

Effective Spin foam models An overview

Seth Kurankyi Asante, FSU Jena [Bianca Dittrich, Hal Haggard, Sebastian Steinhaus, José Diogo Simão, Alexander Jercher, José Padua-Argüelles, Taylor Brysiewicz*]

Loops'24 International Conference on Quantum Gravity

Fort Lauderdale, Florida, USA

May 9, 2024

What can we learn from (discrete) gravitational path integrals?

Quantum geometry

Quantum gravity

Semi-classical approximations

Topological transitions

Early universe Cosmology applications

Black hole dynamics

Renormalization/Continuum limit

Quantum field theory in curved space time

What are 'effective spin foam models'?

They are defined as discrete geometric path integrals (sums) for quantum gravity

- maintain the '<u>key dynamical principles'</u> of quantum geometry à la LQG

They are **effective** because:

- they provide spin foam models with efficient and computable dynamics
- they provide a general family of models by imposing constraints differently

What are 'effective spin foam models'?

They are defined as discrete geometric path integrals (sums) for quantum gravity

- maintain the '<u>key dynamical principles'</u> of quantum geometry à la LQG

They are **effective** because:

- they provide spin foam models with efficient and computable dynamics
- they provide a general family of models by imposing constraints differently

They can provide many insights into discrete path integral models

- easy construction of Lorentzian and Euclidean models
- applications to semi-classical geometries, cosmology, ...
- avenue to study continuum limit of discrete models

Outline

* Constructing effective spin foams

Discrete quantum geometries

***** Testing the model

Semi-classical analysis

* Cosmology applications

Mini superspace models

Continuum limit

• First Steps: Perturbative

Effective Spin foams Constructing the models

[SKA, Dittrich, Haggard, Padua-Argüelles, Brysiewicz] **arXiv:** 2004.07013, 2011.14468, 2104.00485, 2402.17080

The Construction Features of quantum geometry (LQG)

[Ashtekar, Rovelli, Smolin, Thiemann, Lewandowski, Perez, Bianchi, Freidel, Corichi, Dittrich, Varadarajan, Livine, Bonzom... many more

- Construct a simple spin foam model where:
 - area variables fundamental
 - enlarged space of (discrete) length geometries

support from: LQG, black hole entropy, thermodynamics, generalized geometry, geometric entanglement, strings [Bekenstein, Ryu, Takayanagi, Cattaneo, Perez, Jacobson, Headrich, Zweibach, Schuller, Wohlfahrt,...]

[Rovelli, Smolin, Ashtekar, Lewandowski, Corichi, Wieland, Freidel, Geiller, Pranzetti...] spectra for area operators

Space-like areas

$$a_{\rm S} = {\color{black}{\gamma}} \ell_P^2 \sqrt{j(j+1)} \sim {\color{black}{\gamma}} \ell_P^2 j, \quad j \in \mathbb{N}/2$$

Time-like areas

$$a_{\rm T} = \ell_P^2 n, \quad n \in \mathbb{N}/2$$

The Construction Area Regge Calculus

Simple action (4D) [Regge '61; Rovelli '93; Mäkelä '94, Barrett, Roček, Williams '97, SKA, Dittrich, Haggard '18...]

Area Regge action:
$$S_{ARC} = -\sum_{t \in bulk} a_t \epsilon_t(a_{t'}) - \sum_{t \in bdry} a_t \psi_t(a_{t'})$$

discrete GR action for area configurations relevant for LQG and spin foam models [Rovelli '93; Barrett et al...]

Classical dynamics: $\epsilon_t(a_{t'}) = 0$ does **not** reproduce discrete GR dynamics

vanishing curvature + non-shape matching

The Construction Area Regge Calculus

Simple action (4D) [Regge '61; Rovelli '93; Mäkelä '94, Barrett, Roček, Williams '97, SKA, Dittrich, Haggard '18...]

Area Regge action:
$$S_{ARC} = -\sum_{t \in bulk} a_t \epsilon_t(a_{t'}) - \sum_{t \in bdry} a_t \psi_t(a_{t'})$$

discrete GR action for area configurations relevant for LQG and spin foam models [Rovelli '93; Barrett et al...]

Classical dynamics: $\epsilon_t(a_{t'}) = 0$ does not reproduce discrete GR dynamics vanishing curvature + non-shape matching

Preliminary state-sum model:

$$Z = \sum_{\{a\}} \mu(a) \exp(i S_{ARC}(a))$$

discrete areas

Add constraints to reproduce discrete GR [Dittrich, Speziale '07]

Constrain area variables

Area-length constraints

set of polynomial equations

$$\left\{a_t^2 = \frac{1}{16}(4l_1^2l_2^2 - (l_1^2 + l_2^2 - l_3^2)^2), \ \forall t\right\}$$

cf. (part of) simplicity constraints

[Heron of Alexandria, AD 70]

Constrain area variables

Constrain area variables

match pair of 3d dihedral angles

Weak implementation of constraints

Forced between

[courtesy of: Hal Haggard]

- Scylla: Reduce too much density of states
- Charybdis: Impose dynamics that doesn't match GR

Weak implementation of constraints

Forced between

Scylla: Reduce too much density of states

Charybdis: Impose dynamics that doesn't match GR

(localized geometric constraints)

 $\mathscr{C}_i^{\tau} := \phi_{e_i}^{\tau} - \Phi_{e_i}^{\tau,\sigma}(a_t) = 0$

(second-class constraints)

 $\{\mathscr{C}_i^{\tau}, \mathscr{C}_i^{\tau}\} = \gamma (9/2) \operatorname{Vol}_{\tau}$

[Dittrich, Speziale, Ryan, Haggard,...] [Kapovich-Millson]

 γ - an anomaly parameter

Impose constraints '<u>weakly</u>': as strongly as allowed by uncertainty relation

[SF: Engle-Perriera-Rovelli-Livine, Perez]

Weak implementation of constraints

 $G_{\tau} = \langle K_{\Phi_{e_i}^{\tau,\sigma}} | K_{\Phi_{e_i}^{\tau,\sigma'}} \rangle$

ansatz ~ $\mathcal{N}_k \exp\left(-\frac{\mathscr{C}^2}{4\Sigma^2(j)}\right)$

Forced between

Reduce too much density of states Scylla:

Charybdis: Impose dynamics that doesn't match GR

(localized geometric constraints)

(second-class constraints)

 $\mathscr{C}_{i}^{\tau} := \phi_{e_{i}}^{\tau} - \Phi_{e_{i}}^{\tau,\sigma}(a_{t}) = 0 \qquad \{\mathscr{C}_{i}^{\tau},\mathscr{C}_{i}^{\tau}\} = \gamma (9/2) \operatorname{Vol}_{\tau}$

[Dittrich, Speziale, Ryan, Haggard,...] [Kapovich-Millson]

 γ - an anomaly parameter

Impose constraints 'weakly': as strongly as allowed by uncertainty relation

[SF: Engle-Perriera-Rovelli-Livine, Perez]

Use coherent states:

'Integrate out' ϕ^{τ} variables

coupling between σ and σ'

$$|K(\phi^{\tau}, \Phi_{e_i}^{\tau,\sigma})\rangle$$

[Livine, Speziale '17] [Steinhaus, Simão, SKA '22]

10

The Construction Effective spin foam model

Combine simple amplitude and impose constraints 'weakly' [Dittrich, Haggard, Padua-Argüelles, SKA]

Effective spin foam models are discrete geometrical path integrals for quantum gravity

$$Z_{\text{ESF}} = \sum_{\{a_t\}} \mu(a) \exp\left(i S_{\text{ARC}}(a)\right) \prod_{\tau} G_{\tau}^{\sigma,\sigma'}(a) \prod_{\sigma} \Theta_{\sigma}^{\text{tr}}(a)$$

simplex inequalities

 $\mu(a)$ - measure on space of discrete areas

Oscillatory behaviour controlled by area Regge action

Weak imposition of constraints by Gaussian terms localized on tetrahedra

Spin foam amplitudes <u>may</u> be cast into a similar form (have to integrate normal vectors) [Steinhaus, Simão, SKA '22]

Features of the model

Regge calculus Gluing terms

[Dittrich, Haggard, Padua-Argüelles, SKA]

$$Z_{\text{ESF}} = \sum_{\{a_t\}} \mu(a) \exp\left(i S_{\text{ARC}}(a)\right) \prod_{\tau} G_{\tau}^{\sigma,\sigma'}(a) \prod_{\sigma} \Theta_{\sigma}^{\text{tr}}(a)$$

· 'Effective' dynamics of quantum geometries

keep dynamic principles of LQG and spin foam models

Computationally very efficient

fast numerical computations cf. to BF and EPRL models, restricted spin foam models

[Speziale, Dona, Sarno, Gozzini, Frisono; Han, Liu, Qu, Huang; Bahr, Steinhaus, Simão, SKA...]

Features of the model

Regge calculus Gluing terms

[Dittrich, Haggard, Padua-Argüelles, SKA]

$$Z_{\text{ESF}} = \sum_{\{a_t\}} \mu(a) \exp\left(i S_{\text{ARC}}(a)\right) \prod_{\tau} G_{\tau}^{\sigma,\sigma'}(a) \prod_{\sigma} \Theta_{\sigma}^{\text{tr}}(a)$$

'Effective' dynamics of quantum geometries

keep dynamic principles of LQG and spin foam models

Computationally very efficient

fast numerical computations cf. to BF and EPRL models, restricted spin foam models

[Speziale, Dona, Sarno, Gozzini, Frisono; Han, Liu, Qu, Huang; Bahr, Steinhaus, Simão, SKA...]

Related to spin foam models for <u>higher gauge</u> group

 $Z \propto \cos(S_{\text{Regge}})$ [Baez, Girelli, Pfeiffer, Popescu; Baratin, Freidel; Miković, Vojinović; Dittrich, Girelli, Riello, Tsimiklis, SKA]

Control: can test many interesting features

[3D SFs: Simão '24, Jercher, Steinhaus, Simão] Simple construction of Lorentzian model: allows spacelike and timelike area configurations Cosmology applications*

Lorentzian geometries

Configurations

Configurations can be grouped into two sets: Regular and Irregular

according to light cone structure of faces

2D Examples (Hinge causality)

[Louko-Sorkin '95, Sorkin '19]

Regular configuration

[Sorkin'19, Dittrich, Padua-Argüelles, SKA '21]

Lorentzian geometries

Configurations

Configurations can be grouped into two sets: Regular and Irregular

according to light cone structure of faces

2D Examples (Hinge causality)

[Louko-Sorkin '95, Sorkin '19]

 Higher Dimensions:
 Other causality conditions Edge causality, Vertex Causality
 [Jordan, Loll '13]

 [Borgolte, SKA wip]

Irregular configurations leads to <u>complex valued</u> Regge action [Sorkin'19, Dittrich, Padua-Argüelles, SKA '21]

Convergence Techniques to deal with complex amplitudes

Methods for treating complex amplitudes: Applications to Lorentzian path integrals

- Picard-Lefschetz, Holomorphic-gradient flow [Han, Wan, Huang, Liu, Qu: Jia: Dittrich, Padua-Argüelles, SKA '22]
- Tensor network techniques [Bahr, Steinhaus, Dittrich, Cunningham, Mizera, Kaminski, Martin-Benito]

Quantum simulations, machine learning techniques

Monte Carlo techniques [Dona, Frisoni '23; Steinhaus '24]

Acceleration operators [EPRL: Speziale, Dona, Sarno, Gozzini, Frisoni] [ESF: Dittrich, Padua-Argüelles '23] Shanks transform, Wynn epsilon algorithm, Aitken's delta process

[plots by: Dittrich, Padua-Argüelles]

Effective Spin foams Testing the models

[SKA, Dittrich, Haggard, Padua-Argüelles] **arXiv:** 2004.07013, 2011.14468, 2104.00485

Discrete gravity dynamics

Semi-classical

[Dittrich, Haggard, SKA '20] [SF: Han, Huang, Liu, Qu '21]

Few oscillations over Gaussian needed

 $\gamma \sqrt{a_t} \operatorname{curv}_t \leq \mathcal{O}(1)$

[SKA, Dittrich, Haggard] [SF: Han 13]

Alternative idea: 'true' critical points are complex

Imaginary part of saddle point controlled by γ has to be small

Discrete gravity dynamics

Semi-classical

[Dittrich, Haggard, SKA '20] [SF: Han, Huang, Liu, Qu '21]

Alternative idea: 'true' critical points are complex

Imaginary part of saddle point controlled by γ has to be small

What are some effects of discrete area spectrum and 'weakly' imposed constraints?

Testing ESF model Numerical Tests

Early results from explicit evaluations Non-perturbative tests

Several examples of discrete geometries with curvature

explicit sum over discrete areas, implement weakened constraints

Compute expectation values of bulk variables

testing discrete EOMs

Recover discrete gravity dynamics for certain range of parameters
 interesting effects beyond saddle point evaluation
 larger acceptable range for γ than expected

Numerical results

Bulk-Edge

Oscillations due to interplay between discrete areas and constraint imposition

Nice surprises:

Large acceptable range for γ for the expectation values

Better matching of <u>classical EOMs</u> for large boundary scales

Numerical results

2500

2000

1500

1000

500

0.0

0.5

1.0

1.5

2.0

 γ

2.5

3.0

Bulk-Edge

Oscillations due to interplay between discrete areas and constraint imposition

Nice surprises:

Large acceptable range for γ for the expectation values

Better matching of <u>classical EOMs</u> for large boundary scales

Peaks due to discretization effects: pseudo-saddle points

2700

18

Credit: NASA, ESA, HUDF09 Team

Effective Spin foams Cosmology applications

[SKA, Dittrich, Padua-Argüelles, Gielen, Schander, Steinhaus, Jercher] arXiv: 2109.00875, 2112.15387, 2306.06012, 2312.11639

Cosmology Applications

Mini-superspace models

[Hartle, Hawking, Feldbrugge, Lehners, Turok, Dorronsoro, Halliwell, Hertog, Jansen,....] [Williams, Lui, Collins, Dittrich, Gielen, Schander, Vidotto, Gozzini, Frisoni,....]

[Dittrich, Gielen, Schander '21]

partial discretization

deSitter cosmological spacetime

 a_f

[Dittrich, Padua-Argüelles '23]

Spatially flat cosmology

[Steinhaus , Jercher]

Alexander Jercher's talk!

20

Spin foam cosmology [Han, Liu, Qu, Vidotto, Zhang]

Cosmology Applications

Effective spin foam model

Results from deSitter cosmology

- Deal with slowing converging and diverging sums
- Unbounded sum over lapse variable (regular and irregular configurations)
- Acceleration techniques (Wynn's algorithm): Speeds up convergence of discrete sums
 - works well for actions linear in summation variable (also for spin foams)

[Dittrich, Padua-Argüelles '23]

Cosmology Applications

Effective spin foam model

Results from deSitter cosmology

- Deal with slowing converging and diverging sums
- Unbounded sum over lapse variable (regular and irregular configurations)
- Acceleration techniques (Wynn's algorithm): Speeds up convergence of discrete sums
 - works well for actions linear in summation variable (also for spin foams)

Partition function and expectation values sensitive to discrete area spectrum

[Dittrich, Padua-Argüelles '23]

Ball model

Shell model

Credit: Fzalai

Effective Spin foams Continuum limit

[Dittrich, Kogios, Borissova, Krasnov, Steinhaus, SKA] **arXiv:** 2105.10808, 2203.02409, 2207.03307, 2211.09578, 2312.13935

Continuum limit

First Steps

[Dittrich '21, Dittrich-Kogios '22]

[Handbook: Dittrich, Steinhaus, SKA]

First attempts: Linearize area Regge calculus around a flat background on hyper cubic lattice(s)

Interesting Results

[Dittrich '21, Dittrich-Kogios '22]

Action: $S = S_{ARC}(a) - i \sum \ln G_{\tau}(a)$

- Also holds starting from effective spin foams action

Continuum limit

First Steps

[Dittrich '21, Dittrich-Kogios '22]

[Handbook: Dittrich, Steinhaus, SKA]

First attempts: Linearize area Regge calculus around a flat background on hyper cubic lattice(s)

Action: $S = S_{ARC}(a) - i \sum \ln G_{\tau}(a)$

Interesting Results

[Dittrich '21, Dittrich-Kogios '22]

Continuum limit

Area Regge Calculus

Mechanism Compute Hessian around flat background

Quantum Regge Calculus [Williams, Roček '81]

Quantum: Area Regge Calculus

Hessian

$$S^{(2)} = \sum_{t} \frac{\partial a_{t}}{\partial l_{e}} \frac{\partial \epsilon_{t}}{\partial l_{e'}} \delta l_{e} \delta l_{e'}$$

 $S^{(2)} = \frac{\partial \epsilon_t}{\partial a_{t'}} \,\delta a_t \,\delta a_{t'} \qquad \text{[Dittrich, Haggard, SKA '18]}$

Strategy: Organize variables according to order of lattice derivatives in Hessian

Leading order contributions results from variables forming an area metric

20 area metric variables per point
$$= h$$
 (10) $+ \chi$ (10)
trace part trace-free part

Integrate

Integrate out non-metric variables

 \rightarrow

Effective action for metric variables

$$S_{\text{eff}} = h \cdot (H_{hh} - H_{h\chi} H_{\chi\chi}^{-1} H_{\chi h}) \cdot h$$

Summary & outlook What can we learn from (discrete) gravitational path integrals?

Using 'effective spin foam models'

Quantum geometry

Quantum gravity

Semi-classical approximations

Topological transitions

Black hole dynamics

Early universe Cosmology applications

Quantum field theory in curved space time

Renormalization/Continuum limit

Look for predictions/observable signatures from area variables

Summary & outlook What can we learn from (discrete) gravitational path integrals?

Using 'effective spin foam models'

Quantum geometry

Quantum gravity

Semi-classical approximations

Topological transitions

Black hole dynamics

Early universe Cosmology applications

Quantum field theory in curved space time

Renormalization/Continuum limit

Look for predictions/observable signatures from area variables

THANK YOU!

25

