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Black hole dynamics

Quantum field theory in curved space time

What can we learn from (discrete) gravitational path 
integrals?

Quantum geometry Quantum gravity

Semi-classical approximations Topological transitions

Early universe Cosmology applications

Renormalization/Continuum limit
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What are ‘effective spin foam models’?

They are defined as discrete geometric path integrals (sums) for quantum gravity

- maintain the ‘key dynamical principles’ of quantum geometry à la LQG

They are effective because:

- they provide spin foam models with efficient and computable dynamics
- they provide a general family of models by imposing constraints differently
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What are ‘effective spin foam models’?

They are defined as discrete geometric path integrals (sums) for quantum gravity

- maintain the ‘key dynamical principles’ of quantum geometry à la LQG

They are effective because:

- they provide spin foam models with efficient and computable dynamics
- they provide a general family of models by imposing constraints differently

They can provide many insights into discrete path integral models
- easy construction of Lorentzian and Euclidean models
- applications to semi-classical geometries, cosmology, …
- avenue to study continuum limit of discrete models
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Outline

๏ Discrete quantum geometries

❖ Constructing effective spin foams

❖ Testing the model

❖ Cosmology applications

❖ Continuum limit
๏ First Steps: Perturbative

๏ Semi-classical analysis

๏ Mini superspace models
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Constructing the models
Effective Spin foams

[SKA, Dittrich, Haggard, Padua-Argüelles, Brysiewicz ]  
arXiv: 2004.07013, 2011.14468, 2104.00485, 2402.17080
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The Construction

Construct a simple spin foam model where:

๏ area variables fundamental

๏ spectra for area operators
[Rovelli, Smolin, Ashtekar, Lewandowski, Corichi, Wieland, Freidel, Geiller, Pranzetti…]

Space-like areas

Time-like areas

Features of quantum geometry (LQG)

support from: LQG, black hole entropy, thermodynamics, generalized geometry, geometric entanglement, strings

aS = γℓ2
P j( j + 1) ∼ γℓ2

P j, j ∈ ℕ/2

aT = ℓ2
P n, n ∈ ℕ/2

[Ashtekar, Rovelli, Smolin, Thiemann, Lewandowski, Perez, Bianchi, Freidel, Corichi, Dittrich, Varadarajan, Livine, Bonzom…]

[Bekenstein, Ryu, Takayanagi, Cattaneo, Perez, Jacobson, Headrich, Zweibach, Schuller, Wohlfahrt,…]

many more ….

- enlarged space of (discrete) length geometries



8

The Construction Area Regge Calculus

Simple action

SARC = − ∑
t∈bulk

at ϵt(at′ ) − ∑
t∈bdry

at ψt(at′ )Area Regge action:

[Regge ’61; Rovelli ’93; Mäkelä ’94, Barrett, Roček, Williams ’97, SKA, Dittrich, Haggard ’18…]

discrete GR action for area configurations

(4D)

Classical dynamics: ϵt(at′ ) = 0 does not reproduce discrete GR dynamics

vanishing curvature + non-shape matching

relevant for LQG and spin foam models 𝒯[Rovelli ’93; Barrett et al… ]
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The Construction

Preliminary state-sum model: Z = ∑
{a}

μ(a) exp( i SARC(a))

discrete areas

Add constraints to reproduce discrete GR

Area Regge Calculus

Simple action

SARC = − ∑
t∈bulk

at ϵt(at′ ) − ∑
t∈bdry

at ψt(at′ )Area Regge action:

[Regge ’61; Rovelli ’93; Mäkelä ’94, Barrett, Roček, Williams ’97, SKA, Dittrich, Haggard ’18…]

discrete GR action for area configurations

(4D)

Classical dynamics: ϵt(at′ ) = 0 does not reproduce discrete GR dynamics

vanishing curvature + non-shape matching

relevant for LQG and spin foam models 𝒯[Rovelli ’93; Barrett et al… ]

[Dittrich, Speziale ’07]
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Area-length constraints

cf.  (part of) simplicity constraints 

The Construction Constrain area variables

{a2
t = 1

16 (4l2
1 l2

2 − (l2
1 + l2

2 − l2
3)2), ∀t}

set of polynomial equations

[Heron of Alexandria, AD 70]
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Homotopy continuation 

A 4-simplex with 10 areas has up to 64 length configurations

Area-length constraints

Generically, area-length constraints has no/few solutions 

Diophantine equations for discrete areas

cf.  (part of) simplicity constraints 

The Construction Constrain area variables

{a2
t = 1

16 (4l2
1 l2

2 − (l2
1 + l2

2 − l2
3)2), ∀t}

set of polynomial equations

(tools from numerical algebraic geometry) [Brysiewicz, SKA ’24]

[Dittrich, Haggard, SKA ’21]

[Heron of Alexandria, AD 70]

G = ℤ2 ≀ 𝕊32
Galois group

 not solvable⟹
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Homotopy continuation 

A 4-simplex with 10 areas has up to 64 length configurations

Area-length constraints

Generically, area-length constraints has no/few solutions 

Diophantine equations for discrete areas

cf.  (part of) simplicity constraints 

The Construction Constrain area variables

Constraints between neighbouring simplices

Φτ,σ
ei

(at) = Φτ,σ′ 
ei

(at), i = 1,2

{a2
t = 1

16 (4l2
1 l2

2 − (l2
1 + l2

2 − l2
3)2), ∀t}

set of polynomial equations

(tools from numerical algebraic geometry) [Brysiewicz, SKA ’24]

[Dittrich, Haggard, SKA ’21]

σ σ′ 

match pair of 3d dihedral angles

[Heron of Alexandria, AD 70]

G = ℤ2 ≀ 𝕊32
Galois group

 not solvable⟹
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Forced between 

The Construction Weak implementation of constraints

Scylla:

Charybdis:

[courtesy of: Hal Haggard]

Reduce too much density of states

Impose dynamics that doesn’t match GR
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Forced between 

The Construction Weak implementation of constraints

Scylla:

Charybdis:

[courtesy of: Hal Haggard]

Reduce too much density of states

Impose dynamics that doesn’t match GR

𝒞τ
i := ϕτ

ei
− Φτ,σ

ei
(at) = 0

(localized geometric constraints)
(second-class constraints)

{𝒞τ
i , 𝒞τ

j} = γ (9/2)Volτ
[Dittrich, Speziale, Ryan, Haggard,…]
[Kapovich-Millson]

[SF: Engle-Perriera-Rovelli-Livine, Perez]

Impose constraints ‘weakly’: as strongly as allowed by uncertainty relation

  - an anomaly parameterγ
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Forced between 

The Construction Weak implementation of constraints

Scylla:

Charybdis:

[courtesy of: Hal Haggard]

Reduce too much density of states

Impose dynamics that doesn’t match GR

𝒞τ
i := ϕτ

ei
− Φτ,σ

ei
(at) = 0

(localized geometric constraints)
(second-class constraints)

{𝒞τ
i , 𝒞τ

j} = γ (9/2)Volτ
[Dittrich, Speziale, Ryan, Haggard,…]
[Kapovich-Millson]

Gτ = ⟨KΦτ,σ
ei

|KΦτ,σ′ 
ei

⟩

Use coherent states:

|K(ϕτ, Φτ,σ
ei

) ⟩
‘Integrate out’  variablesϕτ

[SF: Engle-Perriera-Rovelli-Livine, Perez]

∼ 𝒩k exp (−
𝒞2

4Σ2( j) )ansatz

Impose constraints ‘weakly’: as strongly as allowed by uncertainty relation

  - an anomaly parameterγ

[Livine, Speziale ‘17]

coupling between  and σ σ′ 

[Steinhaus, Simão, SKA ’22]
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The Construction Effective spin foam model

Effective spin foam models are discrete geometrical path integrals for quantum gravity

ZESF = ∑
{at}

μ(a) exp (i SARC(a)) ∏
τ

Gσ,σ′ 
τ (a) ∏

σ

Θtr
σ(a)

Combine simple amplitude and impose constraints ‘weakly’ [Dittrich, Haggard, Padua-Argüelles, SKA]

[Steinhaus, Simão, SKA ’22]Spin foam amplitudes may be cast into a similar form

simplex inequalities
 - measure on space of discrete areasμ(a)

Oscillatory behaviour controlled by area Regge action

Weak imposition of constraints by Gaussian terms localized on tetrahedra

(have to integrate normal vectors)



12

fast numerical computations cf. to BF and EPRL models, restricted spin foam models

Features of the model

keep dynamic principles of LQG and spin foam models

ZESF = ∑
{at}

μ(a) exp (i SARC(a)) ∏
τ

Gσ,σ′ 
τ (a) ∏

σ

Θtr
σ(a)

[Speziale, Dona, Sarno, Gozzini, Frisono; Han, Liu, Qu, Huang; Bahr, Steinhaus, Simão, SKA...]

Regge calculus Gluing terms

✦ ‘Effective’ dynamics of quantum geometries

✦ Computationally very efficient

[Dittrich, Haggard, Padua-Argüelles, SKA]
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fast numerical computations cf. to BF and EPRL models, restricted spin foam models

Simple construction of Lorentzian model: allows spacelike and timelike area configurations 

Features of the model

keep dynamic principles of LQG and spin foam models

ZESF = ∑
{at}

μ(a) exp (i SARC(a)) ∏
τ

Gσ,σ′ 
τ (a) ∏

σ

Θtr
σ(a)

Cosmology applications*

[Speziale, Dona, Sarno, Gozzini, Frisono; Han, Liu, Qu, Huang; Bahr, Steinhaus, Simão, SKA...]

Regge calculus Gluing terms

✦ ‘Effective’ dynamics of quantum geometries

✦ Computationally very efficient

✦ Control: can test many interesting features

[Dittrich, Haggard, Padua-Argüelles, SKA]

✦ Related to spin foam models for higher gauge group

[Baez, Girelli, Pfeiffer, Popescu; Baratin, Freidel; Miković, Vojinović; Dittrich, Girelli, Riello, Tsimiklis, SKA]Z ∝ cos(SRegge)

[3D SFs: Simão ‘24, Jercher, Steinhaus, Simão]
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Lorentzian geometries

2D Examples

Configurations can be grouped into two sets: Regular and Irregular

Regular configuration

b
a

b
a

d

c

ee

Irregular configurations

Trouser-like 

a

aa
b

cd

Yarmulke

c

b

b

d
a

a

e

e

[Louko-Sorkin ’95, Sorkin ’19]

Topology change

according to light cone structure of faces

Configurations

related  to:

(Hinge causality)

[Sorkin’19, Dittrich, Padua-Argüelles, SKA ’21]
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Lorentzian geometries

2D Examples

Configurations can be grouped into two sets: Regular and Irregular

Regular configuration

b
a

b
a

d

c

ee

Irregular configurations

Trouser-like 

a

aa
b

cd

Yarmulke

c

b

b

d
a

a

e

e

Other causality conditions  Edge causality, Vertex Causality [Jordan, Loll ’13 ]Higher Dimensions: 

[Louko-Sorkin ’95, Sorkin ’19]

[Borgolte, SKA wip]

Topology change

according to light cone structure of faces

Configurations

related  to:

Irregular configurations leads to  complex valued Regge action

(Hinge causality)

[Sorkin’19, Dittrich, Padua-Argüelles, SKA ’21]
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Convergence
Methods for treating complex amplitudes:

Techniques to deal with complex amplitudes

Picard-Lefschetz, Holomorphic-gradient flow  

Tensor network techniques

Quantum simulations, machine learning techniques

Acceleration operators

Applications to Lorentzian path integrals
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[plots by: Dittrich, Padua-Argüelles]

[Han, Wan, Huang, Liu, Qu: Jia: Dittrich, Padua-Argüelles, SKA ’22]

[ESF: Dittrich, Padua-Argüelles ’23][EPRL: Speziale, Dona, Sarno, Gozzini, Frisoni]

[Bahr, Steinhaus, Dittrich, Cunningham, Mizera, Kaminski, Martin-Benito]

Shanks transform, Wynn epsilon algorithm, Aitken’s delta process

Monte Carlo techniques [Dona, Frisoni ’23; Steinhaus ’24]
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[SKA, Dittrich, Haggard, Padua-Argüelles]  
arXiv: 2004.07013, 2011.14468, 2104.00485

Effective Spin foams
Testing the models



16

Discrete gravity dynamics 

16

Semi-classical 

-0.4 -0.2 0.0 0.2 0.4
-1.0

-0.5

0.0

0.5

1.0

Few oscillations over Gaussian needed

γ at curvt ≲ 𝒪(1)
[SKA, Dittrich, Haggard]

[SF: Han, Huang, Liu, Qu ’21]

Semi-classical limit:

[SF: Han 13]

Oscillations Gaussians  
peaked on constraints

Alternative idea: ‘true’ critical points are complex

Imaginary part of saddle point controlled by  has to be smallγ

ZESF = ∑
{at}

μ(a) exp (i SARC(a)) ∏
τ

Gσ,σ′ 
τ (a) ∏

σ

Θtr
σ(a)

Weakly imposed constraints

[Dittrich, Haggard, SKA ’20]
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Discrete gravity dynamics 

16

Semi-classical 

-0.4 -0.2 0.0 0.2 0.4
-1.0

-0.5

0.0

0.5

1.0

Few oscillations over Gaussian needed

γ at curvt ≲ 𝒪(1)
[SKA, Dittrich, Haggard]

[SF: Han, Huang, Liu, Qu ’21]

Semi-classical limit:

[SF: Han 13]

Oscillations Gaussians  
peaked on constraints

Alternative idea: ‘true’ critical points are complex

Imaginary part of saddle point controlled by  has to be smallγ

ZESF = ∑
{at}

μ(a) exp (i SARC(a)) ∏
τ

Gσ,σ′ 
τ (a) ∏

σ

Θtr
σ(a)

Weakly imposed constraints

What are some effects of  discrete area spectrum and ‘weakly’ imposed constraints ?

[Dittrich, Haggard, SKA ’20]



17

✦ Early results from explicit evaluations

‣  Recover discrete  gravity dynamics for certain range of parameters

Several examples of discrete geometries with curvature

Testing ESF model

explicit sum over discrete areas, implement weakened constraints

interesting effects beyond saddle point evaluation

Non-perturbative tests

larger acceptable range for  than expectedγ

Numerical Tests

Compute expectation values of bulk variables testing discrete EOMs 
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Numerical results Bulk-Edge
Oscillations due to interplay between 

discrete areas and constraint imposition

Nice surprises:

γ0 1.20.6

Small curvature

Large acceptable range for  for the  
expectation values

γ

Better matching of classical EOMs for large  
boundary scales
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Numerical results Bulk-Edge
Oscillations due to interplay between 

discrete areas and constraint imposition

Nice surprises:

Peaks due to discretization effects: pseudo-saddle points

γ0 1.20.6

|Z |
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Small curvature

Large acceptable range for  for the  
expectation values

γ

Better matching of classical EOMs for large  
boundary scales
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Credit: NASA, ESA, HUDF09 Team

[SKA, Dittrich, Padua-Argüelles, Gielen, Schander, Steinhaus, Jercher]  
arXiv: 2109.00875, 2112.15387, 2306.06012, 2312.11639

Effective Spin foams
Cosmology applications
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Cosmology Applications

deSitter cosmological spacetime

ai

af

partial discretization

8

FIG. 1: Representation of a no-boundary saddle point for the path integral: the geometry starts o↵ as a

Riemannian 4-sphere which is then glued to one half of de Sitter spacetime.

If we again work in the particularly convenient gauge N = N/a where N is a constant, the first

order Friedmann equation in (2.15) is

ȧ
2

N2
=

⇤

3
�

1

a2
. (2.20)

The two possible solutions (corresponding to the two possible signs for ȧ) starting from a given

a(0) are

a(t) =

vuut
a(0)2 +

1

3
Nt

 
⇤Nt + 6�1

r
⇤

3
a(0)2 � 1

!
(2.21)

where �1 = ±1. One can now eliminate N in favour of the final boundary value a(1); this yields

a(t) =

vuut
a(0)2(t � 1)2 + a(1)2t2 �

6

⇤
t(t � 1)

 
1 + �1�2

r
⇤

3
a(0)2 � 1

r
⇤

3
a(1)2 � 1

!
(2.22)

where �2 is another sign that can be chosen freely, coming from the ambiguity in eliminating N

in favour of a(1). Evaluating the action (2.13) on this solution again leads to (2.19), with the two

signs �1 and �2 free as before.

Below we will compare these continuum results for the stationary phase approximation to those

obtained in the discrete setting of Regge calculus. The sign ambiguities in (2.19) will also be

important in the discussion there, so a few more comments regarding their interpretation might

be useful. First of all, note that if one chooses either a(0) = a⇤ or a(1) = a⇤, there is only a

single global sign to choose. Furthermore, the Hamilton–Jacobi function is, for any choice of signs,

purely imaginary if a(0)  a⇤ and a(1)  a⇤ (so that all classical solutions are Euclidean) and real

if a(0) � a⇤ and a(1) � a⇤ (so that all classical solutions are Lorentzian). For the remaining case

where a(0)  a⇤ and a(1) � a⇤, which is considered in the no-boundary proposal, the two sign

ambiguities amount to a choice of sign for the imaginary part (resulting from evolution from a(0)

to a⇤) and the sign for the real part (resulting from evolution from a⇤ to a(1)), respectively.

No boundary proposal

af

0

[Hartle, Hawking, Feldbrugge, Lehners, Turok, Dorronsoro, Halliwell, Hertog, Jansen,….]

Spatially flat cosmology

ai

af

[Dittrich, Padua-Argüelles ’23]
[Steinhaus , Jercher]

Mini-superspace models

Spin foam cosmology
[Han, Liu, Qu, Vidotto, Zhang ]

[Dittrich, Gielen, Schander ’21]

Alexander Jercher’s talk!

partial discretization

[Williams, Lui, Collins, Dittrich, Gielen, Schander, Vidotto, Gozzini, Frisoni,….]
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Cosmology Applications

Results from deSitter cosmology

Effective spin foam model

[Dittrich, Padua-Argüelles ’23]
8

FIG. 1: Representation of a no-boundary saddle point for the path integral: the geometry starts o↵ as a

Riemannian 4-sphere which is then glued to one half of de Sitter spacetime.

If we again work in the particularly convenient gauge N = N/a where N is a constant, the first

order Friedmann equation in (2.15) is

ȧ
2

N2
=

⇤

3
�

1

a2
. (2.20)

The two possible solutions (corresponding to the two possible signs for ȧ) starting from a given

a(0) are

a(t) =

vuut
a(0)2 +

1

3
Nt

 
⇤Nt + 6�1

r
⇤

3
a(0)2 � 1

!
(2.21)

where �1 = ±1. One can now eliminate N in favour of the final boundary value a(1); this yields

a(t) =

vuut
a(0)2(t � 1)2 + a(1)2t2 �

6

⇤
t(t � 1)

 
1 + �1�2

r
⇤

3
a(0)2 � 1

r
⇤

3
a(1)2 � 1

!
(2.22)

where �2 is another sign that can be chosen freely, coming from the ambiguity in eliminating N

in favour of a(1). Evaluating the action (2.13) on this solution again leads to (2.19), with the two

signs �1 and �2 free as before.

Below we will compare these continuum results for the stationary phase approximation to those

obtained in the discrete setting of Regge calculus. The sign ambiguities in (2.19) will also be

important in the discussion there, so a few more comments regarding their interpretation might

be useful. First of all, note that if one chooses either a(0) = a⇤ or a(1) = a⇤, there is only a

single global sign to choose. Furthermore, the Hamilton–Jacobi function is, for any choice of signs,

purely imaginary if a(0)  a⇤ and a(1)  a⇤ (so that all classical solutions are Euclidean) and real

if a(0) � a⇤ and a(1) � a⇤ (so that all classical solutions are Lorentzian). For the remaining case

where a(0)  a⇤ and a(1) � a⇤, which is considered in the no-boundary proposal, the two sign

ambiguities amount to a choice of sign for the imaginary part (resulting from evolution from a(0)

to a⇤) and the sign for the real part (resulting from evolution from a⇤ to a(1)), respectively.

Ball model Shell model

Acceleration techniques (Wynn’s algorithm): Speeds up convergence of discrete sums 

Unbounded sum over lapse variable (regular and irregular configurations)

Deal with slowing converging and diverging sums

- works well for actions linear in summation variable (also for spin foams)
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Cosmology Applications

Results from deSitter cosmology

Effective spin foam model

[Dittrich, Padua-Argüelles ’23]
8

FIG. 1: Representation of a no-boundary saddle point for the path integral: the geometry starts o↵ as a

Riemannian 4-sphere which is then glued to one half of de Sitter spacetime.

If we again work in the particularly convenient gauge N = N/a where N is a constant, the first

order Friedmann equation in (2.15) is

ȧ
2

N2
=

⇤

3
�

1

a2
. (2.20)

The two possible solutions (corresponding to the two possible signs for ȧ) starting from a given

a(0) are

a(t) =

vuut
a(0)2 +

1

3
Nt

 
⇤Nt + 6�1

r
⇤

3
a(0)2 � 1

!
(2.21)

where �1 = ±1. One can now eliminate N in favour of the final boundary value a(1); this yields

a(t) =

vuut
a(0)2(t � 1)2 + a(1)2t2 �

6

⇤
t(t � 1)

 
1 + �1�2

r
⇤

3
a(0)2 � 1

r
⇤

3
a(1)2 � 1

!
(2.22)

where �2 is another sign that can be chosen freely, coming from the ambiguity in eliminating N

in favour of a(1). Evaluating the action (2.13) on this solution again leads to (2.19), with the two

signs �1 and �2 free as before.

Below we will compare these continuum results for the stationary phase approximation to those

obtained in the discrete setting of Regge calculus. The sign ambiguities in (2.19) will also be

important in the discussion there, so a few more comments regarding their interpretation might

be useful. First of all, note that if one chooses either a(0) = a⇤ or a(1) = a⇤, there is only a

single global sign to choose. Furthermore, the Hamilton–Jacobi function is, for any choice of signs,

purely imaginary if a(0)  a⇤ and a(1)  a⇤ (so that all classical solutions are Euclidean) and real

if a(0) � a⇤ and a(1) � a⇤ (so that all classical solutions are Lorentzian). For the remaining case

where a(0)  a⇤ and a(1) � a⇤, which is considered in the no-boundary proposal, the two sign

ambiguities amount to a choice of sign for the imaginary part (resulting from evolution from a(0)

to a⇤) and the sign for the real part (resulting from evolution from a⇤ to a(1)), respectively.
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Ball modelShell model

Ball model Shell model

Acceleration techniques (Wynn’s algorithm): Speeds up convergence of discrete sums 

Unbounded sum over lapse variable (regular and irregular configurations)

Deal with slowing converging and diverging sums

- works well for actions linear in summation variable (also for spin foams)

Partition function and expectation values sensitive to discrete area spectrum
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Credit: Fzalai

[Dittrich, Kogios, Borissova, Krasnov, Steinhaus, SKA]  
arXiv: 2105.10808, 2203.02409, 2207.03307, 2211.09578, 2312.13935

Effective Spin foams
Continuum limit
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Continuum limit
[Dittrich ’21, Dittrich-Kogios ’22]

S = SARC(a) − i∑
τ

ln Gτ(a)Action:

First Steps

[Handbook: Dittrich, Steinhaus, SKA]

Linearize area Regge calculus around a flat background on hyper cubic lattice(s) First attempts:

Interesting Results

Linearized continuum limit Area Regge Calculus ~ GR + Weyl^2

leading order in lattice derivatives sub-leading

- Also holds starting from effective spin foams action

[Dittrich ’21, Dittrich-Kogios ’22]

∂2
k ∂4

k
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Continuum limit
[Dittrich ’21, Dittrich-Kogios ’22]

S = SARC(a) − i∑
τ

ln Gτ(a)Action:

First Steps

[Handbook: Dittrich, Steinhaus, SKA]

Linearize area Regge calculus around a flat background on hyper cubic lattice(s) First attempts:

Interesting Results

Linearized continuum limit Area Regge Calculus ~ GR + Weyl^2

leading order in lattice derivatives sub-leading

- Also holds starting from effective spin foams action

[Dittrich ’21, Dittrich-Kogios ’22]

✦ Modified Plebanski actions [Borissova, Dittrich  ’22]

[Borissova, Dittrich, Krasnov ’23, Borissova, Ho  ’24]

Related work (Area metric formulations)

✦ Continuum area-metric actions

∂2
k ∂4

k
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Quantum: Area Regge Calculus

S(2) =
∂ϵt

∂at′ 
δat δat′ Hessian

Leading order contributions results from variables forming an area metric

Organize variables according to order of lattice derivatives in HessianStrategy:

h χ
trace part trace-free part

(10) +20 area metric variables per point (10)=

Quantum Regge Calculus

S(2) = ∑
t

∂at

∂le

∂ϵt

∂le′ 
δle δle′ 

[Williams, Roček ‘81]

[Dittrich, Haggard, SKA ’18]

Continuum limit Area Regge Calculus

Mechanism

Effective action for metric variables 

Seff = h ⋅ (Hhh−HhχH−1
χχ Hχh) ⋅ h

Integrate Integrate out non-metric variables

Compute Hessian around flat background
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Black hole dynamics

Quantum field theory in curved space time

What can we learn from (discrete) gravitational path 
integrals?

Quantum geometry Quantum gravity

Semi-classical approximations Topological transitions

Early universe Cosmology applications

Summary & outlook

Using ‘effective spin foam models’

Look for predictions/observable signatures from area variables

Renormalization/Continuum limit
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Black hole dynamics

Quantum field theory in curved space time

What can we learn from (discrete) gravitational path 
integrals?

Quantum geometry Quantum gravity

Semi-classical approximations Topological transitions

Early universe Cosmology applications

Summary & outlook

Using ‘effective spin foam models’

Look for predictions/observable signatures from area variables

THANK YOU !

Renormalization/Continuum limit




