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What can we learn from (discrete) gravitational path
integrals?

Quantum geometry Quantum gravity

Semi-classical approximations Topological transitions

Early universe Cosmology applications
Black hole dynamics

Renormalization/Continuum limit
Quantum field theory in curved space time



What are ‘effective spin foam models’?

They are defined as discrete geometric path integrals (sums) for quantum gravity

- maintain the ‘key dynamical principles’ of quantum geometry a la LQG

They are effective because:

- they provide spin foam models with efficient and computable dynamics

- they provide a general family of models by imposing constraints differently



What are ‘effective spin foam models’?

They are defined as discrete geometric path integrals (sums) for quantum gravity

- maintain the ‘key dynamical principles’ of quantum geometry a la LQG

They are effective because:

- they provide spin foam models with efficient and computable dynamics

- they provide a general family of models by imposing constraints differently

They can provide many insights into discrete path integral models

- easy construction of Lorentzian and Euclidean models

- applications to semi-classical geometries, cosmology, ...

- avenue to study continuum limit of discrete models



Outline

<+ Constructing effective spin foams

® Discrete quantum geometries

< Testing the model

® Semi-classical analysis

<+ Cosmology applications

® Mini superspace models

< Continuum limit

® First Steps: Perturbative



Effective Spin foams
Constructing the models

ISKA, Dittrich, Haggard, Padua-Arguelles, Brysiewicz |
arXiv: 2004.07013, 2011.14468, 2104.00485, 2402.17080



The Construction Features of quantum geometry (LQG)

[Ashtekar, Rovelli, Smolin, Thiemann, Lewandowski, Perez, Bianchi, Freidel, Corichi, Dittrich, Varadarajan, Livine, Bonzom...

many more ...

Construct a simple spin foam model where:

® area variables fundamental

- enlarged space of (discrete) length geometries

support from: LQG, black hole entropy, thermodynamics, generalized geometry, geometric entanglement, strings

[Bekenstein, Ryu, Takayanagi, Cattaneo, Perez, Jacobson, Headrich, Zweibach, Schuller, Wohlfahrt,...]

[Rovelli, Smolin, Ashtekar, Lewandowski, Corichi, Wieland, Freidel, Geiller, Pranzetti...
O] spectra fOl‘ arca operators

Space-like areas
as =yCa/i(j+1) ~y£pj, jENI2

Time-like areas

ar=¢3n, neN/2



The Construction Area Regge Calculus

Simple action (4 D) [Regge ’61; Rovelli *93; Mikeli ’94, Barrett, Rocek, Williams ’97, SKA, Dittrich, Haggard ’18...]

Area Regge action: Sprc = — 2 a,ela,) — Z a, yla,)
rebulk rebdry

discrete GR action for area configurations

relevant for LQG and spin foam models  [Rovelli *93; Barrett et al... ] I

Classical dynamics:  €{a,) =0 does not reproduce discrete GR dynamics

vanishing curvature + non-shape matching



The Construction Area Regge Calculus

Simple action (4 D) [Regge ’61; Rovelli '93; Mikeli '94, Barrett, Roéek, Williams 97, SKA, Dittrich, Haggard ’18...]

Area Regge action: Sprc = — 2 a,ela,) — Z a, yla,)
rebulk rebdry

discrete GR action for area configurations

relevant for LQG and spin foam models  [Rovelli *93; Barrett et al... ] I

Classical dynamics:  €{a,) =0 does not reproduce discrete GR dynamics

vanishing curvature + non-shape matching

Preliminary state-sum model: ~ Z =)’ u(a) exp(i Sypc(a))

{a}
discrete areas

Add constraints to reproduce discrete GR  [Dittrich, Speziale '07]
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The Construction Constrain area variables

Area-length constraints  set of polynomial equations
{atz = 1—16(4112122 — (112 + 122 — 132)2), ‘v’t} cf. (part of) simplicity constraints

[Heron of Alexandria, AD 70]
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Homotopy continuation (tools from numerical algebraic geometry) [Brysiewicz, SKA "24]

A 4-simplex with 10 areas has up to 64 length configurations
Galois group

o @ & O
— not solvable
Generically, area-length constraints has no/few solutions

Diophantine equations for discrete areas [Dittrich, Haggard, SKA ’21]
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Area-length constraints  set of polynomial equations
{atz — 1—16(4112122 — (P + =15, Vt} cf. (part of) simplicity constraints
[Heron of Alexandria, AD 70]

Homotopy continuation (tools from numerical algebraic geometry) [Brysiewicz, SKA "24]

A 4-simplex with 10 areas has up to 64 length configurations
Galois group

o @ & O
— not solvable
Generically, area-length constraints has no/few solutions

Diophantine equations for discrete areas [Dittrich, Haggard, SKA ’21]

Constraints between neighbouring simplices

CDZ;”(at) = CI)Z;“/(at), =12

match pair of 3d dihedral angles
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The Construction Weak implementation of constraints

[courtesy of: Hal Haggard]
Forced between

Scylla: Reduce too much density of states

Charybdis: Impose dynamics that doesn’t match GR
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The Construction Weak implementation of constraints

[courtesy of: Hal Haggard]
Forced between

Scylla: Reduce too much density of states

Charybdis: Impose dynamics that doesn’t match GR

(localized geometric constraints) ,
(second-class constraints)

T._ 4T _ B0 _ T T\ — [Dittrich, Speziale, Ryan, Haggard,...]
Cgi T qb@i (I)ei (a)=0 {Cgi’ ng} =y Z)VOIT [Kapovich-Millson]

Y - an anomaly parameter

Impose constraints ‘weakly’: as strongly as allowed by uncertainty relation

[SF: Engle-Perriera-Rovelli-Livine, Perez]
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The Construction Weak implementation of constraints

[courtesy of: Hal Haggard]
Forced between

Scylla: Reduce too much density of states

Charybdis: Impose dynamics that doesn’t match GR

(localized geometric constraints) ,
(second-class constraints)

T._ 4T _ B0 _ T T\ — [Dittrich, Speziale, Ryan, Haggard,...]
Cgi T qb@i (I)ei (a)=0 {Cgi’ ng} =y Z)VOIT [Kapovich-Millson]

Y - an anomaly parameter

Impose constraints ‘weakly’: as strongly as allowed by uncertainty relation

[SF: Engle-Perriera-Rovelli-Livine, Perez]

Use coherent states:

¢ ’ T .
Integrate out’ ¢° variables coupling between ¢ and ¢

K@"©)  =——p G, = (Ko | Kyyo)

[Livine, Speziale “17] =
ansatz ~ Jexp| — o
[Steinhaus, Simao, SKA ’22] 42°%(j)
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The Construction Effective spin foam model

Combine simple amplitude and impose constraints ‘weakly’ [Dittrich, Haggard, Padua-Argiielles, SKA]
Effective spin foam models are discrete geometrical path integrals for quantum gravity

Zgsp = ) (@) exp (iSupc(@) | [ G27(a) [ ] ©%(a)

{a,} T
simplex inequalities
u(a) - measure on space of discrete areas

Oscillatory behaviour controlled by area Regge action

Weak imposition of constraints by Gaussian terms localized on tetrahedra

Spin foam amplitudes may be cast into a similar form [Steinhaus, Siméo, SKA ’22]
(have to integrate normal vectors)
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Featlll‘eS Of the m()de‘ Regge calculus  Gluing terms

Zgsr = Y u(@) exp (iSxre@) [ G27(@ [] 05

{Clt} T
: - . . [Dittrich, Haggard, Padua-Argiielles, SKA]
4+ ‘Effective’ dynamics of quantum geometries

keep dynamic principles of LQG and spin foam models

4+ Computationally very efficient

fast numerical computations cf. to BF and EPRL models, restricted spin foam models

[Speziale, Dona, Sarno, Gozzini, Frisono; Han, Liu, Qu, Huang; Bahr, Steinhaus, Simao, SKA...]
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Featlll‘eS Of the m()de‘ Regge calculus  Gluing terms

Zgsr = Y u(@) exp (iSxre@) [ G27(@ [] 05

{Clt} T

) - F . . [Dittrich, Haggard, Padua-Argiielles, SKA]
4+ ‘Effective’ dynamics of quantum geometries

keep dynamic principles of LQG and spin foam models

4+ Computationally very efficient

fast numerical computations cf. to BF and EPRL models, restricted spin foam models

[Speziale, Dona, Sarno, Gozzini, Frisono; Han, Liu, Qu, Huang; Bahr, Steinhaus, Simao, SKA...]

4+ Related to spin foam models for higher gauge group

/ COS(SRegge) [Baez, Girelli, Pfeiffer, Popescu; Baratin, Freidel; Mikovic, Vojinovic; Dittrich, Girelli, Riello, Tsimiklis, SKA]

4+ Control: can test many interesting features
[3D SFs: Simao 24, Jercher, Steinhaus, Simao]

Simple construction of Lorentzian model: allows spacelike and timelike area configurations

Cosmology applications®
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Lorentzian geometries Configurations

Configurations can be grouped into two sets: Regular and Irregular

according to light cone structure of faces

2D Examples (Hinge causality) [Louko-Sorkin ’95, Sorkin *19]

, Irregular configurations
Regular configuration 5 8

Trouser-like Yarmulke
a
d C b
a a . ¢ b d ¢
e b b
e
C
related to: @
Topology change

[Sorkin’19, Dittrich, Padua-Argiielles, SKA "21]
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Lorentzian geometries Configurations

Configurations can be grouped into two sets: Regular and Irregular

according to light cone structure of faces

2D Examples (Hinge causality) [Louko-Sorkin ’95, Sorkin *19]

, Irregular configurations
Regular configuration 5 8

Trouser-like Yarmulke
a
d C b
a a . ¢ b d ¢
e b b
e
C
related to: @
Topology change

—

Higher Dimensions: Other causality conditions Edge causality, Vertex Causality /°7@@ toll 3]

[Borgolte, SKA wip]

Irregular configurations leads to complex valued Regge action  [Sorkin’19, Dittrich, Padua-Argiielles, SKA *21]

13



C()nvergence Techniques to deal with complex amplitudes

Methods for treating complex amplitudes: Applications to Lorentzian path integrals

Picard—Lefschetz, Holomorphic—gradient flow [Han, Wan, Huang, Liu, Qu: Jia:  Dittrich, Padua-Argiielles, SKA 22]

Tensor network techniques [Bahr, Steinhaus, Dittrich, Cunningham, Mizera, Kaminski, Martin-Benito]

Quantum simulations, machine learning techniques

Monte Carlo techniques  [Dona, Frisoni 23; Steinhaus "24]

Accelerati()n operat()rs [EPRL: Speziale, Dona, Sarno, Gozzini, Frisoni] [ESF: Dittrich, Padua-Argiielles 23]

Shanks transform, Wynn epsilon algorithm, Aitken’s delta process
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14



-3

Effective Spin foams
Testing the models

[ISKA, Dittrich, Haggard, Padua-Arguelles]
arXiv: 2004.07013, 2011.14468, 2104.00485
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Discrete gravity dynamicS  gomi-classical

Weakly imposed constraints

Zgsr = Y u(@) exp (iSppc@) [ [ G27(@) ] 0%(a)

1of /\ | ﬂ\ | | {a,) / r \

U Oscillations Gaussians
/ peaked on constraints

0.0 =

Semi-classical limit:

-0.5}

U v U Few oscillations over Gaussian needed
-1.0 . . . . : [SKA, Dittrich, Haggard]
-0.4 -0.2 0.0 0.2 0.4 ]/\/Et CUurv, ,S @(1) [SF: Han 13]

. . . . [Dittrich, Haggard, SKA ’20] [SF: Han, Huang, Liu, Qu ’21]
Alternative idea: ‘true’ critical points are complex

Imaginary part of saddle point controlled by y has to be small
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Zgsr = Y u(@) exp (iSppc@) [ [ G27(@) ] 0%(a)
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U Oscillations Gaussians
/ peaked on constraints

0.0 =

Semi-classical limit:

-0.5}

U v U Few oscillations over Gaussian needed
-1.0 . . . . : [SKA, Dittrich, Haggard]
-0.4 -0.2 0.0 0.2 0.4 ]/\/Et CUurv, ,S @(1) [SF: Han 13]

. . . . [Dittrich, Haggard, SKA ’20] [SF: Han, Huang, Liu, Qu ’21]
Alternative idea: ‘true’ critical points are complex

Imaginary part of saddle point controlled by y has to be small

What are some effects of discrete area spectrum and ‘weakly’ imposed constraints ?
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Testing ESF model Numerical Tests

4 Early results from explicit evaluations Non-perturbative tests

Several examples of discrete geometries with curvature

4

explicit sum over discrete areas, implement weakened constraints

Compute expectation values of bulk variables testing discrete EOMs

» Recover discrete gravity dynamics for certain range of parameters

interesting effects beyond saddle point evaluation

larger acceptable range for y than expected

17



Numericalresults 5, eqge

Small C_llrvat““e Oscillations due to interplay between

discrete areas and constraint imposition
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Numerical results

Small curvature

Bulk-Edge
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Oscillations due to interplay between
discrete areas and constraint imposition

Nice surprises:

Large acceptable range for y for the
expectation values

Better matching of classical EOMs for large
boundary scales

Peaks due to discretization effects: pseudo-saddle points
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B Credit: NASA, ESA, HUDFog Team
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Effective Spin foams
Cosmology applications

[SKA, Dittrich, Padua-Arguelles, Gielen, Schander, Steinhaus, Jercher]
arXiv: 2109.00875, 2112.15387, 2306.06012, 2312.11639
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Cosmology Applications Mini-superspace models

[Hartle, Hawking, Feldbrugge, Lehners, Turok, Dorronsoro, Halliwell, Hertog, Jansen,....]

[Williams, Lui, Collins, Dittrich, Gielen, Schander, Vidotto, Gozzini, Frisoni,....]

No boundary proposal deSitter cosmological spacetime

Ay
\j '\/ E} 1

[Dittrich, Gielen, Schander '21]

Ay

i

partial discretization partial discretization

) . [Dittrich, Padua-Arglielles 23]
Spatially flat cosmology [Steinhaus, Jercher]

Spin foam cosmology
[Han, Liu, Qu, Vidotto, Zhang ]

Alexander Jercher’s talk!
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C()Sm()l()gy Applic ati()ns [Dittrich, Padua-Argiielles 23]

Effective spin foam model

Results from deSitter cosmology

Deal with slowing converging and diverging sums Ball model Shell m;)del

Unbounded sum over lapse variable (regular and irregular configurations)

Acceleration techniques (Wynn’s algorithm): Speeds up convergence of discrete sums

- works well for actions linear in summation variable (also for spin foams)
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C()Sm()l()gy Applic ati()ns [Dittrich, Padua-Argiielles 23]

Effective spin foam model

Results from deSitter cosmology

Deal with slowing converging and diverging sums

Ball model

Unbounded sum over lapse variable (regular and irregular configurations)

Acceleration techniques (Wynn’s algorithm): Speeds up convergence of discrete sums

- works well for actions linear in summation variable (also for spin foams)
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Partition function and expectation values sensitive to discrete area spectrum
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Effective Sp

Continuum limit

[Dittrich, Kogios, Borissova, Krasnov, Steinhaus, SKA]
arXiv: 2105.10808, 2203.02409, 2207.03307, 2211.09578, 2312.13935
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Continuum limit First Steps
[Dittrich ’21, Dittrich-Kogios ’22]

Action: S = Sype(@) — ZZ InG(a) [Handbook: Dittrich, Steinhaus, SKA]
T

First attempts: Linearize area Regge calculus around a flat background on hyper cubic lattice(s)

Interesting Results [Dittrich 21, Dittrich-Kogios "22]

Linearized continuum limit Area Regge Calculus ~ GR + Weyl"2

e N

leading order in lattice derivatives sub-leading
2 4
ak ak

- Also holds starting from effective spin foams action
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Continuum limit First Steps
[Dittrich ’21, Dittrich-Kogios ’22]

Action: S = Sype(@) — ZZ InG(a) [Handbook: Dittrich, Steinhaus, SKA]
T

First attempts: Linearize area Regge calculus around a flat background on hyper cubic lattice(s)

Interesting Results [Dittrich 21, Dittrich-Kogios "22]

Linearized continuum limit Area Regge Calculus ~ GR + Weyl|"2

e N

leading order in lattice derivatives sub-leading
2 4
ak ak

- Also holds starting from effective spin foams action

Related work (Area metric formulations)

+ Modified Plebanski actions [Borissova, Dittrich ’22]

+ Continuum area-metric actions [Borissova, Dittrich, Krasnov °23, Borissova, Ho ’24]
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Continuum limit Area Regge Calculus

Mechanism  Compute Hessian around flat background

[Williams, Rocek ‘81]

Quantum Regge Calculus Quantum: Area Regge Calculus
: oa, 0e oe s )
Hessian (2 — Z _f_f 51 51 S(2) _ S a, S a, [Dittrich, Haggard, SKA ’18]
oa,

Strategy: Organize variables according to order of lattice derivatives in Hessian

Leading order contributions results from variables forming an area metric

20 area metric variables per point = /1 10) + A (10)
trace part trace-free part
Integrate  Integrate out non-metric variables — Effective action for metric variables
Seft = h - (H),—Hy, H,, H;(h) h

24



Summary & outlook

What can we learn from (discrete) gravitational path
integrals?

Using ‘effective spin foam models’

Quantum geometry

Quantum gravity

Topological transitions

| Early universe Cosmology applications |
Black hole dynamics (atly HHTIVERSL LOSTHDIOSY dPPTItatIOnS |

Quantum field theory in curved space time

' Renormalization/Continuum limit ¢

Look for predictions/observable signatures from area variables
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Summary & outlook

What can we learn from (discrete) gravitational path
integrals?

Using ‘effective spin foam models’

Quantum geometry

Quantum gravity

Topological transitions

| Early universe Cosmology applications |
Black hole dynamics AL

Quantum field theory in curved space time

' Renormalization/Continuum limit !
Look for predictions/observable signatures from area variables

THANK YOU'!
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