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RT from the Gravitational Path Integral 

Gibbons-Hawking (1977)

Lewkowycz-Maldacena (2013)

• Replica trick:

• consider 𝑛 copies of the system and compute

• analytically continue in 𝑛 and compute the entropy as

Ryu–Takayanagi was originally proposed to compute holographic entanglement entropy in AdS spacetime, but the present 
understanding of the formula is much more general!

non-trivial part of variation 
near 𝑟 = 𝑟𝑠

non-trivial part of variation 
near γ

• Path integral prescription for the construction of the state
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Ryu–Takayanagi formula
without holography?

General assumptions

• A UV-complete theory of quantum gravity should contain a map

boundary conditions number

“transition amplitude”

• We might call this map a (Euclidean) gravitational path integral
• It might look like

assumptions for the gravitational path integral

?

not a requirement!

Where to start?



TODAY:

This type of structure is present in any UV-complete, asymptotically locally AdS theory of quantum gravity 
in which the Euclidean path integral satisfies a simple set of axioms.

• Can we construct a Hilbert space        associated with     such that the corresponding Ryu–Takayanagi formula 
can be understood in terms of a standard trace on       ? (True with holography)

• Consider a gravitational system with two asymptotic codimension-2 boundaries

Setting

• The Hilbert space           a priori does not factorize! 

• reduced state on 𝐿/𝑅?

• entropy associated to 𝐿/𝑅? 

reduced state 

RT formula



Related work

Axiomatic approach to TQFT and Gravity: 

• Axiomatization of topological quantum field theories (TQFT) [Atiyah 1988]

• Attempt to define a gravitational partition function by generalising TQFT axioms [Rovelli, Barrett, Crane, Baez, Dolan, 
Freidel, Starodubtsev, Oeckl, …]

Ryu-Takayanagi formula for spin network states 

• Setting: open spin network graphs

• Entanglement entropy of boundary regions given by a bulk area law, with corrections from entanglement among 
intertwiners [Chirco, Oriti, Zhang, EC]



Related work

• Recent works have shown that, in various contexts, the RT entropy can be derived (up to an infinite constant) 
as the entropy of a type II von Neumann algebra. [Chandrasekaran, Longo, Penington, Witten, Jensen, Sorce, 
Speranza, Satishchandran…] 

• The entropy of a standard quantum mechanical system is in terms of a Hilbert space trace
which provides a “state-counting interpretation”. A Hilbert space trace corresponds to a type I trace.

Towards understanding RT in the bulk

• [Lewkowycz, Maldacena (2013)]: gravitational path integral derivation of the RT formula. But the interpretation of RT 
as a standard entropy still required a holographic dual theory.

TODAY: 

RT formula with a state-counting interpretation, i.e. as entropy of a type I von Neumann algebra, 
without holography.
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Axioms

1. Finiteness:  The path integral gives a well-defined map 𝜁 from boundary conditions defined by smooth manifolds 
to the complex numbers ℂ

2. Reality: 𝜁 is a real function of (possibly complex) boundary conditions, i.e. 

3. Reflection Positivity: 𝜁 is reflection-positive

4. Continuity: if the boundary manifold contains a cylinder of size 𝜀, 𝜁 is continuous under changes of 𝜀

5. Factorization: 
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𝐵𝑑−2 𝐵𝑑−2

• The source-manifold might not be smooth, and so might not be well defined 

• We introduce rims:

• set of rimmed source-manifolds with boundary 𝐵

• linear combinations of rimmed source-manifolds with boundary 𝐵
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Hilbert Space

• Define the pre-Hilbert space

• Consider the quotient of 𝐻𝐵 by its null space and complete the result: Hilbert space  

• is the 𝐵-sector of the full quantum gravity Hilbert space: 
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Algebra

• On the set we define a left product and a right product:

𝐿 𝑅 𝐿 𝑅

left product:

𝐿 𝑅

• The set equipped with the left (right) product defines a left (right) surface algebra

• For convenience 

right product:

𝐿 𝑅
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Algebra

Left surface algebra Right surface algebra

• The algebras 𝐴𝐿 and 𝐴R are related by an antilinear isomorphism 

• We will see that the left (right) algebra as a natural action on the left (right) 𝐵 of 

𝐿 𝑅 𝐿 𝑅
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Trace

• The path integral defines a trace operation: 

• The trace on 𝐴𝐿 and 𝐴𝑅 corresponds to the inner product on              : 

Axiom 3

• It is positive-definite:
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Trace Inequality

• We can prove the trace inequality 

From the Cauchy-Schwarz inequality (consequence of positivity of the inner product on ):
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• We define a representation of the left surface algebra on the Hilbert space: given there is an associated 
operator such that

• These operators are bounded:

trace inequality

• The operator algebras             get a trace from the trace on             :  

Operator algebras
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Type I von Neumann algebras

• We constructed commuting algebras of bounded operators on  

• We can complete to von Neumann algebras                 by taking the closure in the weak (or strong) operator 
topology (or taking the double commutant of            ) 

• We show that the trace defined on can be extended to (all positive elements of) the von Neumann algebra:

• We can study the structure of the von Neumann algebras via properties of the trace!
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1) Faithful

2) Normal

3) Semifinite

• We can prove that the trace is

Type I von Neumann algebras

• It also satisfies the trace inequality (an extension of the 4-boundaries argument applies)

• Applying the trace inequality to gives

Some known results on von Neumann algebras:

▪ Every von Neumann algebra is a direct sum or integral of factors (algebras with trivial center) 

▪ These factors can be type I, II or III

▪ There is no faithful, normal and semifinite trace on type III  ⇒ we cannot have type III

▪ on type II, for any faithful, normal and semifinite trace there are nonzero projections with arbitrarily small trace 
⇒ we cannot have type II
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1) Faithful

2) Normal

3) Semifinite

• We can prove that the trace is

Type I von Neumann algebras

• It also satisfies the trace inequality (an extension of the 4-boundaries argument applies)

• Applying the trace inequality to gives

• Therefore,             is a direct sum/integral of type I factors! 

• The spectrum of                (center of        ) is discrete



Type I von Neumann algebras

• are each other commutants on               , and so they have the same center

• can be decomposed into eigenspaces of 

with
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• Faithful, normal, semifinite traces on type I algebras are unique up to an overall normalization constant. 
Therefore, on a given μ-sector

• For one-dimensional projection onto a state in we have 

Trace Normalization

trace inequality

positivity of the inner product on

positivity of the inner product on

⇒ is a positive integer!
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• Therefore on a given μ-sector              with 

Trace Normalization

• We define the extended Hilbert space factors:

“hidden sector”

where ! 

⇒ The hidden sectors allow to interpret the path integral trace as a Hilbert space trace

• The full extended Hilbert space:
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• Given a state we can define a reduced density operator  

• The von Neumann entropy is
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Entropy

✓ The trace      defines an entropy on the left/right      

✓ Thanks to the relation this entropy has a state-counting interpretation as left entropy on the extended 
Hilbert space

✓ We can compute this entropy via the replica trick:

✓ If the theory admits a semiclassical limit described by Einstein-Hilbert or JT gravity, we can argue (by following 
Lewkowycz-Maldacena) that in such a limit the entropy is given by the Ryu-Takayanagi entropy  

RT



Conclusions

• A gravitational path integral satisfying a simple and familiar set of axioms defines type I von Neumann algebras 
of observables associated with codimension-2 boundaries.

• The path integral also defines a trace and entropy on these algebras.

• The Hilbert space on which the algebras act decomposes as

• The path integral trace is equivalent to a standard trace on an extended Hilbert space:                  .

• This provides a state-counting interpretation of the entropy, even when the gravitational theory is not known to 
have a holographic dual.

• In the semiclassical limit, the entropy is given by the Ryu-Takayanagi formula.

?
Entropy?



Thanks for the attention!
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