance? What are quantum reference frames?
* What are the UV and IR behaviors? What happens to singularities?
* What is the role of matter?

¢ What are the symmetries of quantum gravity?

Loop quantum gravity
* LQG provides partial answers to these questions
¢ LQG takes seriously the classical structure handed to us by Einstein's general relativity
¢ In particular, a strong emphasis is put on symmetries
- background independence and diffeomorphism invariance
- local Lorentz symmetry, leading to SU(2) spin network states and SL(2,C) amplitudes
* Asking what are the symmetries of gravity is more subtle and rich than it appears
- known old results (Noether’s theorem) coming back in fashion in the last ~10 years
- what does this tell us about LQG, and what does LQG say about this?
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¢ Systems can admit “hidden” symmetries, e.g.
- conformal particle L = ¢®> — a/q? and SL(2,R)
- Carter’s constant for Kerr and relation to Killing—Stackel and Killing—Yano tensors
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- related to the non-factorization into subregions and the presence of edge modes

- the boundary symmetry groups are typically infinite-dimensional (e.g. BMS)
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Natural questions arise

¢ Can we classify these boundary symmetry groups?

« Can we quantize/represent them?

* Which new insights do they give into classical and quantum gravity? [W. Wieland's talk]
« Is gravity holographic (or tomographic)? [S. Raju’s talk, A. Ashtekar's talk]
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What are the symmetries of classical and quantum gravity?
e Systems can admit “hidden” symmetries, e.g.
- conformal particle L = ¢? — a/q? and SL(2,R)
- Carter's constant for Kerr and relation to Killing—St&ckel and Killing—Yano tensors
- solution generating symmetry groups [Geroch, Ehlers, Matzner—Misner, .. .|
* In gauge theories (e.g. gravity) boundaries support charges and symmetry algebras
- these boundary may be at infinity (e.g. Z1), finite distance (BH), or entangling surfaces
- this mechanism is key to the distinction between gauge and physical charges
- related to the non-factorization into subregions and the presence of edge modes

- the boundary symmetry groups are typically infinite-dimensional (e.g. BMS)

Natural questions arise

¢ Can we classify these boundary symmetry groups?

« Can we quantize/represent them?

* Which new insights do they give into classical and quantum gravity? [W. Wieland's talk]
« Is gravity holographic (or tomographic)? [S. Raju’s talk, A. Ashtekar's talk]

« If these are features of classical gravity, should LQG implement or recover them?
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Minisuperspace models

« FLRW, Bianchi, and Kantowski—Sachs models have been extensively used as LQC models
e This has led to the singularity resolution results: big-bounce and black-to-white hole transition
¢ Heuristically, the effective dynamics is obtained from the polymerization p — sin(ap)/i
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Symmetries in minisuperspace models

Minisuperspace models

¢ FLRW, Bianchi, and Kantowski—Sachs models have been extensively used as LQC models

e This has led to the singularity resolution results: big-bounce and black-to-white hole transition
* Heuristically, the effective dynamics is obtained from the polymerization p — sin(zp)/i

Hidden symmetries [Ben Achour, MG, Livine, Oriti, Piani, Sartini, ...]
e Consider e.g. Kantowski—Sachs cosmologies with choice of lapse

T U
ds® = —N2dt? + E;Vﬂdr? +WdQ* S= / d*z/—gR = /dt (Lg + M)
2 M

2V2

« With (C == V;P;, A= Vi P2, D = V1 P3) then (V5,C, H,Vi, D, A)€ 50(2,1) & R = poincg
e This leads to conserved charges and Noether symmetries of the Lagrangian
* These are physical symmetries acting non-trivially on the mass: reminiscent of asympt. sym.
» Very surprising structures when extending poincg to bmss
- generation of cosmological constant or scalar field matter terms (flows in theory space)
- rewriting of the action as a bmss geometric action
« The availability of this classical symmetry opens the road to group quantization [Sartini]
» One can (should?) also find polymerization schemes which respect the symmetry [H. Liu's talk]
* Many generalizations (e.g. including Schrédinger algebra) [Ben Achour, Livine, Oriti, Piani]
- these symmetries (and larger ones) arise from homothetic Killing vectors in field space
- exists for Bianchi, FLRW with scalar field, Kantowski—Sachs with A, ...
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e In gauge theories, Noether's theorem assigns codimension-2 charges to symmetries

$Qe = b QO fs (5Qnocther + $Qriue)

 Allows to distinguish gauge (vanishing) and physical (non-vanishing) charges

* A powerful technical tool is the covariant phase space formalism L = EOM - §® + df
[Anderson, Ashtekar, Barnich, Brandt, Crnkovic, Henneaux, Kijowski, Lee, Wald, Witten, Zoupas]

e Lots of subtleties: integrability, conservation, bracket, renormalization, corner terms, ...
[Chandrasekaran, Ciambelli, Compére, Flanagan, Freidel, Fiorucci, MG, Harlow, Margalef-Bentabol,
Oliveri, Pranzetti, Rignon-Bret, Ruzziconi, Speranza, Speziale, Villasefior, Wieland, Wu, .. .]

« General transformation of the charges

061Qe; = QUeyea) + 9ey - Qfux
evolution = rotation + dissipation

» Corner symmetry group [Ciambelli, Donnelly, Freidel, MG, Leigh, Pranzetti]

Gs = (Diff(S)l><H) X R?
group = kinematical x dynamical

» Similar to coulombic vs radiative split [A. Ashtekar's talk]
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Formulation-dependence
* For a formulation F of gravity, the symplectic structure and kinematical symmetry group are

QF = Qapm + dQr/apm Giin = DIff(S) x H
« Different formulations have different symmetry groups — inequivalent quantizations
formulation | H
ADM 0
Einstein—Hilbert SL(2,R)
Einstein—Cartan SL(2,R) x (boosts)

Einstein—Cartan—Holst | SL(2,R) x SL(2,C)

Discreteness at the classical and continuum level
* LQG symplectic structure

QG = Qaom + d(8E; 0" +~v8e; ade")

* The fluxes E; form the familiar su(2) algebra of LQG
* Tangential metric qup = ¢/ e/ nry on S forms an sl(2,R) algebra

{2ab(x), gca(y)} = —7v(dacesd + qvc€ad + Gadebe + qbd€ac) ()82 (x—y)
+ Casimirs related by Cs| (o) = — (7~ 1[) = Csy(2) — quantization of area element
VA= 13> VGG + 1) 8% (x = %)
i

* Should we represent the whole quasi-local corner symmetry group Gg? (note BMS C Gg)
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future

timelike 74 4
e L7 hull infinity

infinity

spatial
infinity

past
i null infinity

e Consider Minkowski in retarded null coordinates
ds? = —du® — 2dudr + r?qupdz®dz®

 The spacetime has 5 boundaries = ig Ui4 Ui_ UZ~ UZT
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future _ 2
/"IJrnuII infinity_RXS

celestial §2

e Consider Minkowski in retarded null coordinates
ds? = —du® — 2dudr + r?qupdz®dz®

 The spacetime has 5 boundaries = ig Ui4 Ui_ UZ~ UZT

» Future null infinity Z7 is the ideal region where to read off gravitational radiation
[Ashtekar, Bondi, Geroch, Hansen, Metzner, Newman, Penrose, Sachs, Trautman, van der Burg]



Symmetries of asymptotic boundaries

future
null infinity

Consider Minkowski + radiation
ds? = —du® — 2dudr + r?qupdz®daz® + O(Tﬁl)

The spacetime has 5 boundaries =39 Uiy Ui_ UZ™ Uzt

Future null infinity ZT is the ideal region where to read off gravitational radiation
[Ashtekar, Bondi, Geroch, Hansen, Metzner, Newman, Penrose, Sachs, Trautman, van der Burg]

This is described by the notion of radiative asymptotically-flat spacetimes
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radiation

« Radiative asymptotically-flat spacetimes have very interesting properties

- memory effects
[Marc Favata] o1f

Gravitational-wave signal vs. time fotal signal

e lonons ey ]

Sicillatory waves
(no memory)

“The memory slowly builds up during
0.1 fos the inspiral, grows rapidly during the o
o merger, and saturates to its final value|
o1 during the ringdown.
=
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Symmetries of asymptotic boundaries

celestial §2 = ug+T(x®)

« Radiative asymptotically-flat spacetimes have very interesting properties
- memory effects [Blanchet, Christodoulou, Damour, Polnarev, Thorne, Zel'dovich]

- oo-dimensional asymptotic symmetries [Bondi, Metzner, Sachs, van der Burg]

E =Ty +Y%q + Do Y (udy, — 70y) + O(r~1) — BMS = Diff(52%) x R
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« Radiative asymptotically-flat spacetimes have very interesting properties
- memory effects [Blanchet, Christodoulou, Damour, Polnarev, Thorne, Zel'dovich]
- oo-dimensional asymptotic symmetries [Bondi, Metzner, Sachs, van der Burg]
- link with the S-matrix and soft theorems [Weinberg, Low]

oo

An+1(p1:-~~7pn7WQ) = Z w"Sn(le--:pn,Q)An(le--:Pn) + ...

n=—1
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Symmetries of asymptotic boundaries

« Radiative asymptotically-flat spacetimes have very interesting properties
- memory effects [Blanchet, Christodoulou, Damour, Polnarev, Thorne, Zel'dovich]
- oo-dimensional asymptotic symmetries [Bondi, Metzner, Sachs, van der Burg] ¢ IR physics
- link with the S-matrix and soft theorems [Weinberg, Low]

« All these aspects are connected through the so-called infrared triangle [Strominger et al ]

* There is now strong (yet subtle) evidence that many such subleading triangles exist in gravity
[Barnich, Cachazo, Campiglia, Compére, Conde, Fiorucci, Laddha, Mao, Ruzziconi, Strominger, Troessaert,. . .|

* What is the symmetry interpretation of this subleading structure?
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+ future
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radiation

» Near Z1 it is convenient to work in the Bondi gauge

M (u, 2%
(wae?) |

ds? = (—1 +
r

P a
) du? —(2+... )dudr+ (M +> dudz® + ggpda®da®
r
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» Near Z1 it is convenient to work in the Bondi gauge

Pa(uv ma)
T

M (u, 2%
(wae?) |

ds? = (—1 +
r

...)duz—(2+...)dudr+< +...>dudm“+gabdxadzb

1
Gab = r? dab +7Cap+ Dap + ; E;b + O(T_2)
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» Near Z1 it is convenient to work in the Bondi gauge

Pa(uv wa)
T

M (u, 2%
(wae?) |

ds? = (—1 +
r

...)duz—(2+...)dudr+< +...)dudm“+gabdxadzb

1
Gab = r? dab +7Cap+ Dap + ; E;b + O(T_2)

leading shear log incoming radiation
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* 2 types of data: C;, free on Zt and co-amount of data (M, PmE;b, ...) satisfying EOMs
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future

e IJrnuII infinity

radiation

» Near Z1 it is convenient to work in the Bondi gauge

M (u, z®)
r

Pa(“? wa)

ds? = (—1 +
r

+...)du2—(2+...)dudr+< +...)dudz“+gabdxadzb

1 _
gab =72 qap +7Cap+ +;E¢11b+0(7“ ?)

leading shear incoming radiation

* 2 types of data: C;, free on Zt and co-amount of data (M, Pa,E;b, ...) satisfying EOMs

* The first flux balance laws is the Bondi—Trautman mass loss M = —N,, N% + D, Dy N
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/"I null infinity

» Near Z1 it is convenient to work in the Bondi gauge

M (u, z®)
r

Pa(“? xa‘)

ds? = (—1 +
r

+...)du2—(2+...)dudr+< +...)dudm“+gabdxadzb
1 _
gab =72 qap +7Cap+ +;Eib+(9(7“ %)

* We want to understand the subleading structure of the evolution equations for (M, Pg, E‘;Lb)



Symmetries of asymptotic boundaries

future
null infinity

» Near Z1 it is convenient to work in the Bondi gauge

M (u, z®)
r

Pa(“? wa)

ds? = (—1 +
r

+...)du2—(2+...)dudr+< +...)dudz“+gabdxadzb

1 _
gab =72 qap +7Cap+ +;E¢11b+0(7“ ?)

« M = spin 0 <> sub®-leading soft graviton theorem <+ supertranslations
« P, = spin 1 < sub'-leading soft graviton theorem < superrotations

. E;b = spin 2 < sub2-leading soft graviton theorem <+ non-local spin 2 symmetry
[Weinberg] [Cachazo, Strominger] [Campiglia, Laddha] [Freidel, Pranzetti, Raclariu]



Symmetries of asymptotic boundaries

future

e IJrnuII infinity

» Near Z1 it is convenient to work in the Bondi gauge

M (u, z®)
r

Pa(“? wa)

ds? = (—1 +
r

+...)du2—(2+...)dudr+< +...)dudz“+gabdxadzb

1 _
gab =72 qap +7Cap+ +;E¢11b+0(7“ ?)

* The EOMs for E7, come from the Einstein equations GL’: =0

* The study of the data (M, P,, E7) is much easier in the Newman—Penrose formalism . ..
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* Using a null tetrad e; = (¢,n,m,m), one builds the spin coefficients ~;;;, = ege;vuew and
the Weyl scalars (here labelled by their spin/helicity)
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* Using a null tetrad e; = (¢,n,m,m), one builds the spin coefficients ~;;;, = ege;vuew and
the Weyl scalars (here labelled by their spin/helicity)

Vo= Q2+O(r_6)

Uy = Q1+(’)( -5)

v = % or

ws = L op)
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+0(r7?)



Symmetries of asymptotic boundaries

Setup
* Using a null tetrad e; = (¢,n,m,m), one builds the spin coefficients ~;;;, = eg‘ezvyei“ and
the Weyl scalars (here labelled by their spin/helicity)

Vo= Q2+O(r_6)

Uy = Ql+0( -5)

v = % or

ws = L op)
Q2

+0(r™?)
e In terms of the previous Bondi free and initial data we have

Q—2(Nap) Q-1(Nap) Qo(M, Cp) Q1(Pa, Cup) Q2(EL,, Cap)



Symmetries of asymptotic boundaries

Setup
* Using a null tetrad e; = (¢,n,m,m), one builds the spin coefficients ~;;;, = eg‘ezvyei“ and
the Weyl scalars (here labelled by their spin/helicity)

Wy = Q2 2+ O(r0)

Uy = Ql -+ O(r0)

v, = QO 0 o)

ws = @ +O(r?)
Q =

Uy = + O(T_Q)
e In terms of the previous Bondi free and initial data we have

Q—2(Nap) Q-1(Nap) Qo(M, Cp) Q1(Pa, Cap) Q2(EL,, Cap)

* NB: one should choose a tetrad such that the spin coefficientsare k =m=e¢=0and p=p



Symmetries of asymptotic boundaries

Sub-leading expansion of the Weyl scalars
* Using a null tetrad e; = (¢,n,m,m), one builds the spin coefficients ~;;;, = eg‘ezvyei“ and
the Weyl scalars (here labelled by their spin/helicity)

Uy = Q2 +O(T‘_6)

= Qi %9 4 op9)
-

v= % SQI +0(r=?)
T
Q- 5@ -

L 2!

Uy = QI2 _ 5Q;1 +O(r3)
T A

e In terms of the previous Bondi free and initial data we have

Q—2(Nap) Q-1(Nap) Qo(M, Cp) Q1(Pa, Cap) Q2(El,, Cap)

* NB: one should choose a tetrad such that the spin coefficientsare k =m=e¢=0and p=p



Symmetries of asymptotic boundaries

Introducing the higher spin charges

* Using a null tetrad e; = (¢,n,m,m), one builds the spin coefficients ~;;;, = eg‘ezvyew and
the Weyl scalars (here labelled by their spin/helicity)

3 52
Q99 TRt | 5,5

Yo = 75 6 7
d
‘Ifl = Q—i — Q52 + O(T’ie)
T T
d
Ty = %’ - Cil +0(r™?)
T T
- 3
vy = 21080 oy
T s
_o  dQ-—
\114 = Q12 — Q2 E +O(T_3)
r r

e In terms of the previous Bondi free and initial data we have

Q-2(Nap) Q-1(Nap) Qo (M, Cap) Q1(Pa, Cap) Q2(Egy, Can)
* NB: one should choose a tetrad such that the spin coefficients are k =1 =e¢=0and p=p
* One can introduce by hand higher spin charges Q>3 in the expansion for ¥q

 In terms of the previous Bondi data we have QsZQ(EZb_l,Cab)



Symmetries of asymptotic boundaries

Interpretation

* Using a null tetrad e; = (¢,n,m,m), one builds the spin coefficients ~;;;, = eg‘ezvyei“ and
the Weyl scalars (here labelled by their spin/helicity)

] 92
o @2 _ 32 FQuit..

-8
5 76 7 +0(™)
d
vy = QTLI - 22 +0(r™°%)
r r
d
Wy = g; - Cil + 0%
r r
1 D
vy = 21080 oy
r r
_ 9Q—
\114 = 12 Q2 E +0(T_3)
r r

* Qo and Q1 are the leading BMSy charges (essentially mass and angular momentum)



Symmetries of asymptotic boundaries

Interpretation

* Using a null tetrad e; = (¢,n,m,m), one builds the spin coefficients ~;;;, = eg‘ezvyei“ and
the Weyl scalars (here labelled by their spin/helicity)

] 92
o @2 _ 32 FQuit..

-8
5 76 r7 +00™)
d
Ty = %1 - %2 + 05
T T
d
Ty = %’ - Cil +0(r™?)
T T
_ 3
vy = 21080 oy
™ T
_» BQ_
Uy =2 Q2 Lyo@r3)
T T

* Qo and Q1 are the leading BMSy charges (essentially mass and angular momentum)

° Qo~M+ iM with the dual mass M related to the gyroscopic memory effect [Oblak, Seraj]



Symmetries of asymptotic boundaries

Interpretation

* Using a null tetrad e; = (¢,n,m,m), one builds the spin coefficients ~;;;, = eg‘ezvyei“ and
the Weyl scalars (here labelled by their spin/helicity)

d a2
Uy = % - %4—6247:——1—0(1"_8)
r r r
d
‘Ifl = Q—i — Q52 + O(T’ie)
r r
d
Wy = g; - Cil + 0%
r r
1 D
Uy = Q21 B Q30 L0
r r
_ 9Q—
\114 = Q12 — Q2 E +O(T_3)
r r

* Qo and Q1 are the leading BMSy charges (essentially mass and angular momentum)
° Qo~M+ iM with the dual mass M related to the gyroscopic memory effect [Oblak, Seraj]
* Qs>2 ~ Newman—Penrose charges [Newman, Penrose]

~ subleading BMS charges [Godazgar, Godazgar, Long] [MG]

~ canonical multipole moments [Compere, Oliveri, Seraj]



Symmetries of asymptotic boundaries

Evolution equations

* Using a null tetrad e; = (¢,n,m,m), one builds the spin coefficients ~;;;, = eg‘ezvyei“ and
the Weyl scalars (here labelled by their spin/helicity)

] 92
o @2 _ 32 FQuit..

-8
5 76 7 +0(™)
d
vy = QTLI - 22 +0(r™°%)
r r
d
Wy = g; - Cil + 0%
r r
1 D
vy = 21080 oy
r r
_ 9Q—
\114 = 12 Q2 E +0(T_3)
r r

« Introducing C = Cgpm®mb = hy + th4, the asymptotic Einstein equations can be written as

6uQs = 6Q571 - (S + 1)CQ572




Symmetries of asymptotic boundaries
Conserved charges

* In radiative spacetimes there are no conserved charges (we have e.g. mass loss instead)

* But we can build quasi-conserved charges, which are conserved in the absence of radiation
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* But we can build quasi-conserved charges, which are conserved in the absence of radiation

q0 = Qo



Symmetries of asymptotic boundaries
Conserved charges

* In radiative spacetimes there are no conserved charges (we have e.g. mass loss instead)

* But we can build quasi-conserved charges, which are conserved in the absence of radiation

q1 = Q1 —udQo



Symmetries of asymptotic boundaries
Conserved charges
* In radiative spacetimes there are no conserved charges (we have e.g. mass loss instead)

* But we can build quasi-conserved charges, which are conserved in the absence of radiation

2
@2 = Q2 —udQ: + “762@0 +3(0;1C)Qo



Symmetries of asymptotic boundaries
Conserved charges

* In radiative spacetimes there are no conserved charges (we have e.g. mass loss instead)
* But we can build quasi-conserved charges, which are conserved in the absence of radiation

s £—2
qs = Z( l 5"@3 n+ZZ( 1 (€+1

o 0 (AT (w00 Qe z )+ O(CY)
n=0 £=2n=0



Symmetries of asymptotic boundaries

Conserved charges

* In radiative spacetimes there are no conserved charges (we have e.g. mass loss instead)

* But we can build quasi-conserved charges, which are conserved in the absence of radiation
° D"l4+1) o o/ o(n _
gs = Z ( SRS S Z - (e oot (0, Y ((~w)*0)0" Qa0 )+ O(C?)
n=0 £=2n=0 s )
Linearized bracket

* Integrate the equations of motion to write iteratively Qs = 8;15QS,1 —(s+ 1)8;1(CQS,2)
+ Use the shear C and news N = 9,C to decompose the charges as

kmax
=Y gt =ai + g2 +0O(C?)
[ ki’
k=1 soft  hard

¢ Use the Ashtekar—Streubel symplectic structure {C(u,z), N(v/,2")} = 6(u — u')8(z — 2')
to compute the linearized bracket

{q81 k) qSQ }(1) = {qil bl ng } + {q?l ) qéz }



Symmetries of asymptotic boundaries

Conserved charges

* In radiative spacetimes there are no conserved charges (we have e.g. mass loss instead)
* But we can build quasi-conserved charges, which are conserved in the absence of radiation

: D*l+1) s g/ a(n _

gs = Z ( SRS S Z - (ev 0° (00 "V ((—w)*HC)0"Qr a0 )+ O(C?)
n=0 £=2n=0 s )

Linearized bracket

* Integrate the equations of motion to write iteratively Qs = 8;15QS,1 —(s+ 1)8;1(CQS,2)
+ Use the shear C and news N = 9,C to decompose the charges as

kmax
=Y gt =ai + g2 +0O(C?)
[ ki’
k=1 soft  hard

¢ Use the Ashtekar—Streubel symplectic structure {C(u,z), N(v/,2")} = 6(u — u')8(z — 2')
to compute the linearized bracket

{q81 k) qSQ }(1) = {qil bl ng } + {q?l ) qéz }

» After a daunting calculation, one arrives at the w1 loop algebra
[Adamo, Ball, Freidel, MG, Guevara, Mason, Narayanan, Pranzetti, Raclariu, Salzer, Sharma, Strominger]

{051 (21), 05 (Z2)}") = =}, 40y 1 ((51 +1)21022 — (s2 + 1)22521)




Symmetries of asymptotic boundaries

Interpretation

* NP version of a result obtained from twistor theory and from the celestial soft graviton OPE
[Adamo, Ball, Donnay, Freidel, Guevara, Herfray, Himwich, Mason, Narayanan, Pate, Pranzetti, Raclariu,
Ruzziconi, Salzer, Sharma, Strominger, Yelleshpur Srikant]

» Symmetry algebra which governs the subleading structure of (self-dual?) gravity
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» Symmetry algebra which governs the subleading structure of (self-dual?) gravity
¢ Dynamical statement encoding part of the Einstein equations, as one can show that [MG]

[aua 65]@3 =0



Symmetries of asymptotic boundaries

Interpretation

* NP version of a result obtained from twistor theory and from the celestial soft graviton OPE
[Adamo, Ball, Donnay, Freidel, Guevara, Herfray, Himwich, Mason, Narayanan, Pate, Pranzetti, Raclariu,
Ruzziconi, Salzer, Sharma, Strominger, Yelleshpur Srikant]

Symmetry algebra which governs the subleading structure of (self-dual?) gravity

Dynamical statement encoding part of the Einstein equations, as one can show that [MG]
[81“ 65] Qs =0
* The quasi-conserved soft charges correspond to temporal moments of the news

g} (u, 2)= 02N, (u, 2) Nowa= L [ awuenw, o)
s! oo

and their flux-balance laws give rise to the so-called higher memory effects
[Grant, Nichols] [Grant, Mitman] [Flanagan, Grant, Harte, Nichols] [Compére, Oliveri, Seraj]



4. Perspectives



Surprizing symmetry structures in gravity
* Already in minisuperspaces: coincidences or features?
* At finite distance
- quasi-local corner symmetry group Gg related to kinematics and dynamics
- LQG has states labelled by a subgroup of Gg: should we represent all of Gg?
e At infinity

- Wi4oo algebra controls the subleading structure of asymptotically-flat spacatimes

- can we use this algebraic structure to inform numerical codes and extract physics?

- are the higher spin symmetries related to hidden symmetries (e.g. Killing tensors?)

- what happens in dS: radiation, symmetries, cosmological memories?

- logarithmic soft theorems [Choi, Das, MG, Laddha, Puhm, Sahoo, Saha, Sen, Zwikel] and loss
of peeling at I+ [Bieri, Blanchet, Christodoulou, Chrusciel, Damour, Friedrich, Gajic, Kehrberger,
Klainerman, Kroon, Laddha, MacCallum, Masaood, Singleton, Winicour]

Opportunities for LQG
¢ LQG quantization of quasi-local symmetry group?
¢ LQG quantization of null infinity? [A. Ashtekar's talk, W. Wieland's talk]

* Possible observational signatures of tetrad variables and Barbero—Immirzi parameter?



ISLQG - Thank you to all the members and candidates

Ballot for president and president elect

* Guillermo A. Mena Marugan (CSIC)

* Hanno Sahlmann (FAU Erlangen-Niirnberg)

Ballot for the board

* Ivan Agullo (Louisiana State University)

* Kristina Giesel (FAU Erlangen-Niirnberg)

* Florian Girelli (University of Waterloo)

» Hal Haggard (Bard College)

* Muxin Han (Florida Atlantic University)

« Jerzy Lewandowski (Uniwersytet Warszawski)

 Etera Livine (CNRS, ENS de Lyon - Laboratoire de Physique)
» Yongge Ma (Beijing Normal University)

* Mercedes Martin-Benito (Universidad Complutense de Madrid)
Daniele Oriti (Universidad Complutense de Madrid)
Francesca Vidotto (Western University)

Anzhong Wang (Baylor University)
Wolfgang Wieland (FAU Erlangen-Niirnberg)
« Edward Wilson-Ewing (University of New Brunswick)
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